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Introduction
The rapid rise in the collection of clinical data, made possible 
through the use of electronic health records (EHR), has 
unlocked the potential for machine learning techniques to pro-
vide warning of adverse patient events. One such opportunity 
is the prediction of in-hospital mortality. When equipped with 
early notice of high-risk patients, clinicians may be better able 
to allocate valuable hospital resources, provide appropriate care, 
and improve patient outcomes.

Increasingly, machine learning techniques are being used to 
detect adverse health events in hospital settings.1-9 Unlike risk 
scores developed on general populations, such as the Modified 
Early Warning Score (MEWS),10 the Sequential Organ Failure 
Assessment (SOFA),11 the Acute Physiologic Assessment and 
Chronic Health Evaluation II (APACHE II),12 the Medical 
Emergency Team (MET),13 and the systemic inflammatory 
response syndrome,14 machine learning–based predictors can 
be customized to distinct patient subpopulations or specialist 
care facilities by training on data from a “target” population. 

However, such training is often ineffective, given that minimal 
amounts of retrospective data are available to serve as the target 
training set at most institutions. This is an especially challeng-
ing problem for relatively rare outcomes of interest because 
there are few positive class examples in those cases. Target data 
scarcity presents a significant barrier to the development of 
predictors using data science techniques and the adaptability of 
these predictors into widespread clinical settings.

Data scarcity can be overcome by supplementing examples 
from the target population with a “source” population, for which 
data are more abundant, in a statistical process known as transfer 
learning.15 Previously, transfer learning has been applied in the 
health care setting for segmenting magnetic resonance images 
across multiple scanners and postprocessing modes,16 improv-
ing Clostridium difficile infection prediction performance using 
cross-institutional data,17 creating time-varying risk assessment 
methods from EHR data,18 and assessing the risk of adverse 
events in cardiac surgery.19 However, there has been limited 
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work toward minimizing the data used in creating effective 
clinical decision support tools.19 In this study, we build on our 
prior machine learning work in developing AutoTriage, an end-
to-end EHR-based algorithmic analysis system for forecasting 
patient mortality or predicting the results of intrahospital ward 
transfer and/patient discharge. For mortality prediction, we pre-
viously demonstrated that AutoTriage outperformed canonical 
risk scoring systems, SAPS II (the Simplified Acute Physiology 
Score20), SOFA, MEWS,6 and similarly outperformed MET 
and MEWS for discharge prediction.1 In this work, we use 
techniques from transfer learning to reduce the amount of data 
required to customize a predictor to an inpatient population 
(the target) at the University of California, San Francisco 
Medical Center, using the available Medical Information Mart 
for Intensive Care (MIMIC)-III21 data set (the source). 
Specifically, we demonstrate that this method greatly reduces 
the data collection burden on the target site while maintaining 
high predictive performance. In turn, this demonstrated capa-
bility lowers a major barrier to adoption for other target clinical 
facilities that have limited, non-standardized, or difficult-to-
access clinical data archives.

Methods
In this section, we describe the source and target data sets, the 
means by which they were processed, and the definition of the 
mortality gold standard, which was used to assign a positive or 
negative class label to each patient. We also describe the 
machine learning model and training algorithm and the trans-
fer learning method that we used in these experiments.

Data sets and preparation

The source data were drawn from the MIMIC-III database, 
version 1.3, which include more than 50 000 intensive care 
unit (ICU) stays (≥15 years of age) from Beth Israel 
Deaconess Medical Center in Boston, MA, between 2001 
and 2012. The target data set used in these experiments, 
obtained from University of California San Francisco 
(UCSF), included 109 521 adult inpatient encounters 
(≥15 years of age) in the UCSF hospital system. We used 
admissions from June 2011 to March 2016, and the EHR-
derived patient charts for these encounters included data 
recorded in multiple wards. The original MIMIC-III and 
UCSF data collection did not affect patient safety, and all 
data were de-identified in accordance with the Health 
Insurance Portability and Accountability Act Privacy Rule 
prior to commencement of this study. Hence, this study con-
stitutes nonhuman subjects research which does not require 
Institutional Review Board approval.

