
 

Introduction to Quantitative Finance
Pricing theory and practice in Python

2016

Copyright © Cambridge Spark



In the world of finance, assets are bought and sold every second. In this
course, you will learn the general principles behind the pricing of such
financial assets and focus in particular on options – which form an impor-
tant class of assets traded on exchanges. You will start with the general
concept of arbitrage free pricing and see how it leads to the Black-Scholes
formula. You will also learn and implement some well known numerical
pricing techniques such as the binomial and trinomial tree model.

This course was developed in close partnership with IMC, a technology-
driven trading firm with offices in Amsterdam, Chicago and Sydney. http:
//imc.com

http://imc.com
http://imc.com


Author Thibaut Lienart (Cambridge Spark)

Special thanks Dr. Heiko Schaefer (IMC)

Editor Raphaël Proust (Cambridge Spark)

Acknowledgements Sam Berry (UBS), Maxime Lienart (BNY Mellon),
Dr. Alexander Vervuurt (OxAM)

3



Contents

1. Preliminaries 6
1.1. Setting up . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2. Crash course in basic probability . . . . . . . . . . . . . . 6

2. Introduction 12
2.1. Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2. Your first plot . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3. Financial derivatives . . . . . . . . . . . . . . . . . . . . . 14
2.4. Arbitrage-free markets . . . . . . . . . . . . . . . . . . . . 15
2.5. What you will learn . . . . . . . . . . . . . . . . . . . . . . 16
2.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Observing prices 18
3.1. Log-returns . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4. Pricing Theory 31
4.1. Goal of this section . . . . . . . . . . . . . . . . . . . . . . 31
4.2. Discounting . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3. The risk-neutral world . . . . . . . . . . . . . . . . . . . . 33
4.4. Gathering the pieces . . . . . . . . . . . . . . . . . . . . . 38
4.5. From coin-flips to a simple market model . . . . . . . . . . 38
4.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5. Derivatives 42
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2. Payoff curves . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3. Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4. Put-Call Parity . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5. Other derivatives . . . . . . . . . . . . . . . . . . . . . . . 51
5.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4



6. Analytical pricing: the Black-Scholes formula 54
6.1. The bare minimum . . . . . . . . . . . . . . . . . . . . . . 54
6.2. Greeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3. The volatility smile . . . . . . . . . . . . . . . . . . . . . . 63
6.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7. The binomial model 67
7.1. From one-step to multi-step model . . . . . . . . . . . . . 67
7.2. Convergence to the LogNormal distribution . . . . . . . . . 68
7.3. Pricing with a binomial tree . . . . . . . . . . . . . . . . . 73
7.4. Summary and discussion . . . . . . . . . . . . . . . . . . . 79

8. Advanced Models 81
8.1. The trinomial tree . . . . . . . . . . . . . . . . . . . . . . . 81
8.2. Towards more advanced models . . . . . . . . . . . . . . . 83
8.3. The need for performance computing . . . . . . . . . . . . 86
8.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A. Some Intuition on Risk Neutral Pricing 88

B. Deriving the Black-Scholes formula for the European call 92

C. Calibrating a binomial tree in spot space 94

D. Calibration of the Binomial tree 97

E. Calculating Moments of a Log Normal Distribution 99

F. Some Financial Jargon 101

5



1. Preliminaries

1.1. Setting up

Please go to http://gitlab.cambridgespark.com/pub/introQF and follow the in-
structions there to get started. At the end of the setup you should have an
introQF folder on your computer containing

• a file introQF_library.py
• a file introQF_pythonWarmup.ipynb
• a skeleton notebook introQF.ipynb (on the day)

and you should be able to

• open a terminal in the directory introQF,
• open Jupyter using the command jupyter notebook,
• open the warmup notebook.

1.2. Crash course in basic probability

There is essentially one notion of probability theory that you will need to
understand to follow this course: expected values. It is presented below.

Random variables

In finance, unknown values are modelled as random variables. For exam-
ple, the evolution of the price of a commodity, such as oil, can bemodelled
as a sequence of random variables (each corresponding to the price at a
different time). A random variable has a range of possible values: the val-
ues that the random variables can take.
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Figure 1.1.: Pdf of a standard Normal distribution.

A weight (probability) is associated to each of those possible values; it rep-
resents how likely the value is to be taken. These weights cannot be neg-
ative and are normalised so that they sum up to 1 (or, for a continuous
range, they integrate to 1).

Theprobability distribution function (pdf) of a randomvariable is the func-
tion that associates, to each possible value, its associated weight. It is de-
noted as p. A classical example is the outcome of a fair coin flip. The range
of possible values is {H,T} eachwith aweight of 0.5 (in otherwords: a 50%
chance). The pdf of the outcome of the fair coin flip is

Outcome Probability

H 0.5
T 0.5

A random variable can also have a continuous range of possible values in
which case the pdf is a continuous function. A well known example is the
standard Normal distribution illustrated as follows:

In many situations, however, you cannot know what the true probability
distribution of a randomvariable is. In such a case, you canmodel it based
on observations. This is called fitting or adjusting a statistical model. You
will use fitting to model the evolution of the price of financial assets.
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Expected value

Quiz

Say I flip a coin and if it lands head I give you £10, but if it lands tails
I give you nothing. What do you expect to gain on average?
Answer: intuitively, your expected gain is £5

To compute the expected gain of a bet you average the different possible
values weighted by how likely each outcome is.

Definition

The expected value (EV) of any function f of a random variable X
with a probability distribution function p is defined by

Ep[f(X)] =
∑
x

f(x)p(x)

where the x ranges over all possible outcomes for the random vari-
able. Note that, if the range of possible values is continuous, this
sum becomes an integral.

Let’s apply that equation to the bet above. The function f associates £10 to
the outcomeH (Head) and £0 to the outcomeT (Tails). Thepdf p associates
0.5 to each outcome. The expected gain is computed as follows:

expected gain =
∑

x∈{H,T} f(x)p(x)

= f(H)p(H) + f(T )p(T )
= 10× 0.5 + 0× 0.5 = 5
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Example

Say I flip two coins in a row and, if both land heads I give you £10, if
one lands heads I give you £5, if none land heads I give you nothing.
What is your expected gain?
Answer: There are four possible values: {HH,HT, TH, TT} each
with a 1/4 probability. Since there are so few values (and the out-
comes are so simple), it is easy to compute the result by hand. So
that you learn something new, let’s do it in Python instead.
Numpy’s dot function provides exactly the right functionality: it
multiplies elements of two vectors point-wise, and then sums the
results.

#outcomes: {HH HT TH TT }
probs = np.array([1./4, 1./4, 1./4, 1./4])
gains = np.array([10 , 5 , 5 , 0 ])

print("Expected gains: {} GBP".format(np.dot(probs,gains)))

Linearity of the expected value

One important property of the expected value is that it is linear. Consider
arbitrary constants a, b and two functions f, g, then

Ep[a× f(X) + g(X) + b] = a× Ep[f(X)] + Ep[g(X)] + b.

In other words, if youmultiply the outcome (a× f(X)) the expected value
is multiplied by the same number (a×Ep[f(X)]). And similarly, if you add
to the outcome, it adds the same amount to the expected value.

You will see in the course that, to price an asset, you just need to compute
a specific expected value. However, you will often want to consider com-
binations of assets. Linearity is useful in this case.
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Proof

The proof starts with the definition of the expected value (assuming
a discrete range of values for simplicity):

Ep[a× f(X) + g(X) + b] =
∑

x(a× f(x) + g(x) + b)p(x)
= a×

∑
x f(x)p(x) +

∑
x g(x)p(x)

+b×
∑

x p(x)
= a× Ep[f(X)] + Ep[g(X)] + b

For the last step, remember that pdfs are normalised:
∑

x p(x) = 1.

Computing expected values in general

Note that it is often difficult to compute expected values exactly. It is even
harder when the range of possible values is continuous. However, this is
a well studied problem and for most variables you will encounter you can
assume that someone (or some program) can estimate it for you.

For example, consider the following game: you have a random variable
corresponding to a draw from a standard normal distribution. If the out-
come is less than 2 then you get £10, otherwise you get nothing. What is
the expected value of the game?

In this case, the outcome function is an indicator function:

f(x) =

{
10 ifx < 2
0 otherwise

The pdf of a standard normal distribution is given by:

p(x) = exp(−x2/2)/
√
2π

Following the definition, the expected value of the game is:

Ep[f(X)] = 10×
∫ 2
−∞

exp(−x2/2)√
2π

dx

= 10× Φ(2)
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This integral, known as the cumulative distribution function of a standard
normal random variable, is usually denoted Φ(a) if the upper bound is a
(in the example above, a = 2). You will encounter this symbol again in the
course.

There is no simple form for these integrals. However, since they appear
often, there are readily available libraries that can approximate it.
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2. Introduction

2.1. Setting

A financial market is a place where agents (for example you or a fund) can
exchange or invest in financial assets. They can also invest in (or borrow
from) a bank account with an interest rate which, in this course, is always
fixed. The set of assets that an investor holds at a given point is called a
portfolio. Here are some simple assets:

• stocks: shares of a company’s ownership,
• bonds: shares of a company’s or of a government’s debt,
• commodities: tangible goods like gold or corn.

2.2. Your first plot

You can fetch the price of a share of a company from the internet using the
function getPrices provided in cca_imc_library.py. The function
returns the dates andprices associated to a symbol (AAPL forApple, GOOG
for Google, etc.). Use it as follows:

aapl_d, aapl = getPrices('AAPL', 2005, 2013)
goog_d, goog = getPrices('GOOG', 2005, 2013)

and visualise the results:

plt.figure(figsize=(8, 6))
plt.plot_date(aapl_d, aapl, label="AAPL", ls="-", marker='None')
plt.plot_date(goog_d, goog, label="GOOG", ls="-", marker='None')
plt.xlabel("Trading day [2005-2013]", fontsize=12)
plt.ylabel("Prices", fontsize=12)
plt.legend()
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Figure 2.1.: Share prices for Apple (AAPL) and Google (GOOG) between
2005 and 2013.
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2.3. Financial derivatives

On the market, agents can also agree on transactions that will take place
in the future: a forward contract.

Example

A forward contract is an agreement between two agents to exchange
an asset at a specified future time (maturity or expiry T ) and at a
specified price (strike priceK). For example:

• At t = 0, Sam agrees to sell Laura 100 barrels of oil in T =
2months forK = £10k,

• At t = T , the contract reaches maturity: Laura pays Sam £10k
and gets the oil.

Sam is said to have a short position (he agrees to sell) and Laura a
long position (she agrees to buy).

The forward contract is an instance of a financial derivative. More broadly,
financial derivatives are assets whose values depend on other, underlying
assets. In the simple example above, the underlying asset is the oil barrel.

Motivation

Forward contracts raise two questions:

• what should the strike price be?
• what is the value/price of the contract at point 0 < t < T ?

The second question arises if Laura wants to exchange the contract
with a third agent Tom.

Both questions will be answered in this course with the main focus on the
second one: how to price derivatives. You will see how this can be done
simply, for any derivative, provided the market is arbitrage-free.
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2.4. Arbitrage-freemarkets

Definition

An arbitrage is an investment opportunity such that, starting from
£0,

• you have almost no chance to lose money,
• you have a non-negligible chance to make money.

The first condition means you have probability 0 of losing money.
This is different from “never” although the distinction is not too im-
portant for this course.

In otherwords, an arbitrage is an opportunity tomakemoneywithout risk.
Typically, it is assumed that the market is arbitrage-free which leads to a
generic way of pricing financial assets as you will see.

Example

Consider a situation where an asset (e.g, a commodity like a barrel
of oil) is traded at different prices, say £100 and £110, on different
markets. You could do the following:

a. borrow £100 from the bank,
b. buy the asset for £100,
c. immediately sell the asset for £110, and
d. return £101 (the £100 principal and £1 of interests) to the bank.

Following this strategy, you would gain £9, having started with £0
and having undertook no risks.

As the example above suggests, in an arbitrage-free market, two identical
assets must have the same price at any given time. This is called the law
of one price.

Note that, in practice, there are small and short lived arbitrage opportuni-
ties in a market (e.g., price inconsistencies) but fast agents immediately
exploit them until they disappear (e.g., high frequency trading). So, from
the perspective of a standard agent, the assumption of an arbitrage-free
market is reasonable.
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This notion of arbitrage-free market is crucial for the rest of the course
and will appear again many times. It is also quite a subtle notion. Its for-
malisation requires advancedmathematical tools. In this document, only
the intuitive notion is used.

