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Background: Health information technologies can assist clinicians in the Intensive Care Unit (ICU) by
providing additional analysis of patient stability. However, because patient diagnoses can be confounded
by chronic alcohol use, the predictive value of existing systems is suboptimal. Through the use of Elec-
tronic Health Records (EHR), we have developed computer software called AutoTriage to generate ac-
curate predictions through multi-dimensional analysis of clinical variables. We analyze the performance
of AutoTriage on the Alcohol Use Disorder (AUD) subpopulation in this study, and build on results we
reported for AutoTriage performance on the general population in previous work.
Methods: AUD-related ICD-9 codes were used to obtain a patient population from MIMIC III ICU dataset
for a retrospective study. Patient mortality risk score is generated through analysis of eight EHR-based
clinical variables. The score is determined by combining weighted subscores, each of which are obtained
from singlets, doublets or triplets of one or more of the eight continuous-valued clinical variable inputs.
A temporally updating risk score is computed with a continuously revised 12-hour mortality prediction.
Results: Among AUD patients, in a non-overlapping test set, AutoTriage outperforms existing systems
with an Area Under Receiver Operating Characteristic (AUROC) value of 0.934 for 12-h mortality pre-
diction. At a sensitivity of 90%, AutoTriage achieves a specificity of 80%, positive predictive value of 40%,
negative predictive value of 89%, and an Odds Ratio of 36.
Conclusions: For mortality prediction, AutoTriage demonstrates improvements in both the accuracy and
the Odds Ratio over current systems among the AUD patient population.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Clinical Decision Support Systems (CDSS) can be used to help
assess patient conditions and predict patient mortality risk. Ac-
curate predictions in the ICU are needed for timely medical at-
tention and for the allocation of limited ICU resources [1,2].
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Several existing prediction models such as Modified Early Warning
Score (MEWS) [3], Sepsis-Related Organ Failure Assessment (SOFA)
[4], and Simplified Acute Physiology Score (SAPS II) [5], rely on
weighted linear combinations of basic patient characteristics such
as age, type of admission and vital sign measurements. The high
false positive rate of alerts resulting from such classifiers often
leads to alarm fatigue in the clinical setting [6]. Desensitization
from an overexposure to false alarms has widely been documented
to increase response times and decrease receptivity to correct
alerts [7]. For the reasons described below, the difficulty of as-
sessing stability is exacerbated in patients suffering from alcohol-
use dependence (AUD) and calls for improvement.

AUD patients encompass 1 out of 10 critical care admissions
and are up to 8% more likely to experience unplanned re-
hospitalization within 30-days of discharge [8,9]. This is because
the standard techniques for screening patient stability can be
confounded by chronic alcohol use. In particular, signs of acute
hypotension, which can be indicative of life-threatening
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Fig. 1. Patient inclusion flowchart.
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homeostatic failures like sepsis, anaphylaxis and renal failure
[4,10,11] may be masked among patients in the AUD subpopula-
tion, because AUD patients often suffer from chronic hypertension
[12]. Chronic alcohol use can also confound the value of a Leuko-
cyte Differential (WBC) Count, a common lab test used in the di-
agnosis of a variety of medical conditions [13]. The higher risk of
unplanned rehospitalization, in conjunction with poorer diag-
nostic screening performance, underscore the need for improved
risk scoring systems for AUD patients.

The use of Electronic Health Records (EHR) in hospitals pro-
vides an opportunity to improve predictive value from clinical data
and provide clinical decision support. Recent studies have used
various patient measurements and patient trends to improve
mortality predictions, leading to incremental progress [14–16]. To
further improve the quality of mortality prediction, we have de-
veloped AutoTriage, an algorithmwhich interrogates trends among
clinical variables and also analyzes inter-correlations [17]. Using
only eight common clinical measurements and analyzing inter-
correlations reduces the chances that real-time data unavailability
challenges affect algorithm performance. As homeostasis is gov-
erned by multi-organ feedback regulation, these variable correla-
tions uncover useful patterns across organ systems. Accurate and
early identification of deteriorating patients with assistance from a
CDSS tool like AutoTriage has the potential to significantly decrease
the number of life-threatening situations arising in the critical care
wards of the hospital, and in turn lead to reductions in patient
mortality rates. In this study, we demonstrate the application of
AutoTriage on the difficult-to-predict AUD subpopulation to de-
monstrate the ability of the algorithm to overcome factors that are
confounded by traditional diagnostic analysis.
2. Methods

2.1. Data set

Fig. 1 depicts the patient exclusion process used to select 3054
patient records from the Multiparameter Intelligent Monitoring in
Intensive Care (MIMIC) III database [18]. The records consist of de-
identified clinical information of adults admitted to the Beth Israel
Deaconess Medical Center (BIDMC) medical intensive care unit
(MICU). Since the study did not impact patient safety and all data
were in accordance with the HIPAA Privacy Rule, the requirement
for patient consent was waived by the Institutional Review Boards
of BIDMC and the Massachusetts Institute of Technology.

