MOONEY AIRPLANE COMPANY, INC.
LOUIS SCHREINER FIELD KERRVILLE, TEXAS 78028
FAA APPROVED
AIRPLANE FLIGHT MANUAL SUPPLEMENT
FOR
GARMIN G1000
INTEGRATED AVIONICS SYSTEM
INSTALLED IN MOONEY M20R

REG. NO. ___

SERIAL NO. __

This Supplement must be attached to the FAA Approved Airplane Flight Manual when the GARMIN G1000 Integrated Avionics System is installed in accordance with Mooney Drawing Number 950300. The information contained herein supplements and / or replaces the information of the basic Airplane Flight Manual. For Limitations, Procedures and Performance information not contained in this Supplement, consult the basic Airplane Flight Manual.

FAA APPROVED

Michele M. Owsley
Manager, Aircraft Certification Office
FEDERAL AVIATION ADMINISTRATION
2601 Meacham Boulevard
Fort Worth, Texas 76137-0150

Copyright © 2006 All Rights Reserved Mooney Airplane Company - Louis Schreiner Field Kerrville, Texas 78028
SUPP0001B
<table>
<thead>
<tr>
<th>REV. NUMBER</th>
<th>PAGE NUMBER(S)</th>
<th>DESCRIPTION</th>
<th>FAA APPROVED</th>
<th>APR'VD DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7, 17, 29, 30</td>
<td>Add following components from Garmin G1000 Cockpit Reference Guide: GDL 69A, DME, ADF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>17, 30</td>
<td>Add SKYWATCH™ Capability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THE REVISED PORTIONS OF AFFECTED PAGES ARE INDICATED BY VERTICAL LINES IN THE MARGIN.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I GENERAL</td>
<td>5</td>
</tr>
<tr>
<td>II LIMITATIONS</td>
<td>7</td>
</tr>
<tr>
<td>III EMERGENCY PROCEDURES</td>
<td>15</td>
</tr>
<tr>
<td>IV NORMAL PROCEDURES</td>
<td>21</td>
</tr>
<tr>
<td>V PERFORMANCE</td>
<td>27</td>
</tr>
<tr>
<td>VI WEIGHT AND BALANCE</td>
<td>27</td>
</tr>
<tr>
<td>VII AIRPLANE AND SYSTEM DESCRIPTIONS</td>
<td>27</td>
</tr>
<tr>
<td>VIII HANDLING AND SERVICING</td>
<td>33</td>
</tr>
<tr>
<td>IX SUPPLEMENTAL DATA</td>
<td>33</td>
</tr>
<tr>
<td>X SAFETY TIPS</td>
<td>33</td>
</tr>
</tbody>
</table>
SECTION I - GENERAL

1. The GARMIN G1000 Integrated Avionics System is a fully integrated flight, engine, communication, navigation and surveillance instrumentation system. The system consists of a Primary Flight Display (PFD), Multi-Function Display (MFD), audio panel (GMA), Air Data Computer (ADC), Attitude and Heading Reference System (AHRS), engine / airframe processing unit (GEA), and integrated avionics (GIA) containing VHF communications, VHS navigation, and GPS navigation.

2. The primary function of the PFD is to provide attitude, heading, air data, navigation, and alerting information to the pilot. The PFD may also be used for flight planning. The primary function of the MFD is to provide engine information, mapping terrain information and for flight planning. The audio panel is used for selection of radios for transmitting and listening, intercom functions, and marker beacon functions.

3. The primary function of the VHF Communication portion of the G1000 is to enable external radio communication. The primary function of the VOR/ILS Receiver portion of the equipment is to receive and demodulate VOR, localizer, and Glide Slope signals. The primary function of the GPS portion of the system is to acquire signals from the GPS satellites, recover orbital data, make range and Doppler measurements, and process this information in real time to obtain the user’s position, velocity, and time.

4. Provided the GARMIN G1000 GPS receivers are receiving adequate and usable GPS and/or VHF navigation signals, it has been demonstrated capable of and meets the accuracy specifications for the following types of flight operations:

 VFR/IFR en-route, oceanic, and terminal operations as well as non-precision instrument approach (GPS, Loran–C, VOR, VOR–DME, TACAN, NDB, NDB–DME, RNAV) operation within the U.S. National Airspace System in accordance with AC20–138A.

 The GARMIN G1000 system meets RNP5 airspace (BRNAV) requirements of AC 90–96 and in accordance with AC 20–138A, JAA AMJ 20X2 Leaflet 2 Revision 1, and FAA Order 8110.60 for oceanic and remote
airspace operations, provided it is receiving usable navigation information from the GPS receiver. (A separate software application for prediction of GPS navigation availability may be required for oceanic and remote operations. Refer to appropriate limitations for the airspace you are operating in to determine if this GPS prediction software is required.)