2.5. What you will learn

In this course you will focus on the specific problem of pricing derivatives.
You will take the perspective of a quantitative analyst (or simply quant):
you analyse and model the market to provide quantitative information to
a trader.

You will start with a statistical analysis of the prices of simple assets. To
this end, you will use the LogNormal model, one of the pillars of asset
pricing. You will then be introduced to the basics of pricing theory and
learn the genericway to price any asset following the so-called risk-neutral
pricing. You will thenmove on to meet some standard derivatives like the
call option and their properties.

In a second part about computational finance, you will apply the theory
and tools introduced in the previous part on specific examples of deriva-
tives. There, you will meet the Black-Scholes analytical formula to price
a call option as well as some of the numerical schemes like the binomial
and trinomial tree.

Simplifying assumptions

This course aims to provide intuition about the tools developed and used
in the world of quantitative finance – not an exhaustive exploration of the
field. In order to make this introductory course more accessible, it makes
a number of (standard) simplifying assumptions:

• Fixed interest rate: In practice there may be a range of accessible
rates that varies over time. We assume there is a single, known, fixed
rate (a deterministic or “risk-free” rate).

• No transaction fees: In practice, every time an asset is bought or
sold, the operation may (and generally does) incur a transaction fee.
We assume that there is none.

16



• Nobid-ask spread: The bid-ask spread is the difference between the
selling price and the buying price of an asset on the market. For
example a supermarket buys its apples at a lower price than it sells
them: this middle-man cut is a bid-ask spread. We assume there is
a single, identical, price.

• No dividends: In practice a companymay pay dividends to its share-
holders which affects the price of shares. We assume there are none.

• No cost of carry: In practice, holding an asset can incur a cost (e.g.,
the maintenance of an oil storage facility). We assume there are no
such costs.

All those assumptions make the pricing model simpler without too much
loss of generality: breaking these assumptions typically only requires
adding a few terms in the mathematical models.

Remark

The no bid-ask spread assumption is very unrealistic but it helps to
reason about a single price which, intuitively, you could see as the
mid price or the price between the bid and the ask.

2.6. Summary

• Afinancialmarket is a placewhere agents (for example youor a fund)
can exchange or invest in financial assets. They can also invest in
(or borrow from) a bank account with an interest rate which, in this
course, is always fixed (and positive). The set of assets that an in-
vestor holds at a given point is called a portfolio. Some simple assets
may include stocks, bonds and commodities.

• Financial derivatives are assetswhose values depend on other under-
lying assets.

• A forward contract is an agreement between two agents to exchange
an asset (underlying) at a specified future time (maturity or expiry)
and at a specified price (strike price). It is a simple derivative.

• In this document, markets will be considered arbitrage free – i.e.,
there is no possibility to make money without risk.

• In an arbitrage-freemarket, two identical assets must have the same
price at any given time. This is known as the law of one price.
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3. Observing prices

3.1. Log-returns

In finance, it is common to consider the returns of an asset: the ratio of
subsequent prices of the asset. Considering a series of observation for
an asset price Si, the returns of the asset is the series Si/Si−1. A more
interesting series is the log-returns:

ri = log
Si

Si−1

These log-returns form a stochastic process, a series of random variables
indexed by time (here the r1, r2, . . .). In this section, you will learn to char-
acterise the evolution of these processes.

The reason for looking at the ratio of prices is that it takes the scale out.
In other words, the returns of different stocks can be compared even if
their prices are very different: relative variations aremore important than
absolute prices.

There are theoretical reasons for considering the logarithm of these ratios
whichwewon’t cover here. Themain advantage is that the log-returns can
be reasonably well approximated by a Normal distribution.

Log-returns for AAPL and GOOG

You can compute and plot the log-returns of stock as illustrated below. Try
the code yourself.

lr_aapl = np.log(aapl[1:]/aapl[0:-1])
lr_goog = np.log(goog[1:]/goog[0:-1])

plt.figure(figsize=(8, 6))
plt.plot_date(aapl_d[1:], lr_aapl, label="AAPL", ls="-", marker="None")
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Figure 3.1.: Log-returns for Apple (blue) and Google (green) between 2005
and 2013.

plt.plot_date(goog_d[1:], lr_goog, label="GOOG", ls="-", marker="None")
plt.xlabel('Trading days [2005-2013]', fontsize=12)
plt.ylabel('Log-returns', fontsize=12)
plt.legend()

Observe the increase in volatility (financial term for variability) around
2008-2009, the financial crisis. Note also that the regions of higher variabil-
ity are clustered together which is a well known phenomenon in finance.

Although it is a bit hard to make a precise statement just yet, it looks
like the random processes at hand behind each of the two companies
are similar. The similarity becomes more apparent when looking at the
histograms of the log-returns. You can compute and plot them as follows:

sns.distplot(lr_aapl, kde=False, norm_hist=True, label="AAPL")
sns.distplot(lr_goog, kde=False, norm_hist=True, label="GOOG")
plt.legend()
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Figure 3.2.: Histograms of the log-returns for Apple (left) and Google
(right) between 2005 and 2013. The shape of the two his-
tograms is roughly the same.

plt.figure(figsize=(8, 6))
plt.subplot(1, 2, 1)
sns.distplot(lr_aapl, kde=False, norm_hist=True, label="AAPL")
plt.ylim([0, 30])
plt.legend()

plt.subplot(1, 2, 2)
sns.distplot(lr_goog, kde=False, norm_hist=True, label="GOOG")
plt.legend()
plt.ylim([0, 30])

Fitting a normal distribution

The values of the log-returns seem distributed in a similar way to the Nor-
mal distribution: they roughly have a bell shape. You can fit a normal dis-
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tribution to these histograms. Fitting, in this context, is finding the mean
µ and variance σ2 of the Normal distribution N (µ, σ2) that best matches
the histograms. The scipy library provides the norm.fit function for
that purpose:

x = np.linspace(-.15, .15, 500)

plt.figure(figsize=(8, 6))
plt.subplot(1, 2, 1)

lr = lr_aapl
mu, sigma = norm.fit(lr)
sns.distplot(lr, kde=False, norm_hist=True, label="Hist-AAPL")
plt.plot(x, norm.pdf(x, mu, sigma), label="Nfit-AAPL")
plt.legend(loc="upper left")

plt.subplot(1, 2, 2)

lr = lr_goog
mu, sigma = norm.fit(lr)
sns.distplot(lr, kde=False, norm_hist=True, label="Hist-GOOG")
plt.plot(x, norm.pdf(x, mu, sigma), label="Nfit-GOOG")
plt.legend()

The fit is acceptable, but far from perfect. A different distribution might
fit better but the Normal distribution is easier to work with (its expected
values are easy to compute), is a first approximation (its shortcomings can
be taken into account as you will see later), and leads to the Black-Scholes
model which is as famous in finance as the Standard Model in physics or
the Turing Machine in computer science.

Note that the shortcomings of the simplicity of the Normal model are
taken into account in practice as you will see later.

Notation: Normal Distribution

When a random variableX is normally distributed withmean µ and
variance ν we use the notation

X ∼ N (µ, ν)

Note that
√
ν is the standard deviation and a measure for the width

of the distribution.

Modelling the log-returns as Normal random variables amounts to mod-
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Figure 3.3.: Histograms of the log-returns with fitted Normal
distributions.
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Figure 3.4.: Pdf of a LogNormal distribution.

elling the returns themselves as LogNormal random variables. A conse-
quence is that the stock prices are also modelled as LogNormal.

Note that random variables modelled as LogNormal cannot be negative.

Bonus: expected value of a LogNormal

If X is modelled as a LogNormal random variable, it means that
logX is modelled as a Normal random variable. Assuming the pa-
rameters of that Normal distribution are denoted by N (µ, σ2) then
the expected value ofX is given by

E[X] = exp

(
µ+

σ2

2

)
which is useful to know for the development of the Black-Scholes
formula (which you will meet later).
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Bonus: fitting a Student-t distribution

The Student-t distribution is commonly used to model the distribu-
tion of small samples of values that follow the Normal distribution.
You can fit it to the sample data from AAPL and GOOG (or another
stock) as follows:

plt.figure(figsize=(8, 6))

lr = lr_aapl
df, loc, scale = t.fit(lr)

plt.subplot(1, 2, 1)
sns.distplot(lr, kde=False, norm_hist=True, label="Hist-AAPL")
plt.plot(x, t.pdf(x, df, loc, scale), label="tfit-AAPL")
plt.legend()

lr = lr_goog
df, loc, scale = t.fit(lr)

plt.subplot(1, 2, 2)
sns.distplot(lr, kde=False, norm_hist=True, label="Hist-GOOG")
plt.plot(x, t.pdf(x, df, loc, scale), label="tfit-GOOG")
plt.legend(loc="upper right")
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As you can observe, the fit from the Student-t is far superior. This is
something to keep in mind when considering more advanced mod-
els in finance although we will not use it in what follows.24



Lagged log-returns

So far you have analysed the log-returns over two subsequent prices, but
the notion of “subsequent” is arbitrary: you used daily quotes and so
the subsequent prices where 24h apart, you could use weekly quotes, or
monthly quotes. In general you can consider log-returns over ℓ days:

rℓi = log
Si

Si−ℓ
where ℓ = 1, 2, . . .

When ℓ = 1, the definition is trivially identical to theprevious one. You can
explore what changes when increasing the lag; simply change the value of
the lag variable in the code below.

# inline function to compute the lagged-log returns for an arbitrary lag
llr = lambda prices, lag: np.log(prices[range(0+lag,len(prices), lag)] /

prices[range(0, len(prices)-lag,lag)])

# compute the log-returns corresponding to ratios over 5 quotes
# play with the lag afterwards to see what changes in the analysis
lag = 5
llr_aapl = llr(aapl, lag)
llr_goog = llr(goog, lag)

plt.figure(figsize=(8, 6))

plt.subplot(1, 2, 1)
sns.distplot(llr_aapl, kde=False, norm_hist=True, label="AAPL")
plt.xlim([x.min(), x.max()])
plt.legend()

plt.subplot(1, 2, 2)
sns.distplot(llr_goog, kde=False, norm_hist=True, label="GOOG")
plt.xlim([x.min(), x.max()])
plt.legend()

mu, sigma = norm.fit(llr_aapl)

plt.subplot(1, 2, 1)
plt.plot(x, norm.pdf(x, mu, sigma))

mu, sigma = norm.fit(llr_goog)

plt.subplot(1, 2, 2)
plt.plot(x, norm.pdf(x, mu, sigma))
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Figure 3.5.: Histogram of the log-returns for a lag of 5 days.
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As you can observe, the form of the histogram stays the same. However,
the horizontal spread of the histogram (i.e., the variance) increases: the
uncertainty is related to time. Themeanalso changes, but it is less obvious.
We can try to establish these links by estimating themean and the variance
for several lags:

lags = np.array([1, 3, 5, 7, 10, 15, 20])
sig_aapl = np.zeros(len(lags))
mu_aapl = np.zeros(len(lags))
sig_goog = np.zeros(len(lags))
mu_goog = np.zeros(len(lags))

i = 0
for lag in lags:

mu_aapl[i], sig_aapl[i] = norm.fit(llr(aapl, lag))
mu_goog[i], sig_goog[i] = norm.fit(llr(goog, lag))
i+=1

plt.figure(figsize=(8, 6))
plt.plot(lags, mu_aapl, label="AAPL")
plt.plot(lags, mu_goog, label="GOOG")
plt.xlabel("Lag [days]", fontsize=12)
plt.ylabel("Fitted means", fontsize=12)
plt.legend()

The LogNormal model

From the rough analysis above, it seems reasonable to model both the
mean and the variance of the log-returns as growing linearly with the lag.
This forms the LogNormal model which, mathematically, can be written
as

log
St+τ

St
∼ N (µτ, σ2τ)

where τ = (T − t) is the time span considered. The parameters µ and σ
(the volatility) are adjusted so that they correspond best to the observed
log-returns and therefore characterise the asset.

Thismodel is too simple to accurately represent the financial reality. But it
is still widely used as it is easy to interpret and a number of corrections can
be applied to account for its shortcomings. We will discuss this in more
details towards the end of the course.
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Figure 3.6.: Evolution of the mean with the lag.
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Figure 3.7.: Evolution of the variance with the lag.
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3.2. Summary

In this section you analysed the evolution of the log-returns of assets and
observed that:

• looking at the returns allows to get rid of the price-scale of different
assets,

• the log-returns can bemodelled approximately with a Normal distri-
bution,

• the mean and variance of the log-returns can be modelled to grow
linearly with the lag.