Inclusion criteria for this study were:

I. Age of at least 18 years and admission to the MICU.
II. Documented length-of-stay and survival for at least 17 h fol-

lowing admission. A 17-h minimum accounts for a 12-hour
advance warning after 5 h of patient monitoring using Au-
toTriage. Documented AUD-related ICD-9 code (291.X, 291.XX,
303.XX, 305.XX, 357.5, 425.5, 535.3X, 571.2, and 571.3, where
X denotes a wildcard).

The eight physiological measurements utilized with 1-h re-
solution were heart rate, pH, pulse pressure, respiration rate, blood
oxygen saturation, systolic blood pressure, temperature, and white
blood cell count (WBC). With the exception of pH and WBC, these
measurements are frequently sampled in the ICU, thus ensuring
our predictions are broadly applicable. In addition, MEWS, SAPS II,
and SOFA utilize similar measurements for prediction, allowing us
to compare performance with these systems.
2.2. Gold standard

In-hospital mortality was our gold standard. The time of last
measurement available was chosen as the time of death of the
patient. By this definition, 392 patients were flagged as having in-
hospital deaths and 2662 as survivors, resulting in a 12.84% mor-
tality prevalence.

2.3. Binning, feature construction, and score assignment

Our classifiers use a set of four non-linear input features de-
signed to capture empirical risk as a function of the patient mea-
surements. Each individual type of measurement was associated
with a non-linear function mapping from value of the measure-
ment to approximate empirical risk of gold standard-defined
mortality. These non-linear functions were typically polynomials
of degree four or five. The sum of all such functions was taken as
the first input to our classifier. Trends for observed patient mea-
surements were also calculated using time-parameterized se-
quences of measurements. For example, a change in respiratory
rate was calculated for each set of two consecutive timestamps
with respiratory rate measurements (imputed to the nearest hour)
and used as a stand-alone input feature [17]. During hours with no
updated entries, the measurement value was approximated as the
most recent value available and trends were calculated from this
value. In the same fashion as with the measurement values, the
empirical risk of mortality as a function of each individual trend
was approximated with a polynomial and used as an input feature.
The sum of all of these risk approximating functions of the trend
values was taken as the second feature input of our classifier. Fi-
nally, combinations of two or three trends were related to em-
pirical risk of mortality. In this procedure, the trends were binned
by value, where bin edges were assigned heuristically. The em-
pirical risk of mortality for each combination of two or three



J. Calvert et al. / Computers in Biology and Medicine 75 (2016) 74–7976
binned trends was calculated and stored. The resulting non-linear
functions from trend values to approximate empirical mortality
risk were summed, with a sum of pair-derived features, and a
separate sum of triplet-derived features. These two sums com-
prised the third and fourth inputs to our classifiers.

We trained our logistic regression classifiers using this set of
features. These classifiers were trained to assess patient stability
12 h prior to patient discharge or death. A window of five hours
prior to this time was used to gather data, calculate the mea-
surement and trend values, and generate the patient mortality
score. All of our performance measures are the results of a four-
fold cross validation procedure, where assignment to each fold
was randomized. We utilized custom MATLAB (MathWorks, Na-
tick, MA, R2015a) scripts to implement all of the operations de-
scribed in this section (Fig. 2).

2.4. Generating MEWS, SAPS II, and SOFA scores for comparison

Software provided alongside the MIMIC III database [19] was
used to produce SAPS II and SOFA scores. Similarly, the MEWS
Fig. 2. AutoTriage algorithm flowchart.
heuristic table was used to generate MEWS scores [3].
3. Results

Receiver Operating Characteristic curves (ROC) for 12-h mor-
tality prediction on the non-overlapping test set is shown in Fig. 3.
AutoTriage yields a higher average Area Under ROC (AUROC) value
of 0.934 compared to AUROC of 0.7597, 0.7657, and 0.7913, by
MEWS, SAPS II and SOFA, respectively.

