
Database statistics gathering: Synopsis

Introduction

It is known that having proper database statistics is crucial for query optimizer. Statistics

should properly describe data within the database. To gather statistics efficiently and have

correct statistics is not an easy process. Several algorithms have been used to accomplish this.

Until Oracle 11g, the database gathered statistics based on a sample, in an iterative method. In

this process, the database started with a small sample size and then, based on some analysis, it

would determine whether the sample size was sufficiently large. So the database first would

need to determine the optimal sample size and then scan the database objects to compute

object statistics using the sample. But, if an object was very large then the sample size deemed

optimal would actually be too small and of course the computed statistics would not be

accurate. In addition, such an approach required rescanning all partitions in order to

approximate a global level of object statistics for partitioned tables. For non-partitioned tables

the database had to perform a sort operation to generate a number of distinct values (NDV) for

the columns – this is a resource-intensive operation.

To improve the quality of database statistics and the process of gathering them, in Oracle 11g

the one-pass distinct sampling algorithm was introduced, which allows us to solve the above-

mentioned problems. The approach has been refined in Oracle 12c R2 via implementing the

Hyperloglog algorithm. To support this mechanism a special data structure called ‘synopsis’ is

introduced within the database. It contains information about the objects (i.e., columns of

tables, partitions) that helps approximate the required statistics efficiently.

Synopsis Implementation

Synopsis is a data structure that describes a database object (table, partition). Synopsis helps to

estimate important object statistics like NDV. To construct a synopsis a uniform hash function

(for example, 64 bit hash function) is used, which maps column values to hash values that are

stored in the synopsis. The uniform hash function means that each column value has an

approximately equal probability of mapping to any synopsis value. Initially, the synopsis is

empty; the database starts to scan the object (table, partition) and picks up the column values

𝑎1, 𝑎2, 𝑎3 … . . 𝑎𝑛 ; then the uniform hash function is applied to the column values and generates

ℎ(𝑎𝑖) = ℎ𝑖 (𝑏𝑖𝑡𝑠 𝑜𝑓 ℎ𝑎𝑠ℎ 𝑣𝑎𝑙𝑢𝑒𝑠). If the synopsis does not contain this hash value then it is added

to the synopsis. If the hash value is already stored in the synopsis then the database proceeds

to read another column value. The synopsis has a storage limit. When the synopsis reaches its

capacity, its size is reduced by half by discarding all hash values that have “1” in any of their

leading “i” bits. This is called splitting the synopsis and “i” is the number of times the synopsis

was split. This process is continued until the database reads all column values. So the synopsis

contains hash values (bits of hash values) and a number of splits. This information is enough to

estimate the NDV of the column. So, according to the algorithm:

𝑁𝐷𝑉 ≈ 𝑁 ∗ 2𝑖 (Formula 1)

Here N is number of distinct values in the synopsis. This approach is one-pass distinct

sampling and Oracle implemented this algorithm in version 11g. In Oracle 12c r2 it is called

Adaptive Sampling (AS). But in Oracle 12c R2 the mechanism has been improved via the

Hyperloglog (HLL) algorithm (https://en.wikipedia.org/wiki/HyperLogLog). HLL uses

randomization to approximate the NDV and this is achieved by applying the uniform hash

function as described for one-pass distinct sampling. The algorithm observes the maximum

number of leading zeros that occur for all hash values. But, hash values with more leading

zeros are less likely and will indicate a larger NDV. And in this case, the estimation error will be

large. To minimize the estimation error the given object (table, partition) is divided into sub

parts (approximately of equal size using the first p bits of the hash values, where

m=power(2,p)) called buckets (𝐵𝑖) But the same hash function is used for them. In each

bucket, the maximum number of leading zeros is calculated. These numbers are stored in an

array M, where M[i] stores the maximum number of leading zeros plus one for the bucket with

the index “i”. So:

 M[i]:= max 𝑄(𝑥) 𝑥 ∈ 𝐵𝑖

…where 𝑄(𝑥) is a function that returns the number of leading zeros in the binary

representation of x plus one. According to the algorithm the NDV will be:

 E= α𝑚 ∗ 𝑚2 ∗ (∑ 2−𝑀𝑗𝑚
𝑗=1)

−1
 α16 = 0.673; α32 = 0.697; α64 = 0.709

For more information you can refer to the article (https://hal.archives-

ouvertes.fr/file/index/docid/406166/filename/FlFuGaMe07.pdf).