These observations led to the LogNormal model for the random process
associated with the log-returns which can be written

log(St+τ/St) ∼ N (µτ, σ2τ)
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4. Pricing Theory

4.1. Goal of this section

By the end of this section, you will understand the following magical sen-
tence:

“ The price of a financial asset is equal to its discounted expected
payoff under the risk-neutral probability.

It is expressed by the following elegant (if somewhat cryptic) mathemati-
cal formulation:

Vt = Φr(t, T )E⋆
t [VT ]

This is known as the risk-neutral or arbitrage-free price. Once you under-
stand this formula, you will know how to price any financial asset.

The section is structured as follows:

• First, you will learn about discounting which is the way to account
for the time span considered in the price. It explains the Φr(t, T )
factor.

• Then, you will learn about the risk-neutral probability distribution
which is the distribution used to compute the expected value of an
asset. It explains the E⋆

t [VT ] and why we mark it with ⋆.
• Finally, you will use these two concepts together to price derivatives.

4.2. Discounting

Remember, from the introduction, that you can always decide to invest
some amountX in a bank account with an interest rate r. If you leave it in
the bank from time t to T > t, then at time T it is worthXΨr(t, T ) where
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Ψr denotes the multiplicative factor gained at rate r over a period of time
(capitalisation factor).

It is more conventional to work with the discounting factor, defined as the
inverse of the multiplicative factor:

Φr(t, T ) =
1

Ψr(t, T )

In order to follow notational conventions, we will use the discounting fac-
tor Φr exclusively. You can form intuition about the discounting factor as
follows: if you investXΦr(t, T ) from time t to T > t then you end up with
X.

The precise formof thisΦr depends onhow the “rate” is defined in the con-
text and does not really matter; we can take it as given. In mathematical
finance the factor is often modelled as a continuously compounded inter-
est rate with the form Φr(t, T ) = exp(−r(T − t)). In what follows, and as
we did for the LogNormal model, we write τ for the time span T − t.

More importantly, we assume positive interest rates. Specifically, we as-
sume that 0 < Φr(t, T ) < 1. It justifies the saying:

“ A pound today is worth more than a pound tomorrow.

Indeed, if you have £1 × Φr(t, T ) (which is less than £1) at time t (today)
and you invest in a bank account up until time T (tomorrow), you will end
up with £1. And similarly, if you have £1 today and invest it, you will get
(slightly) more than £1 tomorrow whence the saying.

This principle is referred to as the time value of money. And it means
that at time t = 0, if you want to compare two future deterministic (non-
random) trades incurring some transfer of value (cash flows), say, X1 at
time T1 and X2 at time T2, you need to discount them; that is, you should
compare

X1Φr(0, T1), and X2Φr(0, T2)

In other words, you should compare the amounts that you need to invest
in the bank today in order to get the same future cash-flows.
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Definition

Discounting allows to compute the value today (present value) of
a future cash-flow thereby allowing the comparison of different in-
vestment plans.

Example

You want to sell your house and your friend offers to pay you £200k
today or £208k next year. The annual rate at your local bank is 5% –
thus, the multiplicative factor is Ψr(0, 1Y) = 1.05. What should you
do?
Comparing the two cases, you have:

1. the present value of taking the £200k now is £200k,
2. the present value of getting £208k in 1 year is £208k/1.05 =

£198.1k.

It is therefore clearly in your advantage to take the money today.
Remark: Here obviously you could also see that placing £200k at 5%
would get you £210k in a year which is greater than what your friend
offered. But if you imagine comparing more than 2 cash-flows, it
becomes clear that comparing the present value makes more sense.

4.3. The risk-neutral world

Motivation

Consider a coin-flip game: you win £10 if it lands heads and £0 if it
lands tails.
What is the highest price you would accept to pay to play the game?

To answer the question, you should take two things into account: your ex-
pected gain (here £5) and your aversion to risk.

The aversion to risk can be classified in three categories:

• Casinoplayer: You like risk and you are happy to paymore than your
expected gain (say, up to £6) even though, on average, you will lose
money.
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• Risk-neutral player: You like a “fair game” and you are happy to
match your expected game by paying up to £5. On average you don’t
gain or lose anything.

• Risk-averse player: You don’t like the risk of losing money and ex-
pect a reward to compensate this risk-taking. You only accept to pay
less than your expected gains (say, £3).

Let’s consider a simple, arbitrage-free market where one agent, the seller,
is selling access to the game described above; the other agents are poten-
tial players. Because the market is abitrage-free, and according to the law
of one price, there must be a unique price for participating in the game.
From the seller’s perspective, the price should be as high as possible with
many people willing to play.

• If all players are risk-neutral then the seller should set the price to
the expected gain: £5.

• In practice however,most players are risk-averse andhence, in order
to attract many players, the seller sets the price lower at, say, £3.

Risk-neutral probability distribution

The difference between the actual price and the expected gain (here £2)
can be interpreted as a reward to players for undertaking risk. You can
view this reward in two equivalent ways:

• as the expected gain minus a “price of risk”,
• as the expected gain if the odds of landing heads were 0.3 (30%).

To clarify the second point, let us define p⋆, the alternate pdf for this game
with p⋆(H) = 3/10 and p⋆(T ) = 7/10. The expected gain under p⋆ is:

expected gain = £10× 3

10
+ £0× 7

10
= £3

Note that the pdf p⋆ leads to an interpretation of the price. Specifically, it
is a fictional pdf under which the actual price corresponds to the amount
risk-neutral players would pay.
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Definition

The risk-neutral probability distribution (denoted p⋆) is a fictive
probability distribution associating different weights to possible
events in such a way that the expected gain under that probability
distribution is equal to that implied by the price on the market.
We write E⋆ for the expected value under p⋆.

Use of the risk-neutral probability distribution

Why is the risk-neutral probability distribution useful? Why is this inter-
pretation of price important? Because it lets you price any other game or
asset that depends on the same source of randomness in a a way that guar-
antees there is no arbitrage. To compute the price of these new games,
simply compute their expected gain under the known, risk-neutral pdf.
This is a fundamental principle in finance; the general proof is a bit tech-
nical but if you are curious, you can refer to Follmer and Schied (see refer-
ences).

Example

Let us assume that the game above is still on themarket but that I am
now also offering another game based on the same coin flips where
the rewards are

• £6 if head,
• £15 if tail.

What is the arbitrage-free, risk-neutral price of that game?
The sourceof randomness is the same than that of theprevious game
(the same coin flips) and we had already described it with p⋆ = 3/10.
Hence, the arbitrage-free, risk-neutral price is computed as follows:

P ⋆
game2

= E⋆[game2] = £6× 3

10
+ £15× 7

10
= £12.3
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Bonus: another price implies arbitrage

Can you show that if the second game above was priced any differ-
ently than P ⋆, there would be an arbitrage opportunity?

To carry this proof, first consider the case where the price is outside the
range £6 to £15. You can find an arbitrage opportunity by either selling or
buying the second game.

If the price is within the £6 to £15 range, put yourself in the position of a
seller. You sell α > 0 times the second game for the price P and 1 time the
first game for the price 3. Your cash flows in £ are

• In case of Head: α(P − 6)+ (3− 10)where the first term is the price
you receive (P ) minus the money you pay out to the players (6) and
the second term is the price you receive (3)minus themoney you pay
out to the players (10).

• In case of Tail: α(P − 15) + (3 − 0) where the terms are similar but
with the outcomes for tails.

If the price P is such that both cash flows can be positive simultaneously,
then youhave an arbitrage opportunity. Remember that the price iswithin
the £6 to £15 range or, in other words: (P − 6) > 0 and (P − 15) < 0. Thus,
finding an opportunity for arbitrage reduces to finding a pair (P, α) such
that

{
α > 7/(P − 6)
α < −3/(P − 15)

Similarly, if you consider buying as opposed to selling, the conditions are
just reversed.

This is illustrated in the figure below. You can observe that, indeed, if the
price is different than P ⋆ = £12.3, there exists arbitrage opportunities.

The region highlighted on the right corresponds to the case where you
should sell the games. The other region corresponds to the flipped case
where you should buy the games. Any point in those regions forms an ar-
bitrage.
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4.4. Gathering the pieces

You have now learned the two fundamental building blocks of asset
pricing: discounting, which values today a future cash-flow, and the
arbitrage-free price of an asset which sets the price of any instantaneous
asset. Putting both together, we can price any derivative as advertised at
the beginning of the section:

Pricing formula

The arbitrage-free (risk-neutral) price/value today Vt of an asset with
future payoff VT is given by the discounted expected payoff under
the current risk-neutral measure:

Vt = Φr(t, T )E⋆
t [VT ]

In the formula, the discounting factor is (usually) trivial. The difficult part
to compute is the expected value under the current risk-free probability
distribution. As you saw with the coin-flip example, the procedure for
computing the current risk-free probability distribution is:

• observe an existing price on the market,
• compute a pdf p⋆ that matches it.

For the coin-flip example, p⋆ is easy to compute because it is only really
determined by a single value.

In the general case however, it is harder to compute p⋆ but you can use the
prices of simple assets like shares that are already on themarket since they
also have to respect the pricing formula. You will need to remember this
when we consider the calibration of standard models like the Binomial
tree model or the Black-Scholes model.

4.5. From coin-flips to a simplemarket model

The example above illustrated the notion of a risk-neutral world in a very
simple market model: the only two assets derive from a coin-flip. We will
now do the same thing in a more realistic market model and in a way that
will introduce you to the concept of replication.

Assume there are three assets:
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Figure 4.2.: Schematic representation of the evolution over one time step
of the value of the three assets considered.

αS0 + βΦr

αuS0 + β

αdS0 + β

Figure 4.3.: Schematic representation of the evolution over one time step
of the value of the portfolio considered.

• one stock with current quoted price S0,
• one bank account with fixed interest rate r,
• one derivative based on the stock with current value V0.

Now, consider one “time step” (e.g., between today and tomorrow), and
model the evolution of the different assets in the following simple way:

Note the use of Φr as a shorthand for Φr(0, 1) here.

In this market, we consider two possibilities of evolution for the price of
the stockwith twofixed factorsu and d. Thederivative takes valuesVu orVd

following the situation. (Note the similarities with the coin flip example).

Consider now the following scenario: you build a portfolio with the stock
and the bank account in such a way that the payoff of your portfolio repli-
cates that of the derivative. Then, by the law of one price in an arbitrage-
free market, the initial value of that portfolio should be set to the initial
value of the derivative. This approach is called pricing by replication. Vi-
sually the evolution of the portfolio looks like:

Notehere that bothα andβ canbepositive (invest in the stock, invest in the
bank account) or negative (sell the stock, borrow from the bank account).
Since you want to replicate the evolution of the derivative, you need to
determine (α⋆, β⋆) such that

{
α⋆uS0 + β⋆ = Vu

α⋆dS0 + β⋆ = Vd
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and, once you have determined those, the law of one price (LOP) implies
that

V0 = α⋆S0 + β⋆Φr

With a little bit of simple maths (see the Bonus section below), the pricing
by replication can be shown to be equivalent to the risk-neutral pricing.
But what matters most here is for you to understand the principle of repli-
cation and the use of the law of one price.

Another important concept unveiled by the concept of replication is that
of hedging: trying to reduce risks by also trading a position which com-
pensates the possible downside of a derivative.

Bonus: Equivalence between replication and risk-neutral pricing

It is fairly straightforward to verify that the solution to the Replication
equation above is

α⋆ =
Vu − Vd

(u− d)S0
β⋆ =

uVd − dVu

u− d

Using the lawof oneprice (see LOPequation above), the price of the deriva-
tive is therefore:

V0 = α⋆S0 + β⋆Φr

= Φr

Φ−1
r − d

u− d︸ ︷︷ ︸
p⋆

Vu +
u− Φ−1

r

u− d︸ ︷︷ ︸
1−p⋆

Vd


The second line is obtained after a little bit of simple algebra; the form in
which it is written is meant to remind you of the general pricing formula.
Indeed, assuming for simplicity that u > Φ−1

r > d, the p⋆ above is between
0 and 1 and is the risk-neutral probability with:

V0 = Φr(p
⋆Vu + (1− p⋆)Vd) = ΦrE⋆[V ]
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You have now shown that replication pricing can be put in the same form
as risk-neutral pricing. The one thing left to verify is that both consider
the same risk-neutral probability p⋆.

For this, note that, in an arbitrage-free markets, all assets must be priced
according the same general pricing formula, and, in particular, the stock
price must verify:

S0 = ΦrE⋆[S] = Φr(p
⋆uS0 + (1− p⋆)dS0)

Solving this for p⋆ leads to

p⋆ =
Φ−1
r − d

u− d

which is the exact same one as was obtained via replication-pricing. This
finishes the proof that risk-neutral pricing and replication pricing are here
equivalent.