These two data sets differ in a variety of ways, most notably 
the wards and departments from which they are drawn within 
the hospital. In principle, closely matched data sets should be 
more amenable to transfer learning. However, MIMIC-III is a 
large, well-curated, publicly available data set containing 

patients who have been the subjects of intense monitoring, 
such that it represents one of the best available source data sets, 
in terms of quality. Furthermore, in keeping with the motiva-
tion of this article, it will often be the case that potential source 
data sets are mismatched with the target data set in one or 
more ways, and that the range of patients over which the target 
site would like to use a predictive system (here, all wards of the 
hospital, including the emergency department) may be sub-
stantially greater than the directly comparable setting in the 
source collection (ICU only).

In both data sets, the outputs of database queries were pro-
cessed with Dascena’s custom algorithms, implemented in 
MATLAB (Mathworks, Natick, MA, USA). All available 
measurements of a given type (eg, heart rate) were ordered and 
screened for anomalous outliers using physiological threshold 
values. The data were binned into hourly windows, and all 
measurements of each measurement type were averaged (or 
summed, if appropriate) within a window. Many windows 
contained no measurements for particular channels; we applied 
causal, carry-forward imputation (zero-order hold) to carry 
forward the most recent past bin’s value for averaged measure-
ments. If there were no previous measurements in a channel, a 
NaN (“not-a-number”) value was retained for the channel. We 
used measurements of (1) Glasgow Coma Scale (GCS), (2 and 
3) systolic and diastolic blood pressures, (4) heart rate, (5) 
body temperature, (6) respiratory rate, and (7) peripheral oxy-
gen saturation (Spo2), (8) approximate 8-hour urine output, 
(9) Fio2, (10) blood pH, and binary (normal/abnormal) lab 
assessments for (11) total bilirubin, (12) creatinine, (13) plate-
lets, and (14) white blood cell count. The final sequence of 
observations consisted of these hourly vital signs, lab results, 
and clinical measurements.

Gold standard

The clinical outcome of interest was in-hospital mortality. 
Each encounter was marked according to the following 
scheme: if the patient was recorded as dying in-hospital, and 
this death occurred during the present encounter, the encoun-
ter was marked as Class 1; otherwise, the encounter was 
marked as Class 0. Note that because the UCSF data set did 
not contain follow-up beyond the end of the encounter, some 
of the patients who expire marked as Class 0 may have expired 
after leaving the hospital. The prediction was made at a par-
ticular point in the timeline of the encounter, defined for the 
UCSF patients as 5 hours after the first time the patient has 
any one of the measurements (1-7) recorded (excluding 
GCS). The choice of prediction time was designed to ensure 
that the patient was physically present and under observation 
for a number of hours before the prediction was computed. 
For the MIMIC-III set, the prediction time was selected as 
24 hours preceding the last instance of the measurements 
listed above. These choices were necessary because both the 
MIMIC-III and UCSF data sets included inexact recording 
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of admission, discharge, and transfer times. The time of the 
encounter’s end-of-record event (death or discharge) may 
have been close or distant, relative to when the prediction was 
made (Figure 1).

For both the MIMIC-III and UCSF data sets, we used the 
following procedures to determine which encounters should 

be excluded from further analysis. For UCSF, we first checked 
whether each patient had at least one of each of the measure-
ments (1-7) at some point during the encounter. In total, 
61 233 out of 109 521 encounters failed to have all of these 
measurements, leaving 48 288 UCSF encounters for further 
analysis. It was not required for patients to have measure-
ments (8-14, laboratory test measurements) for inclusion; 
however, the data from these measurements were used when 
available (see Table 1). We next checked prediction time 
choices. In total, 13 929 of 53 000 MIMIC-III encounters 
and 39 of the remaining UCSF encounters were removed, as 
the prediction time either could not be determined or it was 
out of range (less than 5 or greater than 1000 encounter 
hours). This restriction was intended to ensure that only 
patients with sufficient encounter data for a prediction were 
included. For MIMIC-III encounters, when combined with 
the 24-hour pre-onset prediction time, this restriction also 
ensured that source set patients spent at least 29 hours in the 
ICU. The final data sets included 39 071 MIMIC-III encoun-
ters, of which 3570 were classified as class 1 (9.14% preva-
lence) and 48 249 UCSF patients, of which 1636 were 
classified as Class 1 (3.39% prevalence). We attribute the dif-
ference in prevalence to variance between the institutions and 
the corresponding patient populations. After the inclusion 
criteria were applied (see Figure 2), the UCSF and MIMIC-
III patients had different age, length of stay, and sex distribu-
tions (see Table 2). In addition, MIMIC-III consisted of ICU 