A synopsis based on AS is referred to as “old-style”, and one based on HLL is referred to as a

new-style synopsis. Let’s investigate how Oracle manages and use synopses. First we are going

to see the HLL method.

CREATE TABLE sh.sales1

 (prod_id NUMBER NOT NULL,

 cust_id NUMBER NOT NULL,

 time_id DATE NOT NULL,

 channel_id NUMBER NOT NULL,

 promo_id NUMBER NOT NULL,

 quantity_sold NUMBER(10,2) NOT NULL,

 amount_sold NUMBER(10,2) NOT NULL)

 PARTITION BY RANGE (TIME_ID)

 (

 PARTITION sales_q1_1998 VALUES LESS THAN (TO_DATE(' 1998-04-01 00:00:00',

'SYYYY-MM-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN')),

https://en.wikipedia.org/wiki/HyperLogLog
https://hal.archives-ouvertes.fr/file/index/docid/406166/filename/FlFuGaMe07.pdf
https://hal.archives-ouvertes.fr/file/index/docid/406166/filename/FlFuGaMe07.pdf

 PARTITION sales_q2_1998 VALUES LESS THAN (TO_DATE(' 1998-07-01 00:00:00',

'SYYYY-MM-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN'))

)

/

insert /*+ append parallel(4)*/into sh.sales1

select * from (select * from sh.sales where

time_id<=to_date(‘6/30/1998’,’mm/dd/yyyy’)

---Performed several insert

insert /*+ append parallel(4)*/into sh.sales1

select * from sh.sales1;

commit;

BEGIN

 DBMS_STATS.set_table_prefs (ownname => 'sh',

 tabname => 'sales1',

 pname => 'approximate_ndv_algorithm',

 pvalue => 'hyperloglog');

 DBMS_STATS.set_table_prefs ('sh',

 'sales1',

 'INCREMENTAL',

 'TRUE');

END;

The table size is 5.5G. So, we can gather table statistics (and it can be traced).

BEGIN

 DBMS_STATS.set_global_prefs ('trace', TO_CHAR (2048 + 32768 + 4 + 16));

 DBMS_STATS.gather_table_stats (ownname => 'sh', tabname => 'SALES1');

END;

From the DBMS_STATS trace file we could see the following lines:

DBMS_STATS: gather stats on partition SALES_Q2_1998: synopsis not gathered

yet; not analyzed yet;

DBMS_STATS: Start gather_stats.. pfix: ownname: SH tabname: SALES1 pname:

SALES_Q2_1998 spname: execution phase: 1

DBMS_STATS: APPROX_NDV_ALGORITHM chosen: HLL (incremental)

DBMS_STATS: reporting_man_log_task: target: SH.SALES1.SALES_Q2_1998 objn:

76755 auto_stats: FALSE status: IN PROGRESS ctx.batching_coeff: 0

It seems Oracle started to gather statistics for one partition (SALES_Q2_1998) of the table. And

the following lines indicate that the database was going to gather the mentioned statistics for

the columns using special SQL.

DBMS_STATS: no AS synopses to delete for #76753

DBMS_STATS: Using approximate NDV pct=0

DBMS_STATS: NNV NDV AVG MMX HST EP RP NNNP IND CNDV HSTN HSTR

COLNAME

DBMS_STATS: Y Y Y

PROD_ID

DBMS_STATS: Y Y Y

CUST_ID

DBMS_STATS: Y Y

TIME_ID

DBMS_STATS: Y Y Y

CHANNEL_ID

DBMS_STATS: Y Y Y

PROMO_ID

DBMS_STATS: Y Y Y

QUANTITY_SOLD

DBMS_STATS: Y Y Y

AMOUNT_SOLD

DBMS_STATS: APPROX_NDV_ALGORITHM chosen: HLL (incremental)