Remark

Above, we assumed that u > Φ−1
r = Ψr > d. This ensures that the

risk-neutral probability is between 0 and 1. However, observe that
economically, it makes sense:

• if Ψr ≥ u, then no agent would have an interest in buying the
asset and they should just invest in the bank account,

• ifΨr ≤ d, there is an obvious arbitrage opportunity.

4.6. Summary

In this section we have introduced the following concepts:

• The risk-neutral world is an imaginary world where investors are
assumed to require no extra return on average for bearing risks or,
equivalently, where all assets return the risk free rate.

• Discounting is a way to compute the present-value of future cash
flows in order to compare them,

• Replication imitates the cashflowsof a derivative using simple assets
and deducing the price of the derivative using the law of one price.

41



5. Derivatives

5.1. Introduction

You have already encountered a very simple kind of derivative: the for-
ward contract where one party (in the long position) agrees to buy an asset
at a specified time in the future at a specified price and the other party (in
the short position) agrees to sell the asset at that time at that price.

It’s time to learn about more, well known derivatives and their character-
istics.

5.2. Payoff curves

The payoff curve of a derivative represents the value of the exchange, at
maturity, for all possible outcomes of the underlying.

In the case of a forward contract, the payoff is the difference between the
strike price and the market price of the derivative at maturity. The agent
in the long position gets a positive payoff if the strike price is higher than
the market price of the derivative at maturity: they get more money from
the forward contract than they would have had selling the underlying at
market price at maturity. For the agent in the short position, the opposite
is true.

More formally, the payoff for the agent in the long position is V fwd
T = (ST−

K) where ST is the market price of the asset at maturity (time T ).

Several comments apply:

1. The curves intersect at 0 when ST = K: no one makes or loses
money if the underlying is exactly worth the strike price,

2. The curves are mirrored which is due to the mirrored buyer-seller
relation,
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Figure 5.1.: Payoff curves for the long and the short forward contracts
when the strike price isK = 100.
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3. The payoffs can be big, which means that either agents can loose a
lot of money! You will learn later about some derivatives that are
designed to avoid losing more than a fixed amount.

In financial lingo, the key features of the long forward contract are sum-
marised as:

• Unlimited upside: You can make an arbitrarily large profit.
• Limited downside: You can lose a lot of money but not arbitrarily so
because the price of the underlying cannot go below 0.

• Bullish or optimistic: You expect the price of the underlying to go
up.

The opposite term for bullish is Bearish (or pessimistic): You expect the
price of the underlying to go down.

In the rest of this section, you will discover other derivatives, their payoff
curves and key features. We focus on long positions since the short posi-
tions are always mere mirrors of the long ones. We will explain some of
their properties but not in much details since the focus of this course is
more the pricing than the financial engineering.

Note that the payoff is what you need in order to price the derivative. In
the example above you can do it as follows (and you will learn how to do
this with more generality in the next section):

V fwd
t = Φr(t, T )× E⋆

t [V
fwd
T ]

= Φr(t, T )× (E⋆
t [ST ]−K)

= St − Φr(t, T )×K

where, at the last line, you have to use the fact that the price of the under-
lying must obey the risk-neutral pricing: St = Φr(t, T )E⋆

t [ST ].

5.3. Options

Options are derivatives centred around the concept of having the option
(the rightwithout the obligation) to buy, or sell, an asset at a specified price
– the strike price – and at a specified time – maturity time.

Options are financial instruments that transfer risk from a person unwill-
ing to take it to a person willing to bear it in return for a fee (price of the
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option). This price can be interpreted as that of an insurance policy and
is also known as a premium.

Note that youwill first consider the casewhere the contract can only be ex-
ercised at the maturity date (these contracts are called European options)
and you will later learn about alternatives (American options, Asian op-
tions, etc.). The origin of the names of options (“European”, “American”,
“Asian”) is unclear and has nothing to do with geography; these options
are traded everywhere.

Call option

The European (long) call gives you the option to buy an asset at a fixed
strike-price and at a fixed future date (maturity). Choosing to buy is re-
ferred to as exercising the call.

Example

You buy a call on an ounce (roughly 30g) of gold expiring in 2months
with a strikeprice of £1k. Consider the following two scenarios at the
maturity date:

1. The price of an ounce of gold is now £1.2k which is larger than
the strike price. You choose to exercise the call (buy the ounce
for £1k) and immediately sell the asset for the current price
with a resulting payoff of £0.2k.

2. The price of the ounce of gold is now £0.9k which is not larger
than the strike price. You choose not to exercise the call with
a resulting payoff of £0.

It is important to note here that the payoff is different than the profit
youwillmake atmaturity. Indeed, you have to take into account that
you initially paid a small amount to buy the contract.
For our purpose (pricing derivatives) the payoff is the relevant mea-
sure.

Following the example above, the payoff value of a (long) call at maturity
can be simply computed as:

V call
T = max {ST −K, 0}
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Figure 5.2.: Payoff curve of a long call with strikeK = £100.

the figure below illustrates the hockey stick shape of the corresponding
payoff curve:

The key features of a (long) call are:

• Unlimited upside
• No downside (the only risk is to lose the initial price or premium)
• Bullish
• Leverage (see below)

Put option

The European (long) put gives you the option to sell an asset at a fixed
strike-price and at a fixed future date (maturity).

The payoff of a put is, by contrast to the call:

V
put
T = max {K − ST , 0}
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Figure 5.3.: Payoff of a long put with strikeK = £100.

the figure below illustrates the hockey stick shape of the corresponding
curve.

Observe the symmetry between the call and the put. You will exploit this
symmetry to price calls and puts.

The key features of a (long) put are:

• Limited upside (possibility to make large gains if the stock crashes
but the price of the underlying is bounded by 0)

• No downside (the only risk is to lose the initial price or premium)
• Bearish
• Leverage (see below)

Options and leverage

Buying a call over an underlying is cheaper than buying the underlying
directly. Additionally, with options you can, starting from the same capi-
tal, make more profit than if you invest directly in the underlying. This is
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called leverage.

Definition

Leverage is a multiplicative effect attained by a derivative over in-
vesting simply in the underlying.

Example

Let us consider a call on an ounce of gold again. Suppose that

• the price of the call is £15,
• the current price (spot price) of the underlying (an ounce of
gold) is £0.95k,

• you have a budget of £10k,
• the price of the underlying rises to £1k by the maturity date T ,
• the strike price in the call is at £0.98k.

Consider these two options:

a. You invest in the underlying: With your budget you initially
buy 10.5 ounces of gold which are worth £10.5k at maturity T .
Your gross growth is 5%.

b. You invest in the call: With your budget you can buy (more
than) 650 call options. At maturity T , you exercise the calls
(i.e., you buy 650 ounces of gold at £0.98k per ounce). You
sell the gold immediately at £1k per ounce therebymaking 650
×£0.02k= £13k. Your gross growth is 30%.

Question: What happens, in each situation, if the price of the under-
lying drops to £0.9k (instead of rising) by the maturity date T ?

The example above is artificial. But the principle remains valid: with a
call you can buy farmore of the underlying than you could have otherwise,
only effectively exchangingmoney for the asset at the maturity date if it is
in your favour to do so. In that case you can borrowmoney from the bank
in order to effectively buy the asset, immediately sell for a higher price
and reimburse the bank quickly.
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Figure 5.4.: Payoff curve of a long straddle with strikeK = 100.

Combinations

In your portfolio, you can combine several derivatives. For example you
can combine a call and a put with the same characteristics (same strike
and maturity date). This is called a straddle.

Below is Python code that produces the payoff curve for a straddle.

K = 100 # Strike Price
S = np.linspace(90,110,100)
Vcall = np.maximum((S-K),0.)
Vput = np.maximum((K-S),0.)
Vstraddle = Vcall+Vput
plt.plot(S, Vstraddle, label="Long straddle")
plt.xlabel("Underlying asset price at maturity - $S_T$")
plt.ylabel("Payoff at maturity - $V_T$")
plt.xticks(np.arange(90, 115, 5))
plt.yticks(np.arange(0, 15, 5))

Each specific combinationhas apurpose. When investing in a straddle, for
example, you expect a change in the price of the underlying but you do not
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Figure 5.5.: Illustration of the put-call parity. observe how combining the
put and the forward gives the call.

know in which direction. For example, if a company is due to announce
its earnings and it’s unclear whether it’s going to be good or bad news.

5.4. Put-Call Parity

Remember that the payoff curves for puts and calls are symmetrical.
Mathematically, the relation goes as follows:

V call
T − V

put
T = (ST −K)

This can be seen by overlaying the two payoff curves:

Now, remember that the price of anything on the market can be obtained
by computing the expected payoff in the risk-neutral world and discount-
ing it. Hence, the price of the put (V put

t ) and that of the call (V call
t ) at a time

t < T are directly related:
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V
put
t = Φr(t, T )E⋆

t [V
put
T ]

= Φr(t, T )E⋆
t [K − ST + V call

T ]

= Φr(t, T )K − St + V call
t

using the same reasoning as the one we used when pricing the forward
contract. This is known as the put-call parity principle.

This principle only holds for European options (i.e., where the exercise is
only possible at the maturity date).

5.5. Other derivatives

There are many more types of derivatives (options and other) used in fi-
nance. Below are a few other types of options.

American options

American options are similar to the European options that you saw before
except that the contract can be exercised at any time before the maturity
date (early exercise), if it is in your advantage to do so. You will see how to
price an American put when covering the binomial tree.

Bonus: More on early exercise

You may wonder when it is in your advantage to exercise early. Obviously,
it is only in your interest to exercise the option if it is in themoney (if it has
a positive payoff). Looking at an American call the moment we exercise,
the payoff is (St −K) and for an American put, (K − St).

Let us start with the American put. The lower the price of the underlying
is, themore valuable the put becomes. In contrast, the corresponding call
loses more and more value. So if we take the limit of the put-call parity
and let the price of the underlying go to zero:

lim
St→0

(V call
t − V

put
t ) = − lim

St→0
V

put
t
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but theput-call parity tells us that (V call
t −V put

t ) is equal to (St−K exp(−rτ))
so that, in the limit where the price of the underlying is very low,

V
put
t ≈ K exp(−rτ)− St

Since we assume that r > 0,K exp(−rτ) < K so that, in the limit above,

V
put
t < K − St

In other words, with a positive interest rate, early exercise the American
put will always be in your favour as long as the spot price is small enough.

Exercise

Follow a similar reasoning for an American call.
Note that doing so, you can show that it is never optimal to exercise
an American call early under these conditions.

Remark

Note that we have ignored dividends and the cost of holding the
stock. If we include those factors, it can be optimal to exercise an
American call early.

Exotic options

There aremany other types of options withmore complex properties than
that of the European or American options. Even though it relies on the
same formula, their pricing requires a bit more effort.

For example, some options are path dependent: their payoff depends on
the evolution of the underlying’s price between the instantiation point and
the exercise point. An Asian option for example, looks at the average price
of the underlying over a pre-fixed period of time. The payoff of a barrier
option depends upon whether a fixed price (barrier) is attained by the un-
derlying.

We do not cover those in depth here but it is useful to know that these exist
since they justify the use and development of specific methods in order to
compute their price.
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5.6. Summary

In this section we have covered the following concepts with regards to
derivatives:

• In any forward contract, one party is in a long position (agrees to buy
an asset at a specified time in the future at a specified price) whereas
the other party is in a short position (agrees to sell the asset at that
time and price).

• The payoff curve of a derivative represents the value of the contract
at maturity.

• Options are derivatives that grant their holders the right or option,
but not the obligation, to buy or sell an asset at a specified price (the
strike price) and at a specified time (maturity) time.

– The parties to an option are its buyer (long party) and its seller
(short party)

– The European long call gives you the option to buy an asset at
a fixed strike-price and at a fixed future date (maturity). The
European long put gives you the option to sell an asset at a fixed
strike-price and at a fixed future date (maturity).

– European options may be exercised only at the maturity date,
whereas American optionsmay be exercised at any time before
the maturity date (early exercise).

– Youcan create combinations of derivatives in yourportfolio; for
example, the straddle is a combination of a call and a put option
with the same strike price and maturity date.

– Besides the common vanilla European or American options,
there are options with features more complex known as exotic
options, the pricing of which requires a bit more effort.

• Options offer leverage: they are much cheaper than the underlying
asset and hence many can be bought. When exercised this can lead
to greater profits than simply investing in the underlying.