Figure 1. The time intervals between prediction time and the end-of-

record event at University of California San Francisco (n = 48 249 with 

1636 in-hospital mortality cases: 3.39% prevalence). As the record is 

discretized to 1000 hours at most, the end-of-record event in those cases 

beyond this limit was marked at 1000 hours. In such cases, the clinical 

outcome, death or discharge, still determined the gold standard label.

Table 1. Mean per-hour observation frequencies with standard deviations among included patient stays in the MIMIC-III and UCSF data sets.

MEASUREMENT MIMIC-III UCSF

MEAN (SD), h−1 FRACTION MEAN (SD), h−1 FRACTION

Glasgow Coma Scale 0.29 (0.13) 1.00 0.15 (0.18) 1.00

Systolic blood pressure 0.63 (0.38) 0.97 0.51 (0.34) 1.00

Diastolic blood pressure 0.63 (0.38) 0.97 0.51 (0.34) 1.00

Heart rate 1.15 (2.19) 0.99 0.51 (0.33) 1.00

Temperature 0.53 (0.43) 0.99 0.28 (0.15) 1.00

Respiration rate 1.13 (2.15) 0.99 0.51 (0.35) 1.00

Spo2 1.13 (1.97) 0.99 0.52 (0.34) 1.00

Urine output 0.35 (0.37) 0.54 0.28 (0.26) 0.94

Fio2 0.14 (0.88) 0.64 0.06 (0.18) 0.30

Blood pH 0.12 (0.15) 0.72 0.02 (0.03) 0.59

Total bilirubin 0.02 (0.03) 0.49 0.01 (0.02) 0.59

Creatinine 0.09 (0.05) 0.99 0.04 (0.03) 0.95

Platelets 0.10 (0.05) 1.00 0.04 (0.03) 0.95

White blood cell count 0.12 (0.08) 0.99 0.04 (0.03) 0.95

Abbreviations: MIMIC-III, Medical Information Mart for Intensive Care-III; UCSF, University of California San Francisco.
Fraction is the fraction of patients included in the analysis with at least one of the given measurement recorded during their stay.
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patients exclusively, whereas the UCSF hospital system data 
consisted of patients across all hospital wards, which included 
ICUs, emergency departments, and general medical and sur-
gical wards (see Table 3).

To create the training and testing inputs for the classifier, 
the patient’s discretized state was sampled over a 5-hour period 
from time of admission at 1-hour intervals, for each measure-
ment present. When combined with the patient’s age, this 
yielded a 71-dimensional input vector, xi . The patient’s label, 
yi , was the binary outcome for the patient: 1 for mortality, 0 

for survival. This process was executed for the source and target 
domains, producing source and target sets of examples, respec-
tively, denoted D x yS

i i i= ={ , } 1
39071  and D x yT

j j j= ={ , } 1
48249 . 

Both of these sets were used in the classifier training scheme 
described below.

Model and training algorithm

For this work, we chose to use an ensemble of decision trees. 
Ensemble classifiers combine the output from many “weak” 
learners, each of which would be insufficient to solve the 
desired learning problem on its own. The decision trees used 
as the weak learners in this scheme were constructed as a series 
of binary conditions; for example, “Is heart rate in the current 
hour >100 beats per minute?” Depending on whether each of 
these conditions was true or false, further conditions may have 
been checked, and a risk score was eventually assigned. Within 
each tree, we limited the number of such logical “splits” to 8, in 

turn limiting the tree to at most 9 risk cohorts, such that each 
individual tree was a fairly weak predictor. However, by com-
bining 200 such trees, the ensemble was able to produce a 
strong, flexible, and expressive classifier. We used a boosting 
algorithm22,23 to construct each ensemble, in which individual 
trees were created by splitting according to Gini diversity 
index.24

Transfer learning method

The transfer learning method provided the source (MIMIC-
III) examples DS  directly as additional training examples for 

Figure 2. Inclusion flowcharts for UCSF target data (left) and MIMIC-III 

source data (right). These flowcharts illustrate the process used to obtain 

the final target and source data sets. The number of encounters 

remaining after each step is underneath the corresponding block. 