Navigation is accomplished using the WGS-84 (NAD-83) coordinate reference datum. GPS navigation data is based upon use of only the Global Positioning System (GPS) operated by the United States of America.
SECTION II - LIMITATIONS

GENERAL

G1000 System:

1. The GARMIN G1000 Cockpit Reference Guide for the M20R Series aircraft, P/N 190-00450-01, Revision A or later approved revision must be immediately available to the flight crew.

2. The GARMIN G1000 must utilize the following or later FAA approved software versions:

<table>
<thead>
<tr>
<th>SUB-SYSTEM</th>
<th>SOFTWARE VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFD</td>
<td>4.06</td>
</tr>
<tr>
<td>MFD</td>
<td>4.06</td>
</tr>
<tr>
<td>GMA</td>
<td>2.08</td>
</tr>
<tr>
<td>AHRS</td>
<td>2.03</td>
</tr>
<tr>
<td>ADC</td>
<td>2.05</td>
</tr>
<tr>
<td>GIA</td>
<td>2.08</td>
</tr>
<tr>
<td>GEA</td>
<td>2.04</td>
</tr>
<tr>
<td>GPS</td>
<td>3.01</td>
</tr>
</tbody>
</table>

The database version is displayed on the MFD power-up page immediately after system power-up and must be acknowledged. The remaining system software versions can be verified on the AUX group sub-page 5, “AUX – SYSTEM STATUS”.

3. IFR enroute, oceanic and terminal navigation predicated upon the G1000 GPS Receiver is prohibited unless the pilot verifies the currency of the database or verifies each selected waypoint for accuracy by reference to current approved data.
4. Instrument approach navigation predicated upon the G1000 GPS Receiver must be accomplished in accordance with approved instrument approach procedures that are retrieved from the GPS equipment database. The GPS equipment database must incorporate the current update cycle.

(a) Instrument approaches utilizing the GPS receiver must be conducted in the approach mode and Receiver Autonomous Integrity Monitoring (RAIM) must be available at the Final Approach Fix.

(b) Accomplishment of ILS, LOC, LOC-BC, LDA, SDF, MLS or any other type of approach not approved for GPS overlay with the G1000 GPS receiver is not authorized.

(c) Use of the G1000 VOR/ILS receiver to fly approaches not approved for GPS require VOR/ILS navigation data to be valid on the PFD display.

(d) When an alternate airport is required by the applicable operating rules, it must be served by an approach based on other than GPS navigation, the aircraft must have the operational equipment capable of using that navigation aid, and the required navigation aid must be operational.

(e) VNAV information may be utilized for advisory information only. Use of VNAV information for Instrument Approach Procedures does not guarantee step-down fix altitude protection, or arrival at approach minimums in a normal position to land. VNAV also does not guarantee compliance with intermediate altitude constraints between the top of descent and the waypoint where the VNAV path terminates in terminal or enroute operations.

5. If not previously defined, the following default settings must be made in the “SYSTEM SETUP” menu of the G1000 prior to operation (refer to Pilot’s Guide for procedure, if necessary.

(a) DIS, SPD…..n m k t (sets navigation units to “nautical miles” and “knots”)

(b) ALT, VS………..f t fpm (sets altitude units to “feet” and “feet per minute”)
(c) **MAP DATUM**….WGS 84 (sets map datum to WGS–84, [see note below])

(d) **POSITION**……..deg–min (sets navigation grid units to decimal minutes)
 example: dd.mm.ss: 45° 30’ 30” in decimal minutes are: 45° 30.5’

NOTE:
In some areas outside the United States, datums other than WGS–84 or NAD–83 may be used. If the G1000 is authorized for use by the appropriate Airworthiness authority, the required geodetic datum must be set in the G1000 prior to its use for navigation.

6. Operation is prohibited north of 70° N and south of 70° S latitudes. In addition, operation is prohibited in the following two regions: 1) north of 65° N between 75° W and 120° W longitude and 2) south of 55° S between 120° E and 165° E longitude.

7. **CAUTION:** CDI automatic source switching to the ILS on Nav 1 or 2 must be set to manual for instrument approaches conducted with the autopilot coupled. If the CDI navigation source is changed when autopilot is engaged in GPSS mode, the S–Tec 55x autopilot lateral mode will revert to wings level mode and indicate GPSS FAIL. NAV mode must be manually reselected by the pilot in order to track the ILS or Localizer.

8. Display of autopilot operational mode on the PFD is supplemental to the data which is presented on the display of the S–Tec 55X autopilot control unit.