AutoTriage score Z�2.64 achieves an improved sensitivity of
90% while maintaining a higher specificity of 80% when compared
to the 66% sensitivity and 74% specificity for MEWS Z3 [20]. At
this 90% sensitivity, AutoTriage demonstrates significant improve-
ments in accuracy, specificity and predictive value over existing
methods. The generalizability of these results was confirmed by
4-fold cross validation.

AutoTriage also achieves a higher accuracy of 81% than existing
methods. The increased positive likelihood ratio (LRþ) and de-
creased negative likelihood ratio (LR-) both demonstrate increased
accuracy and confidence in mortality and stability assessment.
Furthermore, AutoTriage achieves an Odds Ratio of 36.46, provid-
ing more than a six-fold increase in confidence of correct mortality
prediction compared to MEWS Z3. This relatively high
Table 1
Statistical outcomes of 12-h mortality prediction using AutoTriage as compared to
other commonly used severity of illness scoring systems. The F1 score is the har-
monic mean of precision and recall.

AutoTriage
(Z�2.64)

MEWS
(Z3)

MEWS
(Z1)

SAPS II
(Z17)

SOFA (Z5)

Sensitivity 0.9031 0.6582 0.9082 0.8878 0.9031
Specificity 0.7964 0.7348 0.3186 0.3546 0.3779
PPV 0.3951 0.2677 0.1641 0.1684 0.1761
NPV 0.8915 0.6825 0.7763 0.7596 0.7959
F1 0.5497 0.3806 0.2779 0.2832 0.2948
OR 36.4557 5.3356 4.6258 4.3474 5.6615
LRþ 4.4357 2.4819 1.3328 1.3756 1.4517
LR� 0.1217 0.4652 0.2881 0.3164 0.2564
Accuracy 0.8101 0.7250 0.3943 0.4230 0.4453

Fig. 3. AutoTriage, Modified Early Warning Score (MEWS), Sequential Organ Failure
Assessment (SOFA), and Simplified Acute Physiology Score (SAPS II) Receiver Op-
erating Characteristic (ROC) curves for 12-hour mortality prediction in the medical
intensive care unit.



Fig. 4. AUD patient distribution across AutoTriage score values among survivors and
non-survivors. The dotted vertical line represents an AutoTriage threshold of �2.64,
corresponding to a sensitivity of 90% and specificity of 81%.

Fig. 5. AutoTriage AUROC over time preceding in-hospital death in the MICU.
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performance of AutoTriage demonstrates the ability to reduce false
alarms, increase confidence in the need for medical intervention
and increase confidence in assessing patient stability. Performance
of AutoTriage and of existing systems in the non-overlapping test
set is summarized in Table 1.

Fig. 4 shows the distribution of survivors and non-survivors
across the AutoTriage score range in the non-overlapping test set.
The vertical line of AutoTriage¼�2.64 indicates a sensitivity of
90% and specificity of 81%. Lowering this threshold would indicate
more patients at risk but increase the number of false positive
cases.

AUROC is visualized in Fig. 5 in the non-overlapping test set, as
it increases over time (prior to in-hospital death). As time-of-death
approaches the method improves in predictive power as the pa-
tient condition becomes more obviously unstable.

4. Discussion

Risk scoring systems like MEWS, SAPS II, and SOFA evaluate
patients by combining weights associated with value-ranges of
vital signs and lab tests. This tabulation approach benefits from its
simple implementation and reliance on only the most common
patient measurements, which makes it more likely that the ne-
cessary score components are available. However, these methods
fail to take full advantage of the information made available in
EHR, which can contribute valuable time series data to the pre-
diction-making process. AutoTriage pairs the strengths of existing
scoring systems with multidimensional analysis, including trend
assessment [17].

Fig. 3 demonstrates the substantial benefits of employing
multidimensional analysis in prediction-making. Note that, while
AutoTriage ultimately incorporates many more features than the
comparison methods, it too uses only a handful of measurements
drawn from the same pool of widely available vital signs and lab
tests as data inputs. AutoTriage does not make any assumptions
about the input data or place any restrictions, except that included
patients have at least one observation of each of the relevant
measurements. Specifically, AutoTriage uses 8 input measures
consisting mostly of vital signs, while MEWS, SAPS II, and SOFA use
5, 17 and 10 input measures respectively, consisting in large part of
laboratory tests for the latter two. The additional features used in
AutoTriage arise from correlating combinations and trends of
multiple input measurements with an outcome of interest, which
are pieces of information not considered by the other methods in
Fig. 3. For an individual prediction, AutoTriage is able to deliver this
performance with sub-second computational cost on a desktop
computer.