MIMIC-III indicates Medical Information Mart for Intensive Care-III; UCSF, 

University of California San Francisco.

Table 2. Demographic comparison between MIMIC-III encounters 
(n = 39 071) and UCSF encounters (n = 48 249).

CHARACTERISTIC MIMIC-III, % UCSF, %

Gender Female 43.60 49.23

 Male 56.40 50.76

Age 15–17 0.16 1.84

 18–29 4.19 8.64

 30–39 4.87 8.91

 40–49 10.25 12.94

 50–59 17.39 19.45

 60–69 21.24 22.69

 70+ 41.91 25.53

Length of stay, d 0–2 50.69 24.70

 3–5 27.02 34.38

 6–8 8.86 16.8

 9–11 4.56 7.89

 12+ 8.88 15.61

In-hospital death Yes 9.14 3.39

 No 90.86 96.61

Abbreviations: MIMIC-III, Medical Information Mart for Intensive Care-III; UCSF, 
University of California San Francisco.

Table 3. Top 5 patient care units, by number of encounters included in 
analysis, in MIMIC-III (n = 39 071) and UCSF (n = 48 249) data sets.

MIMIC-III UCSF

1. Medical ICU 1. Emergency department

2. Cardiac surgery ICU 2. Perioperative care unit

3. Surgical ICU 3. Neurosciences department

4. Coronary care unit 4. Cardiovascular and thoracic unit

5.  Thoracic surgery 
ICU

5. Medical/surgical high-acuity care unit

Abbreviations: ICU, intensive care unit; MIMIC-III, Medical Information Mart for 
Intensive Care-III; UCSF, University of California San Francisco.
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the target, UCSF-domain classifier. To ensure that the classi-
fier also reflected the (small) amount of UCSF data (a subset of 
DT ), the target UCSF data were weighted more heavily than 
were the source domain data. The variable controlling the 
degree of this weighting was one of our experimental parame-
ters of interest. Below, we denote this weight as w, the “mixture 
weight.” The individual examples were weighted such that the 
sum of all target example weights was w and the sum of all 
source example weights was (1 − w). Values 0⩽w⩽1 were used 
in the experiments; setting w = 0 corresponded to training the 
classifier entirely on the source domain data, and w = 1 corre-
sponded to training entirely on the target domain data, whereas 
values in between smoothly transitioned between the two. This 
framework was analyzed theoretically by Ben-David et al.25

To simulate a new deployment to a small care facility, while 
employing the large UCSF set as the target, we restricted the 
number of target training examples used to train the classifier. 
By sweeping this value from very small (0.025% of the UCSF 
set, less than 110 encounters) to the full size of the target train-
ing data set (43 424 encounters, 90% of the UCSF set), the 
performance traced a learning curve. This learning curve 
allowed us to experimentally measure how effectively the trans-
fer learning method decreased the amount of target training 
data required to reach a specified performance level.

Experimental procedures

In the experiments that follow, we studied how the amount of 
available target training data and their weightings control the 
performance of the resulting predictor. We performed 10-fold 
cross-validation (CV), where the entire UCSF data set was 
used to construct the testing folds (ie, 10 partitions into which 
the whole set is divided). The results in this article show CV 
folds constructed without explicit regarding the temporal order 
of the patient encounters. We also executed a similar experi-
ment investigating contiguous blocks of patient data; although 
this resulted in a very small decrease in performance, the results 
and trends were qualitatively similar. For each testing fold, a 
subset of the remaining, nontesting data was used to construct 
a target training set. This target training set was concatenated 
with all labeled examples from the source data, and these 2 
training subsets were weighted against one another, forming a 
final training set. The procedure for preparing the training and 
testing sets is shown diagrammatically in Figure 3. This final 
training set was passed to the routine which trains the classifi-
cation ensemble. This routine included a nested CV procedure 
to select w, the key transfer parameter, from a discrete menu of 
values. We compared against fixed weighting schemes, with 
w = 0 and 1, as well as 2 other preset w values—one such that 
target examples were weighted approximately equally with 
source examples and the other so that they were weighted 5 
times as heavily as source examples.