Additionally, it is important to remember that:

• The payoff is different than the profit you will make at maturity.
• The put-call parity principle only holds for European options.
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6. Analytical pricing: the
Black-Scholes formula

6.1. The bareminimum

You have learned how to price assets using the discounted expected
value under the risk-neutral probability distribution. When assuming
log-normality of the returns, this leads to the Black-Scholes model and, in
particular, to explicit prices for European options.

Getting to the Black-Scholes model requires a fair bit of maths. The key
concept is to express the distribution corresponding to the LogNormal
model, find the corresponding risk-neutral distribution and then compute
expected values under that model. Depending on your level of interest for
the underlying maths, you can look at the appendix for the full develop-
ment, at the overview below for the main points, or just look at the (stan-
dard) formula available below it.

1. First, model the log-returns log(ST /St) as N (µτ, σ2τ) in agreement
with our previous observations.

2. Then, remember that, in the risk neutral world, all assets are ex-
pected to return the bank account rate r. Hence, the distribution
must be modified in the following way: µ ← µ⋆ = r − σ2/2 so that
the pricing formula holds for the asset.

3. The previous two points imply a specific model for the distribution
of ST .

4. Computing the expected values under that distribution model leads
to pricing of European derivatives.

In particular, for the European long call, the expected value leads to fol-
lowing standard pricing formula:

V call
t = StΦ(d1)−K exp(−rτ)Φ(d2)
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where

Φ(a) =

∫ a

−∞

exp(−x2/2)√
2π

dx

is the cumulative normal distribution which can be computed using the
norm.cdf function from scipy.stats.

Warning

Do not confuse the symbol Φ(a) (the integral above) and Φr(t, T )
(the discounting factor exp(−r(T − t))). For this course, you will
only use the former in the context of the Black-Scholes formula so
there should not be any ambiguity. Some textbooks use the notation
CND(a) for Φ(a).

The constants d1 and d2 are given by

d1 =
log(St/K) + (r + σ2/2)τ

σ
√
τ

d2 =
log(St/K) + (r − σ2/2)τ

σ
√
τ

Which is expressed in Python as follows:

def callPriceBS(St, K, tau, r, v):
d1 = ( (np.log(St/K)) + (r+np.power(v, 2)/2)*tau ) / (v*np.sqrt(tau))
d2 = d1-v*np.sqrt(tau)
return St*norm.cdf(d1)-K*np.exp(-r*tau)*norm.cdf(d2)

So for example the price of a call which expires in 2 years, with a strike
price of £100, a current asset price of £105, an annual interest rate of 5%
and a volatility of 15% is

print("{0:.4f}".format(callPriceBS(105, 100, 2, 0.05, 0.15)))

which is approximately £17.4.

6.2. Greeks

When considering adding specific derivatives to their portfolio, traders
will often consider specific numerical quantities which help characterise
these derivatives and, by extension, their portfolio. These numerical

55



quantities are known as the Greeks: a set of symbols (most of which
Greek letters) representing the sensitivity of the current value (price) of
the derivative with respect to small changes of parameters.

It should be stressed here that the Greeks form an essential set of tools for
the traders, in a way even more so than the price itself. They tell them
what their risks are subject to variations in the market when investing in
a particular derivative.

The essentials: Delta, Vega, Theta

Delta

The Delta (∆) of a derivative quantifies the sensitivity of the value of the
derivative considered to a small change in the price of the underlying:

∆ :=
∂V

∂S
≈ V (St +∆S)− V (St)

∆S

where ∆S is a small change in the underlying (which may be positive or
negative). Inwords, this greek quantifies howmuch the value of the deriva-
tive changes (∆V = V (St+∆S)−V (St)) when the value of the underlying
changes a little bit (∆S).

As an aside, youmay recognise the first termwhich is the partial derivative
of the price of the derivative with respect to that of the underlying. It is
defined as the limit of the right-hand side when the perturbation∆S goes
to zero.

Note also that this greek is computed at a specific time t and will therefore
vary with time.

In the case of the Call, you have seen before an explicit formula for the
price and you can compute the Delta exactly (analytically) provided you
are comfortable with differentiation (it actually all boils down to Φ(d1)).
If not or, in general, if you don’t have an explicit formula for the price, you
can also estimate the Delta numerically:

def callDeltaBS(St, K, tau, r, v):
d1 = ( (np.log(St/K)) + (r+np.power(v, 2)/2)*tau ) / (v*np.sqrt(tau))
return norm.cdf(d1)

def callDeltaNumerical(St, K, tau, r, v):
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Figure 6.1.: Illustration of the Delta of a call for a range of asset prices
(hereK = 75, σ = 0.1, τ = 2, r = 0.05).

deltaS = St/1000
Vplus = callPriceBS(St+deltaS, K, tau, r, v)
V = callPriceBS(St, K, tau, r, v)
return (Vplus-V)/deltaS

Trying both outwith realistic values you can see that the numerical approx-
imation can be perfectly acceptable (here within half a percent):

dAnalytical = callDeltaBS(60, 75, 2, 0.05, 0.1)
dNumerical = callDeltaNumerical(60, 75, 2, 0.05, 0.1)
pctDiff = np.abs(dAnalytical-dNumerical)/dAnalytical*100

print("Delta (Analytical): {0:.5f}".format(dAnalytical))
print("Delta (Numerical) : {0:.5f}".format(dNumerical))
print("Percentage diff : {0:.1f}".format(pctDiff))

The curve corresponding to the∆ associated to a range of possible prices
is illustrated below with the arametersK = 75, σ = 0.1, τ = 2, r = 0.05:
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Question

Can you think of why the Delta of a Call looks like the curve above?
Can you think of the two limits where either the price of the under-
lying is much higher or much lower than the strike?

Vega

The Vega (ν, which is actually “nu” but known as “Vega”, probably because
it looks like a “V”,maybe also because it rhymeswith other greeks…) quan-
tifies the sensitivity to the volatility σ of the underlying:

ν =
∂V

∂σ
≈ V (σt +∆σ)− V (σt)

∆σ

where σt denotes the current estimate of the volatility.
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Exercise

Use either a numerical or analytical approach to plot the evolution of
theVega of a call against a range of possible volatilities. Youwill have
to choose arbitrary values for the strike price and other constants.
Can you interpret the result?
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Another useful illustration is the Vega against the price of the underlying
which looks like this:

Observe also that the value of the call tends to the price of the underlying
when the price of the underlying is far higher than the strike. On the other
hand, when the price ismuch lower, then the value of the call tends to zero.

Theta

Finally, the Theta (Θ) quantifies the sensitivity to the lifetime τ = (T − t)
of the contract:
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Figure 6.2.: Vega of a call for a range of prices of the underlying (withK =
75, τ = 2, r = 0.05 and σ = 0.1)
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Figure 6.3.: Theta of a call for a range of volatilities (here S = 60,K = 75,
r = 0.05, σ = 0.1).

Θ =
∂V

∂τ
≈ V (τ +∆τ)− V (τ)

∆τ

Note that the Theta of a call is always negative: the call loses value as time
goesby. This is because it becomes less and less likely for theprice tomove
significantly away from the current observed spot-price. This observation
actually holds for any options and is known as theta erosion.

Summary

So far, you have learned the three most important Greeks.

Name definition Intuition

Delta,∆ ∂V
∂S sensitivity to the price of the underlying
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Name definition Intuition

Vega, ν ∂V
∂σ sensitivity to the volatility of the underlying

Theta,Θ ∂V
∂τ sensitivity to the lifespan of the contract

Note that, if you can compute these Greeks for some derivative, you can
compute them for a portfolio of these derivatives. This is because the
Greeks are linear: the Delta of a portfolio is the sum of the Deltas of its
assets, and similarly for Vega and Theta. For example, if you have two
identical calls and one put in your portfolio, then the Delta of the portfo-
lio is∆portf. = 2∆call +∆put

Bonus: Other greeks

There are a few other greeks that are of interest to the traders like the Rho
(sensitivity to interest rate). Note that Rho, Delta, Vega and Theta are first
order greeks: they relate the variation of the price of a derivative to the
variation of a parameter.

Traders also use higher order greeks which quantify the sensitivity of an-
other (first order) greek to a parameter. An important one is the Gamma
which measures the sensitivity of the Delta to the price of the underlying
or:

Γ =
∂∆

∂S
=

∂2V

∂S2
≈ (V (St +∆S)− V (St))− (V (St)− V (St −∆S))

∆S2

Bonus: Hedging with the Greeks

Although this course does not aim to teach trading, it is helpful to under-
stand some of the ways traders use the Greeks to build their portfolio and
therefore why being able to compute them accurately is important.

Greeks, as you have seen, fundamentally represent risks attached to a spe-
cific asset. A trader may seek to reduce those risks by having a portfolio
with one or several Greeks at or around zero. For example, traders may
consider Delta-neutral portfolios (with a∆ equal or close to zero) and seek
to, at any given time, adjust (balance) their portfolio such that this holds.
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Figure 6.4.: Implied volatility pipeline.

Holding such hedges perfectly is usually impossible and costly. Indeed, at
every time step, it requires buying and selling assets such that the portfolio
meets the requirements but, typically, these operations incur transaction
fees. Thismakes repeated rebalancing of a portfolio costly. A trader there-
fore has to make a trade-off between frequent rebalancing and sticking to
a strategy.

6.3. The volatility smile

Let us come back now to the Black-Scholes formula proper. The only non-
observable parameter of the formula in the current context is the volatility
which we currently assume is modelled based on observations:

However, on the market, we can assume that there already exists lots of
calls and puts being sold at some price. We can therefore define the con-
cept of implied volatility by reversing the second arrow (going from Prices
to Volatility).

Definition

The implied volatility of a call/put is the volatility such that, when
used in the Black-Scholes formula, we recover the same price as the
one observed on the market.

Could we also use the implied volatility to calibrate ourmodel? Intuitively,
it would be nice if both the volatility modelled on the log-returns and the
implied volatility matched. However, as you will see, this is not the case.
This section is dedicated to understanding why and explaining how to
work around it.

Observing the implied volatility

On markets with numerous trades, there are many options available with
all sorts of underlyings, strikes and maturities. If we consider calls and
puts on AAPL with a fixed maturity for example (data courtesy of IMC):
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Figure 6.5.: Prices for AAPL options with a fixed maturity and a range of
strikes (data courtesy of IMC).

For each of those prices, you could then compute the corresponding im-
plied volatility. The computation itself requires a root finding algorithm
– such as Newton-Raphson. You won’t learn the details of that operation
here, so we computed the implied volatility for you (data courtesy of IMC):

As you can see, the implied volatility varies significantly with the strike,
even though all these puts and calls are on the same asset and with the
samematurity. This differs from our model which has a single volatility σ
computed from the log-returns.

Understanding the issue

The phenomenon identified above is known as the volatility smile and is
the result of the LogNormal model itself. Remember that, to establish a
model, we fitted a distribution to the log-returns. The fit was imperfect
and this imperfection causes the volatility smile: with a very good fit, the
implied volatility observed would be roughly constant (corresponding to
σ).

The LogNormal model is a useful first approximation because it is simple
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Figure 6.6.: Implied volatilities corresponding to the prices of the AAPL
options (data courtesy of IMC).

to work with and yields the Black-Scholes formula. But now this model’s
limitations start to show.

Towork around this issue, it would be natural to suggest fitting another dis-
tribution (for example the Student-t) or even using more complex models
(stochastic volatility models, jump models, etc.). However, the approach
most often used by practitioners is simple and uses the same framework
you have learned so far and you will learn about it in the next section.

Bonus: Working with the volatility smile

So far we started from the LogNormal model and deduced the price of
options implied by that model. We have now observed that the implied
volatility is not constant. So we could suggest still using the same formula
but with a volatility that is a function of the strike: σ(K). Even further, the
smile above also changes if the price of the underlying changes. Therefore
it is common to suggest a volatility model of the form σ(f(S,K)) where a
simple common choice of f is
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f(S,K) = log
S exp(rτ)

K

This is a pragmatic approach which allows both to keep using the Black-
Scholes formula (easy to implement, fast to compute and directly yielding
Greeks), and to better fit the underlying financial reality.

In state of the artmodels, people consider some simple parametrized func-
tion for σ, typically a combination of polynomials, and fit it to the implied
volatility smile.