Like MEWS, SAPS II, and SOFA, AutoTriage generates an all-cause
mortality score and does not discriminate between mortality
causes. The higher-order correlations and trends between clinical
measurements are designed to detect the loss of homeostasis that
occurs when biological feedback loops break down, prior to the
signs of patient instability that can be detected from single vital
sign analysis. Therefore the AutoTriage score is generated in-
dependently of underlying disease state, instead reflecting the
overall loss of homeostasis of the individual.

Since the prevalence of in-hospital mortality (12.84%) for AUD
patients is low relative to the number of survivors, many of the
common metrics for assessing the quality of a predictor's perfor-
mance are also affected (tending to be lower). Despite this, the
AutoTriage metrics shown in Table 1 are encouraging, and more
than double that of several of the other methods’ metrics. Due to
the low prevalence positive class, the F1 score is particularly re-
levant, as it does not reward the number of survivors that were
predicted to be survivors (of which there are many). The F1 score
thus emphasizes the predictions made for the in-hospital death
cases, which should be prioritized in order to align with clinical
priorities. As is the case with most of the other metrics, AutoTriage
roughly doubles the F1 score over existing methods.

Fig. 4 illustrates how the choice of AutoTriage score threshold
made in Table 1 classifies patients with respect to their distribu-
tion over patient scores. Unlike the sharp peak in the distribution
over all AUD patient scores, the in-hospital death score distribu-
tion is broad, flat, and situated mostly across positive AutoTriage
scores. This enables the score threshold of �2.64 to capture most
of the in-hospital death patients, while misclassifying relatively
few survivors. However, the score threshold can be chosen to
emphasize different prediction metrics, based on a health system's
or even an individual clinician's priorities. For example, the score
could be lowered further to capture a greater fraction of in-hos-
pital deaths or raised to improve specificity. This threshold tuning
could be motivated by a desire to reduce dangerous alarm fatigue
associated with CDSS systems [21]. In the case that a higher spe-
cificity is chosen, it is possible that the concomitant decrease in
sensitivity would be balanced out over time, because a prospective
application of AutoTriage would be functional immediately at
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admission and would predict mortality longitudinally with in-
creasing quality over time (Fig. 5), without specifying a look-ahead
period. Contrastingly, we fix the look-ahead period to 12 h in this
retrospective study via inclusion criterion (ii), in order to concisely
present the performance of the AutoTriage algorithm.

Limitations of our study include a retrospective design and the
use of a single center cohort. Our performance may be over-
estimated because the training and testing were executed on
partitions of the same data set. In the future we will test the
performance of this algorithm on data from different medical
centers. Also in future studies we plan to validate the AutoTriage
algorithm prospectively in multiple hospitals. Demographic and
institutional differences could result in AutoTriage performance
variability. However, it is more important that AutoTriage performs
well after retraining on retrospective data at each site, rather than
that a single training of AutoTriage perform well across all in-
stitutions. This is because the clinical implementation process may
include a preliminary stage of model customization to a particular
site, if necessary.

It is important to note that a prediction of mortality for a given
patient by AutoTriage or other methods likeMEWS, SAPS II, or SOFA,
does not imply a medical intervention can be made that will
prevent or even delay mortality, or if such an intervention is
possible, that it would be desirable to the clinical team, the pa-
tient, or the patient's family members. However, several studies
have shown that the use of screening systems like MEWS leads to
improved patient outcomes, reduced in-hospital mortality, and
reduced code blue events [22–25]. These results suggest that,
overall, patients would benefit from AutoTriage predictions, which
would identify more at-risk patients than MEWS with fewer false
alarms.
5. Conclusion

Inspired by existing mortality prediction systems, AutoTriage
manipulates widely available data to generate risk scores. AutoTriage
is distinct from other methods, however, through its use of multi-
dimensional combinations of these measurements and their trends.
These differences allow AutoTriage to outperform existing methods for
the scoring of in-hospital mortality of AUD patients, achieving a
sensitivity of 90% and a specificity of 80%, 12 h before in-hospital
mortality. These results suggest that AutoTriage has the potential to
add value in a clinical setting, even for difficult-to-predict sub-
populations, and indicate that variations of this method could address
other medical problems of interest through inpatient clinical decision
support.
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