DBMS_STATS: Approximate NDV Options

DBMS_STATS:

SYN,NIL,NIL,SYN,NIL,NIL,SYN,NIL,NIL,SYN,NIL,NIL,SYN,NIL,NIL,SYN,NIL,NIL,SYN,N

IL,NIL, NDV_HLL, B76753

DBMS_STATS: Starting query at 29-NOV-17 11.56.57.948197000 AM +04:00

DBMS_STATS: select /*+ full(t) no_parallel(t) no_parallel_index(t)

dbms_stats cursor_sharing_exact use_weak_name_resl dynamic_sampling(0)

no_monitoring xmlindex_sel_idx_tbl opt_param('optimizer_inmemory_aware'

'false') no_substrb_pad

*/to_char(count("PROD_ID")),substrb(dump(min("PROD_ID"),16,0,64),1,240),subst

rb(dump(max("PROD_ID"),16,0,64),1,240),to_char(count("CUST_ID")),substrb(dump

(min("CUST_ID"),16,0,64),1,240),substrb(dump(max("CUST_ID"),16,0,64),1,240),t

o_char(count("TIME_ID")),substrb(dump(min("TIME_ID"),16,0,64),1,240),substrb(

dump(max("TIME_ID"),16,0,64),1,240),to_char(count("CHANNEL_ID")),substrb(dump

(min("CHANNEL_ID"),16,0,64),1,240),substrb(dump(max("CHANNEL_ID"),16,0,64),1,

240),to_char(count("PROMO_ID")),substrb(dump(min("PROMO_ID"),16,0,64),1,240),

substrb(dump(max("PROMO_ID"),16,0,64),1,240),to_char(count("QUANTITY_SOLD")),

substrb(dump(min("QUANTITY_SOLD"),16,0,64),1,240),substrb(dump(max("QUANTITY_

SOLD"),16,0,64),1,240),to_char(count("AMOUNT_SOLD")),substrb(dump(min("AMOUNT

_SOLD"),16,0,64),1,240),substrb(dump(max("AMOUNT_SOLD"),16,0,64),1,240) from

"SH"."SALES1" t where TBLORIDX$PART$NUM("SH"."SALES1",0,4,0,"ROWID") =

:objn /*

SYN,NIL,NIL,SYN,NIL,NIL,SYN,NIL,NIL,SYN,NIL,NIL,SYN,NIL,NIL,SYN,NIL,NIL,SYN,N

IL,NIL, NDV_HLL, B76753*/

Using the same approach the database computed the column statistics for the second partition

- SALES_Q1_1998. Then, finally, Oracle calculated the global statistics for the partitioned table

by aggregating the partition-level statistics. Oracle did it by merging synopses. We can see it

clearly from the trace file.

DBMS_STATS: Number of rows in the table = 89470976, blocks = , average row

length = 29, chain count = , scan rate = 0, sample size = 89470976

DBMS_STATS: prepare reporting structures...

DBMS_STATS: reporting_man_update_task: objn: 76754 auto_stats: FALSE status:

COMPLETED ctx.batching_coeff: 0

DBMS_STATS: Start gather_stats.. pfix: ownname: SH tabname: SALES1 pname:

spname: execution phase: 1

DBMS_STATS: APPROX_NDV_ALGORITHM chosen: HLL (incremental)

DBMS_STATS: APPROX_NDV_ALGORITHM chosen: HLL (incremental)

DBMS_STATS: Synopsis Aggregation Degree: 1

DBMS_STATS: APPROX_NDV_ALGORITHM chosen: HLL (incremental)

DBMS_STATS: get_agg_colstats: HLL only

DBMS_STATS: Derive global stats from partition synopses/stats for table

SALES1.

So, if there are statistics for table partitions then it is enough to compute global statistics by

merging the synopses of appropriate partitions. Starting with Oracle 12c R2 the synopsis (which

is created based on HLL algorithm) is stored in the WRI$_OPTSTAT_SYNOPSIS_HEAD$ table.