6.4. Summary

In this section we have covered the following concepts with regards to the
Black-Scholes formula and analytical pricing:

• the Black-Scholes formula and how it could be computed in a simple
context where all parameters are given

• the Greeks, numerical quantities that help characterise derivatives
(and portfolio) with the essential ones being the Delta, Vega and
Theta:

• The Delta quantifies the sensitivity of the value of a derivative (or
portfolio) to a change in price of an underlying: ∆ = ∂V/∂S

• The Vega quantifies the sensitivity of the value of a derivative (or
portfolio) to a change in the volatility of an underlying: ν = ∂V/∂σ

• The Theta quantifies the sensitivity to the lifetime of the derivative:
Θ = ∂V/∂τ

• the implied volatility of a derivative is the volatility such that, when
used in the BS formula, the same price is recovered as the one ob-
served on the market

• when the implied volatility is displayed against the strike price of
contracts, it is not constant. Rather, there is a volatility smile.
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7. The binomial model

7.1. From one-step tomulti-stepmodel

The binomial option pricing model is a simple approximation of returns
which, when refined, converges to the analytic pricing formula for vanilla
options (such as the European call).

The interest in covering it is that the binomial model is simple and useful
for any kind of payoff includingwhen early exercise is allowed (such as for
an American option).

Recombining binomial tree

When covering arbitrage-free pricing, we had introduced a simple one-
step model for the evolution of the price of an asset over one period of
time which had the following form where the price of the asset will be
either multiplied by a factor u (with probability p) or d (with probability
q = 1− p).

The model may seem unrealistic since it models possible prices after a
period of time as taking one out of only two values. A simple extension
of this model is therefore to make it multi-step, i.e.: repeat the branching
over the same period of time.

Below, a two-step model is represented, the extension to N steps should
then be clear. On the left, the evolution of the prices, on the right, the
probability of these price evolutions.

Figure 7.1.: A very simple market model.
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Figure 7.2.: A two-step model.

Figure 7.3.: A bushy tree.

The resulting structure is called a recombining binomial tree. The word
“recombining” refers to the fact that the probability of going up or down
at one node is independent of the node considered – it is always p and
q. This means that going up at one node then down at the next node will
bring you to the same state as going down first then up. A recombining
tree is simple to parametrise and it also avoids exponential growth in the
number of nodes. Indeed, the number of states for the consecutive steps
grows slowly: 1 then 2 then 3 etc.

This distinguishes the recombining tree with the bushy tree where going
up-then-down or down-then-up leads to two different states. Conse-
quently, the number of nodes grows exponentially with the number of
steps considered: 1 then 2 then 4 etc.

7.2. Convergence to the LogNormal distribution

When the number of steps grows, the probability of reaching a specific
node (specific asset price) converges to a LogNormal distribution. To ver-
ify this, observe first that the factor in front of the probability of reach-
ing each node is equal to the number of paths leading to that node. On
the illustration above, for example, there are two paths leading to the fi-
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Figure 7.4.: Five first lines of Pascal’s triangle.

nal middle node (up-down and down-up) whence the 2pq probability. It is
easy to check by induction that the number of paths is given by the rows
of Pascal’s triangle1 (binomial coefficients):

Explicitly, the probability to get to the kth node at theN th step is given by

(
N
k

)
pkqN−k, for k = 0, . . . , N

where the first term is the N -choose-k function (also sometimes written
CN
k ). The number N -choose-k is the kth entry of the N th row of the Pas-

cal’s triangle which can be computed using:

(
N
k

)
=

N !

k!(N − k)!

where N ! = N × (N − 1) × · · · × 1. This function is implemented in
scipy.misc.comb. Let’s for example compute the number of paths lead-
ing to the end nodes of a 4-step model:

# note: there are N+1 final nodes when considering N steps
nPaths = lambda N: [comb(N, k) for k in range(0, N+1)]
print(nPaths(4))

You now have a direct way of computing the probability of reaching the
kth node at the N th step, and you can also observe that the return at that
node is given by

ST (k)

S0
= ukdN−k

For example you can verify (either by drawing the tree and using the for-
mulas) that in a 3-step model this gives:

1https://en.wikipedia.org/wiki/Pascal's_triangle
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returns: [d3, ud2, u2d, u3], with probability [q3, 3p2q, 3pq2, p3]

where q = (1− p) because the weights are normalised.

You can now check that the binomial tree distribution converges to a Log-
Normal distribution. Use the code below to plot the returns and their asso-
ciated probability. Modify the constants in the code (especially the num-
ber of steps) and try again.

endProbas = lambda p, N: [comb(N,k)*(p**k)*(1-p)**(N-k) for k in range(0,N+1)]
endReturns = lambda u, d, N: [(u**k)*(d)**(N-k) for k in range(0,N+1)]
# enter some arbitrary values
p = 0.6 # probability of going up
u = 1.03 # multiplicative "up factor"
d = 0.99 # multiplicative "down factor"

# number of steps (play with this number)
N = 100
returns = endReturns(u,d,N)
probas = endProbas(p,N)
# display probability distribution function
plt.figure(figsize=(8, 6))
plt.scatter(returns, probas)
plt.xlabel("Returns", fontsize=12)
plt.ylabel("Likelihood", fontsize=12)

This leads to the following figure where you may recognise the shape of a
LogNormal distribution:

You can show this link more clearly by looking at the log-returns which
converge to a Normal distribution:

from numpy import trapz

logreturns = np.log(returns)

# the theory gives us the mean and variance
# at the limit when N goes to infinity
# the last line is to "normalize" so that the curves and
# the points are on the same scale
# (you can safely ignore all this)
th_mean = N*(p*np.log(u)+(1-p)*np.log(d))
th_var = N*p*(1-p)*np.log(d/u)**2
pr_norm = probas / abs(trapz(logreturns,probas))

# show the possible log-returns with their weights
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Figure 7.5.: End returns and associated probabilities for a binomial tree
withN = 100 steps.
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plt.figure(figsize=(8, 6))
plt.scatter(logreturns, pr_norm, label="Log returns")

# show the normal distribution with the theoretical mean and variance
# computed above
xx = np.linspace(np.min(logreturns),np.max(logreturns),100)
yy = norm.pdf(xx,th_mean,np.sqrt(th_var))

plt.plot(xx, yy, label="Normal fit", color="orange")

plt.legend()

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0
Normal fit
Log returns

You will see soon how to calibrate the parameters of the binomial tree in
order to recover precisely the same LogNormal model you have already
encountered. But before doing that, let’s look at how to use a binomial
tree in order to price a derivative which will lead more naturally to the
model calibration.
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7.3. Pricing with a binomial tree

Risk-neutral probability in a tree

The only probability we need to consider in the tree when pricing is the
risk-neutral probability p⋆. In order to obtain it, remember first that, in
the risk-neutral world, the underlying price St must obey

St = Φr(t, T )E⋆
t [ST ]

If we model the evolution of the price of an asset over a time τ with a tree
with N steps then each branching corresponds to a time span τ/N which
we denote ∆t. The relation above, must hold for t = 0 and T = ∆t (the
first step in the tree). This gives:

S0 = Φr(0,∆t)(p⋆u+ (1− p⋆)d)S0

Solving for p⋆ and using the usual form for the computation of interests,
you get the risk-neutral probability of going up in a binomial tree:

p⋆ =
exp(r∆t)− d

u− d

This is the same expression than the one you had obtained in the section
about replication pricing. In the rest of this section, we will show how to
price with a binomial tree assuming u, d are given and show, later, how
they can be set in a way thatmakes these prices agree with the LogNormal
model.

European type derivative

Consider a binomial tree modelling the evolution of the price of an asset
over a time τ withN steps. Assume u and d are given (you will see how to
calibrate those at the next point). Pricing any derivative depending upon
that asset is rather simple:

1. Follow the tree forwards to compute the intrinsic value of the deriva-
tive at each one of the final nodes (corresponding to time T ).
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2. Follow the tree backwards to price the derivative at every nodes us-
ing the risk-neutral probability and discounting (i.e., using arbitrage-
free pricing).

If you follow this process back until the root node, you get a single value
which is the arbitrage-free price of the derivative at the initial time t. It’s
best to see this in action and to code it!
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Example

Consider the following model, asset and option:

• Model: a recombining two-step model with u = 1.02 and d =
0.99,

• Asset: an asset with current price S0 = 100,
• Option: a call with a strike priceK = 99maturing at T = 1,
• Interest rate: for simplicity, assume the interest rate is 0 or, in
other words, Φr = 1.

The topnode comes from 100×1.02×1.02 = 104.04. The risk-neutral
probability is given here by: (with Φr = 1)

p⋆ =
1− d

u− d
=

1

3

The call at the top point is worth (104.04-99)=5.04. Similarly, themid-
dle node is worth 1.98 and the bottom node is worth 0. Merging the
top and the middle node, the risk-neutral price is:

5.04p⋆ + 1.98(1− p⋆) = 3.0

Merging the bottom and the middle node, the risk-neutral price is
0.66. Merging those two nodes again you get: 1.44. To visualise this:

So the model gives 1.44 as the price of the derivative at time t = 0.

Here is some code reproducing the results above. Can you generalise it to
an arbitrary number of steps?

# EUROPEAN CALL
S0 = 100
K = 99
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u = 1.02
d = 0.99
# Go forward in the tree for two steps:
S_step1 = S0*np.array([d,u])
S_step2 = S0*np.array([d**2,u*d,u**2])

# Compute risk-neutral probability (r=0)
p_star = (1-d)/(u-d)

# Go backward in the tree with a call
C_step2 = np.array([max(S_step2[i]-K,0.) for i in range(0,3)])
C_step1 = np.array([ p_star*C_step2[1] + (1-p_star)*C_step2[0],

p_star*C_step2[2] + (1-p_star)*C_step2[1]])
C_step0 = p_star*C_step1[1] + (1-p_star)*C_step1[0]

for step in ("Forward", S0, S_step1, S_step2,
"Backward",C_step2, C_step1, C_step0):

print(step)

Calibration

The tree model simplifies the evolution of the market by looking at a fi-
nite number of possible prices for the asset and assigning probabilities
for each of those. The range of values is governed by the number of steps
and the up and down multiplicative factors u and d.

These two values must be set in such a way that the tree converges to the
same LogNormal model than the one observed empirically, in the risk-
neutral world. In that world, we don’t care about the mean since it is
already fixed by the risk-neutral pricing (here, via fixing p⋆), so we just
have tomatch the variance parameter σ2. Remember that the returns can
be modelled with a LogNormal distribution where the variance grows lin-
early with the time span considered. It can be shown that if

u = exp(σ
√
∆t) and d = 1/u

then, the binomial tree converges to a LogNormal distribution with the
same variance as the one observed. Note that in this parametrisation,
there is effectively only one degree of freedom to consider. (More details
are available in the appendix if you are interested.)
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Dealing with early-exercise

When considering derivatives with early exercise, the principle is very
much the same with a slight twist:

• Follow the tree forwards to compute the intrinsic value of the deriva-
tive at each one of the final nodes (write this V intr

node).
• Follow the tree backwards and at each node:

– compute the value of the derivative using arbitrage-free pricing
as in the binomial tree (call this V af

node)
– the value kept at the node is max(V af

node, V
intr
node) (i.e., V

af
node if it is

not in your advantage to exercise early, V intr
node if it is).

Let’s try below with an American put with 2-steps. Try to reproduce the
process in Python. Note that we introduce an interest rate here in this
example (only if r > 0 can it be in your advantage to exercise early, cf. the
bonus section in the module on derivatives for more information).
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Example

Consider anAmericanput over a time of τ = 2 yearswith underlying
price 50 at t = 0, strike price 52 and say that u = 1.2, d = 0.8 and
r = 0.05 (5%). For N = 2 steps, the tree for the evolution of the
underlying is:

The intrinsic values of the put are obtained by just computing
max(K − S, 0) with S the price at each node:

Now if you go backwards one step, using the same approach as be-
fore (with, here, p⋆ = (exp(0.05)− 0.8)/(1.2− 0.8) ≈ 0.6282)

The value in red (9.95) is less than the value of exercising early at that
node (which would be 12) so we replace it by 12 and the final tree is:

note that there is no replacement at the final node since 5.4 > 2.
Remark: had it been a European put, the method would have given
you an original price of 4.6 which is less than the price here. Can
you give an intuitive explanation as to why this is (always) the case?
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7.4. Summary and discussion

Gathering elements from the previous points you have seen that:

• Binomial trees approximate the LogNormal distribution over a finite
set of values,

• Pricing using a tree is simple and can be done at any intermediate
time point allowing to price any derivatives directly. This is themain
appeal for this model and its extensions.

• Binomial trees converge to the LogNormal model when the number
of steps grows if the tree is calibrated appropriately.