The continuous-valued outputs which resulted when the 
ensemble was given the test examples (ie, the “scores” it gives, 

Figure 3. The construction of training and test sets for each cross-

validation fold. Source data (green) and target data (blue) were both used 

in this procedure. For each of the 10 test folds, the corresponding training 

set was constructed using the whole source set and a variable portion of 

the remaining target data. During training, the examples from source and 

target sets received different weights. The performance of the resulting 

classifier was assessed on the test set.

not binary labels) were then used, along with the ground 
truth labels on the test examples, to compute the receiver 
operating characteristic curve. The area under this curve 
(AUROC) was the key measure of classifier performance we 
assessed in this work. Statistical tests for AUROC compari-
son were conducted by pairwise t tests, where these pairs 
were the 2 methods compared on the same test CV fold. We 
also calculated test-fold Cox calibration coefficients α and β 
via logistic regression between the score outputs and the 
labels.26,27

Results
Learning curves for selected weighting choices (w’s) are shown 
in Figure 4. These learning curves show how the performance of 
the classifier improves on the target test set as the training 
scheme incorporates more target training data. The nested CV 
transfer method delivers AUROC of 0.7853 with 0.25% of the 
target training set and 0.8043 with 0.5% (≤220 encounters). 
Target-only training gives AUROCs of 0.4961 and 0.5510 for 
these same numbers of target training examples. For comparison, 
the canonical risk score MEWS28 achieves an AUROC of 
0.7646, and training entirely on the source domain (w = 0) 
achieves AUROC 0.7831. The nested CV scheme achieves 
superior AUROC to each of source-only and target-only train-
ing at each training set size more than 0.25% and less than 30%, 
with P value ≤ .05 in all cases (fold-wise paired, 1-tailed t tests). 
Similarly, the fixed-w scheme in which each target example is 
weighted 5 times as heavily as source examples (5×) is also supe-
rior to source-only and target-only training for all training set 
sizes below 30% (P ≤ .05 in all cases). Target-only training is 
worse than MEWS until 10% of the training set is available 
(P < .05, all comparisons).

Figure 5 shows how Cox calibration coefficients α and β 
vary with the training set size. Although the bias coefficient α 
is typically far from the ideal value of 0, the measure of appro-
priate spread β is in 0 < β < 1 (indicating an over-responsive 
mortality predictor, relative to empirical risk) and approaches 
its ideal value of 1 for larger fractions of the training set and all 
weightings that include target data.
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Figure 4. Learning curves (mean AUROC) with increasing number of target training examples. Error bars are 1 SE. When data availability is low, 

target-only training exhibits lower AUROC values and high variability. AUROC indicates area under the receiver operating characteristic; CV, cross-

validation. The maximum mean AUROC achieved by the nested cross validation method is 0.8498.

Figure 5. Calibration curves giving mean regression coefficients α (offset) and β (slope) between predicted and empirical log odds for mortality, as a 

function of increasing number of target training examples. Error bars are 1 SE; the mean and SE are calculated using CV folds. Perfect calibration 

corresponds to (α, β) = (0, 1). CV indicates cross-validation.
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Discussion
According to these experimental results, our implementation 
of transfer learning substantially improves mortality prediction 
over classical, target-only training, and also over the source 
domain classifier. The source domain classifier may be consid-
ered a reasonable choice because the mortality prediction prob-
lems in separate medical centers are expected to be similar, but 
there are performance improvements to be obtained by transfer 
learning, in part due to demographic and care practice varia-
tion. However, what is most instructive is how few data are 
needed for transfer learning to provide gains over the source 
classifier. Using the smallest target training sets tested, 0.25% 
of the target training set, or fewer than 110 UCSF patients, the 
fixed, 5 times weighted (5×) transfer scheme shows clear gains 
over the source domain classifier (P < .01, paired, 1-tailed t 
test). Furthermore, with as few as 220 patients, the AUROC of 
the nested CV training method is 0.8043, which is 0.02 higher 
than the source classifier (P < .01, paired, 1-tailed t test). 
Using the 5-year span of data collection for the UCSF data 
set as a reference, this number of patients corresponds to a 
period of less than 10 days. We also executed a similar experi-
ment using a contiguous period of data from the UCSF set, 
where it took approximately 440 encounters to achieve the 
same result. This translates to a slightly longer but still a rela-
tively short period of less than 2.5 weeks of data collection. 
Taking the classical, target set–only training approach, these 
performance levels are not attained until approximately 4000 
patients are observed, an investment of approximately 
6 months’ data collection. Thus, in the context of this experi-
ment, transfer learning would substantially reduce the need 
for a lengthy data collection process. We note that collections 
such as MIMIC-III are now publicly available, and transfer 
learning techniques may allow hospitals to leverage these col-
lections for their own particular prediction needs.