SQL> desc WRI$_OPTSTAT_SYNOPSIS_HEAD$

 Name Null? Type

 --- -------- -------------------------

 BO# NOT NULL NUMBER

 GROUP# NOT NULL NUMBER

 INTCOL# NOT NULL NUMBER

 SYNOPSIS# NUMBER

 SPLIT NUMBER

 ANALYZETIME DATE

 SPARE1 NUMBER

 SPARE2 BLOB

The column BO# is equal to dba_objects.object_id. Then

SQL> SELECT bo#,

 group#,

 intcol#,

 synopsis#,

 split,

 spare1,

 DBMS_LOB.SUBSTR (spare2, 10) spare2

 FROM wri$_optstat_synopsis_head$

 WHERE bo# IN (SELECT object_id

 FROM dba_objects

 WHERE object_name = 'SALES1');

 BO# GROUP# INTCOL# SYNOPSIS# SPLIT SPARE1 SPARE2

---------- ---------- ---------- ---------- ---------- ---------- --------------------

 76753 153510 1 0 1 0D0C00B7003100000000

 76753 153510 2 0 1 0D0C000107F600000000

 76753 153510 3 0 1 0D0C001C005B00000000

 76753 153510 4 0 1 0D0C0303000400000000

 76753 153510 5 0 1 0D0C01F6000200000000

 76753 153510 6 0 1 0D0C00E9000100000000

 76753 153510 7 0 1 0D0C000E00D600000000

 76753 153508 1 0 1 0D0C009B003C00000000

 76753 153508 2 0 1 0D0C000108A000000000

 76753 153508 3 0 1 0D0C0005005A00000000

 76753 153508 4 0 1 0D0C0303000400000000

 76753 153508 5 0 1 0D0C01F6000200000000

 76753 153508 6 0 1 0D0C00E9000100000000

 76753 153508 7 0 1 0D0C0004017C00000000

We have a partitioned table with two partitions. Also, the table has 7 columns and therefore we

have 7*2=14 synopses in the dictionary. In my understanding, the descriptions of the above

columns are:

BO# - object id of the table

GROUP# - object id of the partition (half of group# is equal to the object id of the partition)

INTCOL# - column number (position, that refers to sys.col$.col#)

SPLIT – number of splits performed for the synopsis

SPARE1 – this column has value “1” if the synopsis is created based on the HLL algorithm

SPARE2 – this column contains hashed values (synopsis values) that were generated by

applying HyperLogLog or Adaptive Sampling to the corresponding column values.

So, in our case we have the synopsis and its properties: hash values and the number of splits. It

means these values are sufficient to calculate the NDV for the columns at the local or global

level.

When working with results from approximate queries that contain aggregate functions, it is

difficult to approximate a result across various dimensions. We cannot use an aggregated

approximate result as a basis for the next, higher-level dimensions of the query. In this case we

would have to rescan the table(s) to compute approximately for the given dimensions. But, in

Oracle 12c R2 the following new functions have been introduced that help us to solve this

problem and these also allow us to compute the NDV by aggregating the hash values of the

synopsis.

approx_count_distinct_detail – returns information about the approximate number of

rows. This is a special format and it produces as a blob.

approx_count_distinct_agg - This function creates a higher level of the summary based on

the results from approx_count_distinct_detail. It allows us to avoid rescan of the base table in

order to get new aggregates.

to_approx_count_distinct – This function returns the result from the above functions as

number.

Now we can check the column statistics from the dictionary and can compare them with the

result of using the above-mentioned functions that are going to be applied to the synopsis.