Ingredients needed for coding the binomial tree

Here we summarise the key elements needed to build a binomial tree (not
all are necessary depending on how you implement it):

Term Definition Python functions

number of
steps

N

time span,
time per step

τ,∆t = τ/N

up,down
factors

u, d = exp(±σ
√
∆t) numpy.exp,

numpy.sqrt
risk-neutral
probability
of going up

p⋆ = exp(r∆t)−d
u−d numpy.exp,

numpy.sqrt

probability
to get to the
kth node at
N th step

CN
k pk(1− p)N−k scipy.misc.comb

price of the
underlying
at that node

ST (k) = ukdN−k numpy.pow
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with these formulas you can

1. follow the tree forwards to compute the intrinsic value of the deriva-
tive at each node forN steps,

2. follow the tree backwards to price the derivative at each node until
the original price.
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8. Advanced Models

8.1. The trinomial tree

The trinomial tree is a simple extension of the binomial treewhere, at each
node, you can go up (factor u), down (factor d) or stay at the same price. In
order for the tree to be recombining, we can pose u = 1/d. The tree then
looks like:

The main advantage of the trinomial tree over the binomial tree is that it
is a more accurate and more flexible model and can exhibit better numer-
ical properties. In particular, there are many ways in which the trinomial
tree can be parametrised which are consistent with the same LogNormal
model and this can be useful when calibrating the tree with a specific pur-
pose in mind such as the pricing of a given derivative.

Pricing in the trinomial tree

Pricing is done in much the same way as in the binomial tree, the main
parameter that is modified is the risk-neutral probability. Indeed, there

Figure 8.1.: Recombining trinomial tree.
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are now three branches to consider at each node and hence three prob-
abilities. + If you write p⋆u the probability of going up, p⋆d the probability
of going down then the probability of staying at the same level must be
p⋆m = 1− (p⋆u + p⋆d) because the weights are normalised. This means there
are two degrees of freedom (instead of one in binomial trees). As a result,
you need to look at two consecutive steps in order to compute the risk-
neutral probabilities p⋆u and p⋆d (as opposed to one step in binomial trees).
The key is still to verify the principle of risk-neutral pricing. Over the first
layer this gives:

S0 = ΦrS0(up
⋆
u + p⋆m + dp⋆d)

where Φr = Φr(0,∆t) = exp(−r∆t).
Rearranging leads to

Φ−1
r = up⋆u + p⋆m + dp⋆d

Following the same logic, the second layer gives:

Φ−2
r = u2p⋆2u + 2up⋆up

⋆
m + 2p⋆up

⋆
d + p⋆2m + 2dp⋆mp⋆d + d2p⋆2d

Recalling thatΨr = Φ−1
r , you can check that the solution to these two equa-

tions is

p⋆u =

(√
Ψr −

√
d

√
u−
√
d

)2

p⋆d =

(√
u−
√
Ψr√

u−
√
d

)2

You want the trinomial model (like the binomial one) to converge to the
LogNormal model. This can be achieved by setting u and d to

u, d = exp(±σ
√
2∆t)

Try to adapt the code written for the binomial model to the trinomial one.
Compare the two when pricing a European call with respect to using the
Black-Scholes formula, what do you observe? In particular, can you com-
pare the convergence of the prices given by the twomethods to the analyt-
ical price when the number of steps increases?
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Other parametrisation

There are other parametrisations of the trinomial tree which are compat-
ible with the LogNormal model each adapted to different contexts. For
example, in the Kamrad and Ritchken parametrisation an stretch param-
eter λ ≥ 1 is added and the up and down factors are set to

u, d = exp(±λσ
√
2∆t)

The stretch λ can be chosen such that exact values are attained in the tree.
This improves the accuracy of the pricing when considering barrier op-
tions. You canfinddetails about this parametrisation in the original article
by Kamrad and Ritchken (see references).

8.2. Towardsmore advancedmodels

A brief introduction

The aim of this section is to give you an overview of how what we have
seen so far can be placed in a larger context. Remember the purpose of
this course was to provide an introduction!

If you have never met Partial Differential Equations, you might want to
skim through this point to just get a feel for some of the more advanced
tools and techniques that are used in the world of quantitative finance. If
you have met those before the following point should help you gaining a
wider perspective on pricing models.

Replicating the trinomial tree

So far we have always considered that you are computing the value of a
derivative at the same time as you are buying it and hence you know the
initial (spot) price of the underlying asset. However, it may be interesting
to pre-compute the tree in which case the price of the underlying asset
when the contract is instantiated is unknown. You may also want to com-
pute the ∆ of a derivative which, as you may remember, is given by the
variation in derivative price over a variation in the price of the underly-
ing.
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Figure 8.2.:

To simplify the presentations, say that we model the initial price of an un-
derlying with three possible values: S0, uS0 and dS0. With this convenient
model choice, we do not need to compute one tree for each of those three
initial prices since they interlace:

The pricing process remains the same (and so does the parametrisation),
you will just get three prices for the derivative corresponding to the differ-
ent initial prices of the underlying asset. In particular, this directly gives
you a way to approximate the∆ of the derivative around S0.

From tree pricing to grid pricing

The replication described above can be done over many initial prices and
with many steps in the tree. When going through the grid backwards to
perform pricing, you almost always deal with the following case:

where i indexes the rows and j the columns (steps). There are a small
portion of thenodeswhere one of the corner ismissing, but it is essentially
a grid otherwise.

As before, Vi,j is given by arbitrage-free pricing. Thus, writing
Φr = exp(−r∆t) and α = p⋆uΦr, β = p⋆mΦr and γ = p⋆dΦr, we have:
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Figure 8.3.:

Vi,j = αVi+1,j+1 + βVi,j+1 + γVi−1,j+1

This can be expressed as a matrix-vector product:

V·,j =



. . .

α β γ

α β γ

α β γ

. . .


V·,j+1

where V·,j is the column of values Vi,j for all i and a fixed j. This matrix-
vector form allows you to compute the columns of grid from right (matu-
rity time) to left (initial time).

Not only does the form above let you work column-wise, it is also the par-
ticular form of a finite-difference solver.

The Black-Scholes PDE

Finite-difference solvers are useful to approximate solutions to partial dif-
ferential equations (PDE). The method above can be seen as a particular
instance of such a solver for a particular PDE called the Black-Scholes PDE.
It can be shown that pricing any derivative under the LogNormal model
corresponds to solving that PDE.Writing V the value of the derivative, the
PDE is:
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∂V (S, t)

∂t
+ rS

∂V (S, t)

∂S
+

1

2
σ2S2∂

2V (S, t)

∂S2
− rV (S, t) = 0

The domain is S > 0, t ∈ [0, T ] and the boundary conditions are:

• Terminal condition: V (·, T )must equal the payoff of the derivative.
• Left-boundary (for a call): limS→0 V (S, t) = 0.
• Right-boundary (for a call): limS→∞ V (S, t) = S −K exp(−r(T − t)).

Approximating solutions to PDE using finite-difference solvers (and finite-
elementmethods in general) is a well studied process with well known, ef-
ficient algorithms. This can be leveraged to come up with more advanced
pricing methods.

8.3. The need for performance computing

Option trading is constituted of roughly two segments: the over the
counter (OTC) market and electronic exchanges.

In theOTCmarket there are typically few transaction butwith big notional
value (value of the leveraged position). These transactions can contain
many derivatives including exotic options, often with special features for
just one customer. Valuing these trades is complex. Fortunately, because
these transactions are infrequent, it is possible to spend days on their val-
uation.

Screen trading on the electronic exchanges is a completely different mat-
ter: highly automated, very fast trade of low volume, standardised vanilla
options (mostly European or American style). In this context, in order to
be competitive, you need to compute the price of options quickly. Unfor-
tunately, the parameters for option prices can change quickly – especially
the price of the underlying. As a result, you also need to recompute the
price of options quickly.

Using wider trees, finite-difference schemes and interpolation helps: you
spendmore timeupfront to compute the price, but you can quickly reprice
a derivativewhen the value of the underlying changes. However, this is not
sufficient.

Indeed, remember the volatility smile: the underlying price and its volatil-
ity changes. Let’s say you solved the PDE for an underlying price S = 100
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and volatility σ100 = 20%. Later, the price moves to to S = 101 while the
parametrised volatility moves to σ101 = 19%. You need to solve the PDE
again! Even though you need to solve the PDE again, you should not dis-
card the result of the first computation: the price might drop back to 100.
In general, you can avoid some computation by caching results: storing
the result of previous computation so they can be fetched later.

Coming up with smart schemes for caching results and interpolating be-
tween them is the way to keep up with fast markets and be able to be the
first to react to changing market conditions.

8.4. Discussion

In this section you saw that it is easy to extend the simple binomial model
and that, based on the application of interest, a specific model such as
the trinomial model may be preferred. There are many more numerical
models out there, each of which with their advantages for pricing specific
derivatives or for recovering specific properties.

You also saw that the problemof pricing a derivative under the LogNormal
model is equivalent to that of solving a PDE (the Black-Scholes PDE). It is
therefore possible to draw directly from thewealth of algorithms available
for approximating solutions to such PDE.

Finally you saw that in order to stay competitive on electronic exchanges,
it was crucial to have efficient computation methods and clever interpola-
tion schemes to be both accurate and quick.
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A. Some Intuition on Risk Neutral
Pricing

In this section, we revisit the central equation for pricing derivatives,
namely

Vt = Φr(t, T )E⋆
t [VT ].

We leave the formal derivation using a self financing portfolio that
replicates the cash flows of derivatives to the textbooks. Nevertheless, we
would like to give you an intuition about what is happening here using a
simple example.

We have empirically established a model for the log returns of the under-
lying namely that they are distributed normally:

log
St+τ

St
∼ N

(
µτ, σ2τ

)
.

It would seem very natural to price derivatives using the observed (real
world) distribution with it’s drift and variance.

Using a simple forward we can just do that. Remember that the payoff
of the forward is VT = ST − K so that we can calculate the price as the
expectation

Vt = ΦrE [ST −K] = Φr (E [ST ]−K) .

Note howwe dropped the ⋆ in the notation: here wework in the real world
measure, not the risk neutral world. The difference in the results will help
us understand the concept of risk neutral measures.

In the appendix onmoments we calculate the firstmoments using the real
world distribution which we can use here:
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Vt = Φr

(
eµ(T−t)+ 1

2
σ2(T−t)St −K

)
.

Naturally we see the risk free rate r pop up as we discount the expected
future cash flow and we also see the real world growth rate of the underly-
ing µ and it’s standard deviation σ appear. But is this the correct price of
a forward?

Let’s remember what a forward contract is: if you buy a forward contract
you agree to buy the underlying at a future time T for price K, which we
fix at the time t of entering the contract. This looks like a pure bet but
people in the market have a way to take chance out of the picture: they
use replication.

Replication is a technique in which a market participant uses a portfolio
of (usually) simpler financial products to exactly reproduce the behaviour
of a more complex, e.g. derivative, product. We do have the law of one
price and if any portfolio of simpler products behaves just the same as the
derivative, both need to have the same price1.

Back to our forward contract: we do not know the value of the forward
contract V (t) at time t when buyer and seller enter. But we do know it’s
payoff, i.e. the value of the forward contract at it’s maturity T :

Payoff of a Forward at T: V (T ) = S(T )−K.

There are two things happening at maturity, we exchange the stock and
we exchangeK in cash. So how can we achieve the same actions without
buying a forward?

At time t we buy the stock. This will cost us S(t) the price of the stock at
time t. Holding the stock means that we will have the stock at maturity
T at which moment it will be worth S(T ). This replicates one part of the
payoff.

Now we can reproduce the cash part of the payoff by getting a loan of a
bank. We plan to pay the money back at time T and in order to replicate
the behaviour of the forward, we want to pay backK. So what is the value
at time t of a bank loan that is paid back at time T > t? Given this is a risk
free bank account, the rate is r sowe have to take out a loan of e−r(T−t)K at
1If not I can trade the portfolio against the derivative which constitutes an arbitrage
opportunity.
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time t. At time T we now have an exact replication of the forward’s payoff,
we are long the stock and have to payK.

If we replicate the forward at time T and nothing happens between the
time twe construct the replication portfolio andmaturity, the value of the
portfolio at time t must be identical to the value of the forward at time t,
V (t).

At time t our replication portfolio has the value

V (t) = S(t)− e−r(T−t)K.

We are long the stock and short a bank account worth e−r(T−t)K. By the
law of one price the value of the replication portfolio must be identical to
the value of the forward so that the above equation gives us the value of a
forward contract.

Notice how our replication portfolio is risk free: on the one hand we are
short a (by definition) risk free bank account, on the other we hold a stock.
The stock position looks risky but is not as we bought it at the time we en-
tered the risk contract for the known price S(t) and, as we have a binding
forward agreement, we are bound to pass the stock along at maturity. It’s
price S(T ) at maturity is not concerning us.