The comparison between the 5 times weighted (5×) scheme 
and the nested CV scheme is also instructive. These 2 methods 
achieve very similar generalization performance on this pair of 
data sets, and it would appear that, without running nested CV, 
a 5× weighting is a reasonable and robust choice. However, 
because there is no way of knowing a priori that 5× weighting 
is indeed appropriate for a new target data set, the nested CV 
scheme is in principle the better choice for a new deployment.

Assessing the Cox calibration coefficients of the classifiers 
indicated that they were typically substantially biased (α ≠ 0), 
although the high AUROC indicates that post hoc calibration 
could improve these values, and the spread of mortality proba-
bilities appears appropriate as the amount of training data 
increases. We note that the classifier training scheme used in 
this work is not explicitly intended to produce accurate mortal-
ity probabilities, but instead to reduce classification error and 
improve AUROC.

One limitation of these experimental results is that they 
were obtained with a single classifier architecture and training 

algorithm. In particular, there is the possibility that using other 
methods of regularization or ensemble pruning could reduce 
the overfitting observed when giving heavy weight to a small 
collection of target data. This could result in improved target-
only training performance, even without using transfer learn-
ing and could similarly reduce the number of target examples 
required to produce effective classifiers, providing an alterna-
tive means of reducing the burden of data collection. We do not 
claim that transfer learning is the only way to obtain good per-
formance with small target training sets; rather, as demon-
strated by these experiments, it is an effective way of doing so. 
Our main finding is that transfer learning is a useful tool for 
increasing prediction performance in clinical settings with lim-
ited data availability.

There are several important lines of work suggested by the 
present experiment. More sophisticated transfer learning 
methods29,30 might yield increased performance or be even 
more economical in terms of required target data. These meth-
ods may be critical for other clinical tasks; although the present 
methods appear sufficient for mortality prediction among 
inpatients, mortality is relatively frequent (9.14% and 3.39% 
prevalence in the final source and target sets, respectively). 
Even with the present methods, longer periods of clinical data 
acquisition will likely be necessary for predicting especially rare 
events. This work also only addresses unidirectional transfer 
between 1 source and 1 target. In practice, it may often be nec-
essary to select the best source data set from among a library of 
several, to aggregate examples from sets within the library, to 
subselect a population from within a larger set, or to simultane-
ously use data from several clinical sites in a bidirectional, mul-
titask framework. Future studies are needed to address other 
important practical questions, such as to how to verify that a 
performance specification has been achieved, estimate the 
remaining data which must be acquired to do so, or empirically 
answer the above design questions on a case-by-case basis.

Conclusions
We demonstrated the benefits of applying a simple transfer 
learning technique to our mortality prediction algorithm, 
AutoTriage, over the use of a classifier trained on the source 
domain or a target-only classifier. Using the MIMIC-III data 
set as the source data and the UCSF data as our target set, we 
customized our predictions to the UCSF patient population. 
By training the classifier using weighted combinations of 
source and target data, we demonstrated an increase in 
AUROC when as little as 0.25% of the target data were 
included, equivalent to 110 patients or less than 1 week of 
data collection. With transfer learning, we observed mortality 
prediction improvements for a new, target set with only a 
fraction of the target domain data required to train an equiva-
lent classifier de novo (<10%). Based on this, we conclude 
that transfer learning techniques can substantially alleviate 
the burdensome, site-specific data collection requirements for 
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producing effective clinical classifiers. Furthermore, the 
resulting classifier’s performance may be superior to that of 
the otherwise comparable, non–transfer-trained classifier.
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