 SELECT partition_name, column_name, num_distinct

 FROM dba_part_col_statistics

 WHERE owner = 'SH' AND table_name = 'SALES1'

ORDER BY 1, 2;

PARTITION_NAME COLUMN_NAME NUM_DISTINCT

--------------- -------------- ---------------

SALES_Q1_1998 AMOUNT_SOLD 398

SALES_Q1_1998 CHANNEL_ID 4

SALES_Q1_1998 CUST_ID 3172

SALES_Q1_1998 PROD_ID 60

SALES_Q1_1998 PROMO_ID 2

SALES_Q1_1998 QUANTITY_SOLD 1

SALES_Q1_1998 TIME_ID 91

SALES_Q2_1998 AMOUNT_SOLD 219

SALES_Q2_1998 CHANNEL_ID 4

SALES_Q2_1998 CUST_ID 2819

SALES_Q2_1998 PROD_ID 49

SALES_Q2_1998 PROMO_ID 2

SALES_Q2_1998 QUANTITY_SOLD 1

SALES_Q2_1998 TIME_ID 92

Let’s query from synopsis data.

 SELECT subobject_name part_name, name colname, ndv

 FROM (SELECT group#,

 intcol#,

 to_approx_count_distinct (

 approx_count_distinct_agg (spare2))

 ndv

 FROM wri$_optstat_synopsis_head$

 WHERE bo# = 76753 --This is the object id of the partitioned

table

 GROUP BY group#, intcol#) s,

 sys.col$ c,

 dba_objects o

 WHERE c.obj# = 76753 AND c.col# = s.intcol# AND o.object_id = s.group# /

2

ORDER BY 1, 2;

PART_NAME COL_NAME NDV

--------------- -------------- -------

SALES_Q1_1998 AMOUNT_SOLD 398

SALES_Q1_1998 CHANNEL_ID 4

SALES_Q1_1998 CUST_ID 3172

SALES_Q1_1998 PROD_ID 60

SALES_Q1_1998 PROMO_ID 2

SALES_Q1_1998 QUANTITY_SOLD 1

SALES_Q1_1998 TIME_ID 91

SALES_Q2_1998 AMOUNT_SOLD 219

SALES_Q2_1998 CHANNEL_ID 4

SALES_Q2_1998 CUST_ID 2819

SALES_Q2_1998 PROD_ID 49

SALES_Q2_1998 PROMO_ID 2

SALES_Q2_1998 QUANTITY_SOLD 1

SALES_Q2_1998 TIME_ID 92

As you see, both of the above queries return exactly the same result. Oracle actually implemented

the HLL algorithm on above mentioned approx_* function and derives partition and global level

statistics via applying that function to the synopsis data. Let’s get table level statistics.

SELECT ds.column_name, ds.num_distinct, s.ndv

 FROM (SELECT intcol#,

 to_approx_count_distinct (

 approx_count_distinct_agg (spare2))

 ndv

 FROM wri$_optstat_synopsis_head$

 WHERE bo# = 76753 --This is the object id of the partitioned

table

 GROUP BY intcol#) s,

 sys.col$ c,

 dba_tab_col_statistics ds

 WHERE c.obj# = 76753

 AND c.col# = s.intcol#

 AND ds.table_name = 'SALES1'

 AND c.name = ds.column_name

COLUMN_NAME NUM_DISTINCT NDV

---------------- ------------ ----------

PROD_ID 60 60

QUANTITY_SOLD 1 1

CUST_ID 4276 4276

CHANNEL_ID 4 4

PROMO_ID 2 2

TIME_ID 183 183

AMOUNT_SOLD 428 428

As we see, the values for the NUM_DISTINCT column are selected from the

DBA_TAB_COLSTATISTICS view as column statistics, but for NDV are derived from the synopsis.

They are equal to each other.

Now let’s interpret the adaptive sampling algorithm (AS).

execute DBMS_STATS.delete_table_stats('sh','SALES1');

BEGIN

 DBMS_STATS.set_table_prefs (ownname => 'sh',

 tabname => 'sales1',

 pname => 'approximate_ndv_algorithm',

 pvalue => 'ADAPTIVE SAMPLING');

 DBMS_STATS.gather_table_stats (ownname => 'sh', tabname => 'SALES1');

END;

As in the Hyperloglog algorithm, when Oracle uses AS to compute column statistics it first

gathers partition-level statistics separately and then, finally, to compute global-level statistics,

Oracle uses synopsis.