Given the law of one price the forward price given by the replication argu-
ment is enforceable by arbitrage. So that really looks like the correct price
of the forward. That leaves the question how we can reconcile this result
with our previously calculated expectation under the real world measure.

Now let us contrast our two solutions, the one under the real world mea-
sure using the empirically estimated distribution of the log returns, the
other gained by replication and the law of one price:

ΦrE [ST −K] = e−r(T−t)
(
eµ(T−t)+ 1

2
σ2(T−t)St −K

)
ΦrE⋆ [ST −K] = S(t)− e−r(T−t)K.

Now if we rearrange the first equation we see that

ΦrE [ST −K] = e(µ+
1
2
σ2−r)(T−t)S(t)− e−r(T−t)K,

so that if we would set
µ = r − 1

2
σ2,
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we would regain the replication price! By changing the drift (growth) of
our stock process we changed our measure from the real world to the risk
neutral world. The variance of the underlying process stays the same. In
the riskneutralworld our log returns are still normally distributedbut now
with a different mean:

log
St+τ

St
∼ N

(
(r − σ2/2)τ, σ2τ

)
.

The replication removed all risk from the forward contract which in turn
implied a different drift for our underlying. When we now look at the ex-
pectation of the underlying:

E⋆ [ST ] = S(t)er(T−t).

In the risk neutral world our stock just returns the risk free rate!

The replication of the forward contract is an example of a static hedge:
you had to construct your replication portfolio of stock and bank account
only once and never needed to adjust it in any way. For more complex
derivative like options, we can also build a replication portfolio. But in the
case of options we need to continuously adjust our portfolio which is thus
called dynamic hedging. The overall effect is the same, we hedge away the
risk which explains why in our pricing equations we see the risk free rate
r and not the mean of the historical distribution.
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B. Deriving the Black-Scholes formula
for the European call

The European call option has value at maturity given by

V call(ST ) = max {0, (ST −K)},

and its expected value at time t under the risk-neutral distribution is:

1√
2π

∫ ∞

−∞
exp(−ϵ2/2)max

[
0, St exp

(
(r − σ2/2)τ + σ

√
τϵ
)
−K

]
dϵ.

Youmay recognise the term exp(−ϵ2/2)/
√
2π corresponding to theN (0, 1)

distribution, the rest is obtained by plugging the risk-neutral form of ST

in the formula. Themax is different from zero only when

K ≤ St exp
(
(r − σ2/2)τ

)
exp(σ

√
τϵ).

Rearranging a bit leads to an equivalent condition in ϵ:

ϵ ≥ a =
log(K/St)− (r − σ2/2)τ

σ
√
τ

.

Therefore, you can now write:

E⋆
t [H(ST )] = St exp[(r − σ2/2)τ ]

∫∞
a

1√
2π

exp(−ϵ2/2 + σ
√
τϵ)dϵ

−K
∫∞
a

1√
2π

exp(−ϵ2/2)dϵ.

Both integrals can easily be related to Φ(x) = 1/
√
2π
∫ x
−∞ exp(−ϵ2/2)dϵ

which you have already met. For this note that
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•
∫∞
a exp(−ϵ2/2)dϵ/

√
2π = Φ(−a) (by symmetry),

• the first integral can be related to
∫∞
a exp(−(ϵ − b)2/2)dϵ/

√
2π and

therefore to Φ(b− a).

This finally leads to the Black-Scholes formula for the price of a call:

V call
t = exp(−rτ)E⋆

t [V
call
T ]

= StΦ(d1)−K exp(−rτ)Φ(d2).

where d2 = −a and d1 = στ − a or explicitly

d1,2 =
log
(
St
K

)
+ (r ± σ2/2)τ

σ
√
τ

.
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C. Calibrating a binomial tree in spot
space

Herewewill derive all the equations for the binomial tree in full detail. For
trees built in spot space this is unfortunately quite an exercise. Deriving
the equations for trees built in logS is much simpler, just try it yourself.

Starting out from a single step in the binomial tree we have just two free
parameters: the probability to go up p and the factor u by which we go up
with the spot price. The down jump factor d is fixed by our requirement to
have a recombining tree, d = 1

u .

Wewill fit these twoparameters to thefirst twomoments of our underlying
distribution in a single binomial step of given length∆t1:

E [S] = Ser∆t

E
[
S2
]

= S2e(2r+σ2)∆t.

The first moment of this single step binomial tree is given by

E [S] = Ser∆t = puS + (1− p) dS.

We can use this equation to derive the probability p of moving up as:

p =
Ψ− d

u− d
,

withΨ = er∆t.

Now we have just one parameter left, namely u, and we use the second
moment to fix it. The second moment in the one step binomial tree is
given by

E
[
S2
]
= pu2S2 + (1− p) d2S2.

1∆t is yet another parameter but it is fixed by the number of steps n and the time to
maturity: ∆t = T−t

n
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The second moment in the binomial tree needs to match the second mo-
ment of the distribution so that we have:

E
[
S2
]
= pu2S2 + (1− p) d2S2 = S2e(2r+σ2)∆t

pu2 + d2 − pd2 = Ψ2eσ
2∆t

p
(
u2 − d2

)
+ d2 = Ψ2eσ

2∆t

Ψ−d
u−d (u− d) (u+ d) + d2 = Ψ2eσ

2∆t

(Ψ− d) (u+ d) + d2 = Ψ2eσ
2∆t

Ψu+Ψd− 1− d2 + d2 = Ψ2eσ
2∆t

Ψu+Ψu−1 − 1 = Ψ2eσ
2∆t

Ψu2 +Ψ− u = uΨ2eσ
2∆t

u2 + 1− uΨ−1 − uΨeσ
2∆t = 0

u2 − u
(
Ψ−1 +Ψeσ

2∆t
)
+ 1 = 0

u2 − 2βu+ 1 = 0

where we have used

β =
1

2

(
e−r∆t + er∆t+σ2∆t

)
.

We can solve the quadratic equation to get

u = β ±
√
β2 − 1.

As we always have β > 1 and we want our up step u to be greater 1, so we
select

u = β +
√
β2 − 1 > 1.

We can make our life easier by expanding the exponentials in β using

ea = 1 + a+
1

2
a2,

after dropping all quadratic terms involving∆t2 we get

β ≈ 1 +
1

2
σ2∆t.
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Using the approximation in our expression for u and again dropping any
quadratic term we finally get

u = β +
√

β2 − 1

= 1 + 1
2σ

2∆t+
√(

1 + 1
2σ

2∆t
)
− 1

= 1 + 1
2σ

2∆t+
√
1 + σ2∆t+ 1

4σ
4∆t2 − 1

= 1 + 1
2σ

2∆t+
√
σ2∆t

= 1 + 1
2σ

2∆t+ σ
√
∆t

= eσ
√
∆t.

So by calibrating our binomial tree to the first two moments of the distri-
bution we can fix our parameters to

p = Ψ−d
u−d

u = eσ
√
∆t

d = 1
u .
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D. Calibration of the Binomial tree

When the number of steps grows to infinity we would like, in the risk-
neutral world, to match the mean and variance corresponding to the Log-
Normal model. Specifically (r − σ2/2)τ (mean) and σ2τ (variance). In
the binomial tree, the possible returns after N -steps are ukdN−k for k =
0, . . . , N . The corresponding log-returns are

k log u+ (N − k)d,

and their expected value in the risk-free world is thus N log d +
E⋆(k) log(u/d). Here, k is a binomial random variable with mean
Np⋆ and variance Np⋆(1 − p⋆). Therefore, at the limit N → ∞ we must
have (with∆t = τ/N )

log d+ p⋆ log(u/d) = (r − σ2/2)∆t

p⋆(1− p⋆)[log(u/d)]2 = σ2∆t.

These equations are simplified if we use the symmetric parametrisation
u = 1/d, and remember that we have an explicit form for p⋆. It’s a bit
cumbersome to solve the corresponding equations by hand but the least
we can do is check that everything holds for the standard parametrisation
– i.e. when u, d = exp(±σ

√
∆t)

The code below illustrates how it can be easily checked.

# some arbitrary values (modify at will)
sigma = 0.2
r = 0.05
T = 3.0

psi = lambda N: np.exp(r*T/N)
u_th = lambda N: np.exp(sigma*np.sqrt(T/N))
pstar = lambda N,u,d: (psi(N)-d)/(u-d)
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def tester(N):
u = u_th(N)
d = 1/u
ps = pstar(N,u,d)
s2 = sigma**2

# Equations for the mean and variance matching
# (both going ->0 when N->infinity)
eq1 = (np.log(d)+ps*np.log(u/d)) - ((r-s2/2)*T/N)
eq2 = (ps*(1-ps)*(np.log(u/d))**2) - (s2*T/N)

print("With {} time steps, eq1: {}, eq2: {}".format(N,eq1,eq2))

If you try the tester function with 3, 10 and 100 (for example), you will
see that the results tend to zero quickly, as expected.
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E. Calculating Moments of a Log
Normal Distribution

Several timeswe used the first twomoments of the underlying. This raises
the question: how do we calculate moments of a log normally distributed
random variable? This can be done in different ways, you can look up the
moment generating function and use that or you can calculate the expec-
tation explicitly.

Let’s do the latter here. Themoments are defined as the expectation of the
underlying taken to the power k i.e.: E

[
Sk
t

]
with k = 1, 2, . . . giving you the

first, second and higher moments.

Let’s assume that we know the distribution of the log returns

Xt = log
St

S0
∼ N (µ, σ2).

We will rewrite the expectation usingXt so that we get

E
[
Sk
t

]
= E

[
Sk
0e

kXt
]

= Sk
0

∫∞
−∞ ekXt 1√

2πσ2
exp

[
− (Xt−µ)2

2σ2

]
dXt.

Taking the terms in the exponential together and completing the square
we get

kXt − (Xt−µ)2

2σ2 =
2kσ2Xt−X2

t +2µXt−µ2

2σ2

= − 1
2σ2

[
X2

t − 2
(
kσ2 + µ

)
Xt + µ2

]
= − 1

2σ2

[(
Xt −

(
kσ2 + µ

))2 − (kσ2 + µ
)2

+ µ2
]

= − (Xt−µ′)2

2σ2 +
µ2+(kσ2+µ)

2

2σ2

= − (Xt−µ′)2

2σ2 +
k(kσ2+2µ)

2
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Putting this back into our expectation we pull part of the exponential in
front of the integral to get

E
[
Sk
t

]
= Sk

0e
k
2 (kσ

2+2µ) ∫∞
−∞

1√
2πσ2

e−
(Xt−µ′)2

2σ2 dXt

= Sk
0e

k
2 (kσ

2+2µ).

Here we used the fact that the intergral over the probability density is triv-
ially 1.

Now let’s put it to the test and calculate the first two moments for the un-
derlying process, once using historically observed (risky) distribution and
once in the risk neutral world:

In the riskyworldwe have the log returns distributed asN
(
µt, σ2t

)
so that

we get

E [St] = S0e
µt+ 1

2
σ2t

E
[
S2
t

]
= S2

0e
2µt+2σ2t.

In the risk neutral case we have to adjust the drift term so that we the log
returns are distributed asN

((
r − 1

2σ
2
)
t, σ2t

)
:

E [St] = S0e
rt

E
[
S2
t

]
= S2

0e
2rt+σ2t.
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F. Some Financial Jargon

Term Definition

Asset Something of economic value, examples are stocks,
bonds, commodities.

Bond A bond represents part of a company’s or state’s debt.

Stock A stock represents part of a company.

Commodities Tangible assets, like oil, sugar, pork bellies.

Derivative
Index

A financial contract that depends on another asset.
The asset the derivative depends on is called the
underlying. A measure for the performance of a
market (or part of), often calculated using baskets of
stocks. Examples are DAX, S&P, CAC.

Underlying The asset on which a derivative depends. This is
often a stock but can also be bonds, indices or
commodities.

Short/Long If you own some asset you are long that asset. If you
sold asset or owe an asset to someone else, you are
short.

Bid/Ask Assets trading in financial markets always have two
prices: one at which someone is willing to buy it, the
bid, or to sell it, the ask. Naturally the bid is smaller
than the ask: buy low sell high.

Spread In our case we use spread to mean the difference
between the ask and the bid price. The spread is
therefore positive.
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Term Definition

Risk Free Rate The risk free rate describes a interest rate of an asset
which is without any risk. Examples would be the
yield of government bonds of states which are
considered impossible to default, e.g. Switzerland.

Position A trader holding an asset is said to be in a long
position. A trader owing an asset is said to be in a
short position.

Hedging The act of eliminating or at least reducing the risk
associated with holding a position. This usually
involves building up an offsetting position.
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