2.1 AIRSPEED MARKINGS – M20R

<table>
<thead>
<tr>
<th>Marking</th>
<th>IAS</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red band</td>
<td>20 KIAS – 59 KIAS</td>
<td>Low speed awareness - stall is imminent</td>
</tr>
<tr>
<td>White band</td>
<td>59 KIAS – 110 KIAS</td>
<td>Operating range with flaps fully extended</td>
</tr>
<tr>
<td>Green band</td>
<td>66 KIAS – 174 KIAS</td>
<td>Normal operating range</td>
</tr>
<tr>
<td>Yellow band</td>
<td>174 KIAS – 195 KIAS</td>
<td>Caution range – smooth air only</td>
</tr>
<tr>
<td>Red band</td>
<td>195 KIAS and greater</td>
<td>Lower limit of 195 KIAS is the maximum speed for all operations</td>
</tr>
</tbody>
</table>

The airspeed indicator is marked in IAS values.
2.2 POWER PLANT INSTRUMENT MARKINGS

Power plant instrument markings and their color code significance are shown in the table below.

NOTE:
When an indication lies in the caution range, the legend for that display will change to the color of the caution range. When an indication lies in the upper or lower prohibited range, the legend for that display will change to the color of the prohibited range and will begin flashing as well.

MOONEY M20R

<table>
<thead>
<tr>
<th>Indication</th>
<th>Red arc / bar = Lower prohibited range</th>
<th>Yellow arc / bar = Caution range</th>
<th>Green arc / bar = Normal operating range</th>
<th>Yellow arc / bar = Caution range</th>
<th>Red arc / bar = Upper prohibited range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine RPM</td>
<td>--</td>
<td>--</td>
<td>2200 – 2500</td>
<td>--</td>
<td>2500 – 2600*</td>
</tr>
<tr>
<td>Manifold Press. In. Hg</td>
<td>--</td>
<td>--</td>
<td>10 – 35**</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Oil Temp °F</td>
<td>--</td>
<td>--</td>
<td>75 – 240</td>
<td>--</td>
<td>>240</td>
</tr>
<tr>
<td>Oil Press PSI</td>
<td>0 – 10</td>
<td>10 – 30</td>
<td>30 – 100</td>
<td>--</td>
<td>>100</td>
</tr>
<tr>
<td>Cyl. Head Temp °F</td>
<td>--</td>
<td>--</td>
<td>250 – 460</td>
<td>--</td>
<td>>460</td>
</tr>
<tr>
<td>Fuel Flow gal/hr</td>
<td>--</td>
<td>--</td>
<td>0 – 30</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

* To prevent nuisance alerts during normal takeoffs: the “RPM” and “MAP” data will not turn red or flash until the RPM exceeds 2540.

** No color scale is depicted, and manifold pressure should be within this range.
2.3 - TYPES OF OPERATION

The airplane is approved for the following operations when equipped in accordance with FAR 91 or FAR 135.

(a) Day V.F.R.
(b) Night V.F.R
(c) Day I.F.R.
(d) Night I.F.R.
(e) Non Icing

Minimum Operational Equipment for flight operations listed:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Number installed</th>
<th>VFR Day</th>
<th>VFR Night</th>
<th>IFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Flight Display</td>
<td>1</td>
<td>*</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Multi-Function Display</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Audio panel</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Air data computer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Attitude and Heading Reference System</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GPS</td>
<td>2</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

* If the PFD is inoperative or removed for service, the MFD may be used as the PFD. The MFD display must be operated in PFD (reversionary) mode by depressing the reversionary button on the Audio Panel. When operating in reversionary mode the system is limited to DAY VFR operations only.

2.4 - ADVISORY MESSAGES

The G1000 Cockpit Reference Guide and the G1000 Pilot’s Guide contain detailed descriptions of the annunciator system and all advisory messages. These messages appear on the PFD for flight crew awareness.

The following warnings and cautions may appear in various locations on the PFD or MFD. Consult the G1000 Cockpit Reference Guide and the G1000 Pilot’s Guide for detailed descriptions of each annunciation as necessary.
<table>
<thead>
<tr>
<th>Annunciation</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHRS Aligning – Keep Wings</td>
<td>Attitude and Heading Reference System is aligning. Keep wings level using standby attitude indicator.</td>
</tr>
<tr>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>ATTITUDE FAIL</td>
<td>Display system is not receiving attitude reference information from the AHRS; accompanied by the removal of sky/ground presentation and a red X over the attitude area.</td>
</tr>
<tr>
<td>AIRSPEED FAIL</td>
<td>Display system is not receiving airspeed input from the air data computer; accompanied by a red X through the airspeed display</td>
</tr>
<tr>
<td>ALTITUDE FAIL</td>
<td>Display system is not receiving airspeed input from the air data computer; accompanied by a red X through the altimeter display</td>
</tr>
<tr>
<td>VERT SPEED FAIL</td>
<td>Display system is not receiving vertical speed input from the air data computer; accompanied by a red X through the vertical speed display</td>
</tr>
<tr>
<td>HDG</td>
<td>Display system is not receiving valid heading input from the AHRS; accompanied by a red X through the digital heading display</td>
</tr>
<tr>
<td>Red X</td>
<td>A red X through any display field, such as com frequencies, nav frequencies, or engine data, indicates that display field is not receiving valid data.</td>
</tr>
</tbody>
</table>
DECALS AND PLACARDS