DBMS_STATS: gather stats on partition SALES_Q2_1998: synopsis not gathered yet; not

analyzed yet;

DBMS_STATS: Start gather_stats.. pfix: ownname: SH tabname: SALES1 pname:

SALES_Q2_1998 spname: execution phase: 1

DBMS_STATS: APPROX_NDV_ALGORITHM chosen: AS

DBMS_STATS: reporting_man_log_task: target: SH.SALES1.SALES_Q2_1998 objn: 76755

auto_stats: FALSE status: IN PROGRESS ctx.batching_coeff: 0

This indicates that Oracle started to gather statistics for the SALES_Q2_1998 partition and it used

the following SQL statement in order to compute stats.

SELECT /*+ full(t) no_parallel(t) no_parallel_index(t) dbms_stats

cursor_sharing_exact use_weak_name_resl dynamic_sampling(0) no_monitoring

xmlindex_sel_idx_tbl opt_param('optimizer_inmemory_aware' 'false')

no_substrb_pad */

 TO_CHAR(COUNT("PROD_ID")),

 SUBSTRB (DUMP (MIN ("PROD_ID"),

 16,

 0,

 64), 1, 240),

 SUBSTRB (DUMP (MAX ("PROD_ID"),

 16,

 0,

 64), 1, 240),

 TO_CHAR (COUNT ("CUST_ID")),

 SUBSTRB (DUMP (MIN ("CUST_ID"),

 16,

 0,

 64), 1, 240),

 SUBSTRB (DUMP (MAX ("CUST_ID"),

 16,

 0,

 64), 1, 240),

 TO_CHAR (COUNT ("TIME_ID")),

 SUBSTRB (DUMP (MIN ("TIME_ID"),

 16,

 0,

 64), 1, 240),

 SUBSTRB (DUMP (MAX ("TIME_ID"),

 16,

 0,

 64), 1, 240),

 TO_CHAR (COUNT ("CHANNEL_ID")),

 SUBSTRB (DUMP (MIN ("CHANNEL_ID"),

 16,

 0,

 64), 1, 240),

 SUBSTRB (DUMP (MAX ("CHANNEL_ID"),

 16,

 0,

 64), 1, 240),

 TO_CHAR (COUNT ("PROMO_ID")),

 SUBSTRB (DUMP (MIN ("PROMO_ID"),

 16,

 0,

 64), 1, 240),

 SUBSTRB (DUMP (MAX ("PROMO_ID"),

 16,

 0,

 64), 1, 240),

 TO_CHAR (COUNT ("QUANTITY_SOLD")),

 SUBSTRB (DUMP (MIN ("QUANTITY_SOLD"),

 16,

 0,

 64), 1, 240),

 SUBSTRB (DUMP (MAX ("QUANTITY_SOLD"),

 16,

 0,

 64), 1, 240),

 TO_CHAR (COUNT ("AMOUNT_SOLD")),

 SUBSTRB (DUMP (MIN ("AMOUNT_SOLD"),

 16,

 0,

 64), 1, 240),

 SUBSTRB (DUMP (MAX ("AMOUNT_SOLD"),

 16,

 0,

 64), 1, 240)

 FROM "SH"."SALES1" t

 WHERE tbloridx$part$num ("SH"."SALES1",

 0,

 4,

 0,

 "ROWID") = :objn /*

SYN,NIL,NIL,SYN,NIL,NIL,SYN,NIL,NIL,SYN,NIL,NIL,SYN,NIL,NIL,SYN,NIL,NIL,SYN,N

IL,NIL, B76753*/

Then the database gathered the statistics for the SALES_Q1_1998 partition.

DBMS_STATS: gather stats on partition SALES_Q1_1998: synopsis not gathered yet; not

analyzed yet;

DBMS_STATS: Start gather_stats.. pfix: ownname: SH tabname: SALES1 pname:

SALES_Q1_1998 spname: execution phase: 1

DBMS_STATS: APPROX_NDV_ALGORITHM chosen: AS

DBMS_STATS: reporting_man_log_task: target: SH.SALES1.SALES_Q1_1998 objn: 76754

auto_stats: FALSE status: IN PROGRESS ctx.batching_coeff: 0

DBMS_STATS: delete synopses of a single partition

Finally, Oracle computes global level statistics for the SALES1 table based on the information

provided by the partitions synopsis.

DBMS_STATS: Start gather_stats.. pfix: ownname: SH tabname: SALES1 pname:

spname: execution phase: 1

DBMS_STATS: APPROX_NDV_ALGORITHM chosen: AS

DBMS_STATS: APPROX_NDV_ALGORITHM chosen: AS

DBMS_STATS: Synopsis Aggregation Degree: 1

DBMS_STATS: APPROX_NDV_ALGORITHM chosen: AS

DBMS_STATS: get_agg_colstats: AS only

DBMS_STATS: Derive global stats from partition synopses/stats for table

SALES1

How does Oracle use synopsis data to compute statistics? First of all, when gathering statistics

with the AS algorithm the synopsis data will be stored in both the wri$_optstat_synopsis$

and wri$_optstat_synopsis_head$ tables. Oracle inserts some information in the

wri$_optstat_synopsis_head$ table; specifically, the split column is very important. But the

spare1 and spare2 columns are null. Also, the synopsis values (hash values) are stored in the

wri$_optstat_synopsis$-hashvalue column. So, according to formula 1, to compute the

NDV we need to know the number of distinct values of the corresponding column’s hash values

(synopsis values) and the number of splits (which have been performed for the column).

The number of splits for the column will be

 SELECT (SELECT name

 FROM sys.col$

 WHERE obj# = 76753 AND col# = t.intcol#)

 column_name, MAX (split) maxsplit

 FROM sys.wri$_optstat_synopsis_head$ t

 WHERE t.bo# = 76753 --AND group# = 153510

 GROUP BY t.intcol#

COLUMN_NAME MAXSPLIT

---------------- ----------

PROD_ID 0

QUANTITY_SOLD 0

CUST_ID 0

CHANNEL_ID 0

PROMO_ID 0

TIME_ID 0

AMOUNT_SOLD 0

We can find the number of splits of columns for each partition to estimate the NDV of the

column within the partition of the table (by adding the predicate group#=<value>). Also we can

find the distinct number of hash values of the column as

 SELECT (SELECT name

 FROM sys.col$

 WHERE obj# = 76753 AND col# = t.intcol#)

 column_name, COUNT (DISTINCT (hashvalue)) dhv

 FROM sys.wri$_optstat_synopsis$ t

 WHERE bo# = 76753 --and group#=153510

 GROUP BY intcol#;

COLUMN_NAME DHV

----------------- ---------

PROD_ID 60

CUST_ID 4305

TIME_ID 181

CHANNEL_ID 4

PROMO_ID 2

QUANTITY_SOLD 1

AMOUNT_SOLD 425

So, we have “N” and “i” for formula 1. For instance, if we take the column AMOUNT_SOLD, then its

NDV will be equal to NDV=N*power(2,i) = 425*power(2,0)=425. Now we can check the

table statistics in the dictionary.

SELECT column_name, num_distinct

 FROM dba_tab_col_statistics

 WHERE table_name = 'SALES1'

COLUMN_NAME NUM_DISTINCT

----------------- ---------

PROD_ID 60

CUST_ID 4305

TIME_ID 181

CHANNEL_ID 4

PROMO_ID 2

QUANTITY_SOLD 1

AMOUNT_SOLD 425

 Actually, we do not have any splits for the columns and therefore the number of distinct hash

values of the columns is equal to their NDV.

In addition, if we have a partitioned table and statistics have been gathered with “ADAPTIVE

SAMPLING” and we want to gather statistics for newly added partitions with the “HYPERLOGLOG”

option, then Oracle deletes all previous synopses and regathers statistics for them with the

“HYPERLOGLOG” algorithm. This occurs even if we want to gather statistics for a single partition,

as below:

/* SALES1 tables has two partitions SALES_Q1_1998

SALES_Q2_1998 */

begin

 DBMS_STATS.set_table_prefs (ownname => 'sh',

 tabname => 'sales1',

 pname => 'approximate_ndv_algorithm',

 pvalue => 'ADAPTIVE SAMPLING');

end;

execute DBMS_STATS.gather_table_stats('sh','SALES1');

So, in this case we will have only an old-style synopsis. But, now we try to add a new partition

and gather statistics for it.

ALTER TABLE sh.sales1 ADD PARTITION

 sales_q3_1998 VALUES LESS THAN (TO_DATE(' 1998-10-01 00:00:00', 'SYYYY-MM-DD

HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN'))

INSERT INTO sh.sales1

 SELECT *

 FROM sh.sales PARTITION (sales_q3_1998);

begin

 DBMS_STATS.set_table_prefs (ownname => 'sh',

 tabname => 'sales1',

 pname => 'approximate_ndv_algorithm',

 pvalue => 'HYPERLOGLOG');

 dbms_stats.gather_table_stats

 (ownname=>'sh',

 tabname=>'SALES1',

 partname=>'sales_q3_1998');

end;

As a result Oracle will delete all old-style synopses and will create a new synopsis with the

“HYPERLOGLOG” option.

What can we say about the performance efficiency of these two algorithms? I have tested both

algorithms for a table with a size of125GB and 56 partitions. First, I gathered statistics with

“HYPERLOGLOG” and then deleted the statistics and regathered them with “ADAPTIVE

SAMPLING”. It seems there is no dramatic (big) difference between these two statistics-

gathering process. And the accuracy of the both algorithms is ≈2%. The main difference is the

required memory. HLL allows us to compute NDV with minimal memory (and disk storage) with

high accuracy. Execution statistics can be seen from the lines below:

Execution statistics for HLL:

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.03 0.06 6 24 0 0

Execute 1 0.56 1.08 55 1416 125 1

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 0.59 1.14 61 1440 125 1

Misses in library cache during parse: 1

OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 796 0.21 0.21 0 94 0 0

Execute 3351 0.84 1.27 82 2459 2606 554

Fetch 4678 3566.07 3908.89 32675780 32689035 233 9174

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 8825 3567.13 3910.38 32675862 32691588 2839 9728

Execution statistics for AS:

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 2 0.03 0.09 6 24 0 0

Execute 2 0.57 0.97 55 1416 142 1

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 4 0.61 1.07 61 1440 142 1

Misses in library cache during parse: 1

OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 772 0.17 0.21 0 90 0 0

Execute 3090 0.82 1.72 78 1538 3568 588

Fetch 4233 3636.26 4011.21 32675764 32687874 249 8275

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 8095 3637.26 4013.15 32675842 32689502 3817 8863

In summary, we see new statistics gathering mechanism(s) in latest version of Oracle database.

In Oracle 11g, one-pass distinct sampling was implemented, which gave us the ability to

compute statistics very accurately and efficiently. In Oracle 12c R1, to approximate NDV a new

function was introduced - APPROX_COUNT_DISTINCT, which uses the HLL algorithm. But, in

Oracle 12c R2 the HLL algorithm has been implemented to approximate database statistics

(NDV) with the DBMS_STATS package. Oracle database still can use both algorithms (AS/HLL).

For AS, synopsis data is stored in both (wri$_optstat_synopsis_head$,

wri$_optstat_synopsis$) tables but for HLL, synopsis data is stored only in the

wri$_optstat_synopsis$ table. If table (partitioned) statistics were gathered with AS then

the option approximate_ndv_algorithm=“REPEAT OR HYPERLOGLOG” permits us to continue

creating synopses via the ADAPTIVE SAMPLING method; this is the default setting. If we change

the approximate_ndv_algorithm algorithm to “HYPERLOGLOG“ and INCREMENTAL_STALENESS

is NULL then all old-style synopses will be deleted and new-style synopses will be created for

previous and newly added table partitions. If approximate_ndv_algorithm=“HYPERLOGLOG“

and INCREMENTAL_STALENESS= ALLOW_MIXED_FORMAT then the database does not delete the

old-style synopses immediately, but does so gradually.