M20R FLIGHT PANEL - PLACARD LOCATIONS

<table>
<thead>
<tr>
<th>REF LOCATION</th>
<th>PART NUMBER</th>
<th>DECAL/PLACARD NOMENCLATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150056-1001</td>
<td>SPEEDBRAKE EQUIPPED FOR OPERATING...</td>
</tr>
<tr>
<td>2</td>
<td>150056-1004</td>
<td>N NUMBER</td>
</tr>
<tr>
<td>3</td>
<td>150056-1012</td>
<td>14V RECEPTACLE</td>
</tr>
<tr>
<td>4</td>
<td>800399-007</td>
<td>PANEL LIGHTS/GLARESHIELD</td>
</tr>
<tr>
<td>5</td>
<td>150056-1010</td>
<td>MIXTURE PUSH RICH</td>
</tr>
<tr>
<td>6</td>
<td>150056-1007</td>
<td>PROP PUSH INCREASE</td>
</tr>
<tr>
<td>7</td>
<td>150056-1008</td>
<td>THROTTLE PUSH INCREASE</td>
</tr>
<tr>
<td>8</td>
<td>150056-3017</td>
<td>LIGHTING DETECTION EQUIP. OPT...</td>
</tr>
<tr>
<td>9</td>
<td>150056-1009</td>
<td>PULL FOR ALTERNATE STATIC SOURCE</td>
</tr>
<tr>
<td>10</td>
<td>150056-3038</td>
<td>[STD] GEAR UP/DOWN /BYPASS</td>
</tr>
<tr>
<td>10</td>
<td>150085-038</td>
<td>[OPT] GEAR UP/DOWN /BYPASS</td>
</tr>
<tr>
<td>11</td>
<td>150056-1003</td>
<td>AVOID CONTINOUS OPERATION....2100 RPM...</td>
</tr>
<tr>
<td>12</td>
<td>150056-3039</td>
<td>MIC <CWS A/P DISC TRIM INTR></td>
</tr>
</tbody>
</table>

NOTE:

150056-1003 Decal is required only when the McCauley 2 Blade Propeller is installed.
SECTION III - EMERGENCY PROCEDURES

GENERAL

1. These checklists supercede those in the POH as a result of the installation of the G1000 avionics system. All other emergency procedures in the POH remain in effect.

2. These checklists assume that the aircraft is equipped with a standby alternator system installed by Mooney Airplane Company, Inc.

3. If GARMIN G1000 GPS navigation information is not available or invalid, utilize remaining operational navigation equipment as required.

4. If the "POSN ERROR" annunciation is displayed the system will flag and no longer provide GPS based navigational guidance. The crew should revert to the G1000 VOR/ILS receivers or an alternate means of navigation other than the G1000 GPS receivers.

5. If the "POSN ERROR" annunciation is displayed in the enroute, oceanic, terminal, or initial approach phase of flight, continue to navigate using the GPS equipment or revert to an alternate means of navigation other than the G1000 GPS receiver appropriate to the route and phase of flight. When continuing to use GPS navigation, position must be verified every 15 minutes using the G1000 VOR/ILS receiver or another IFR-approved primary navigation system.

6. CAUTION: If the "POSN ERROR" annunciation is displayed while on the final approach segment (between the Final Approach Fix and the Missed Approach Point), GPS based navigation will continue for up to 5 minutes with approach CDI sensitivity set at 0.3 nautical mile. It is recommended that the pilot initiate the missed approach upon receipt of this message from the G1000. Navigation guidance will continue for 5 minutes allowing the pilot to initiate the missed approach while maintaining course guidance on the final approach course. Then the system will flag and no longer provide course guidance with approach sensitivity. Missed approach course guidance may still be available with 1 nautical mile CDI sensitivity by executing the missed approach. This is typically caused by the GPS sensor’s inability to provide adequate horizontal position accuracy for the final approach segment. It is possible, however unlikely, that the GPS position may degrade to the point where terminal operations cannot be supported for the missed approach segment. Navigate using other primary navigation equipment (VOR receivers, etc) if this occurs.
7. In an in-flight emergency, depressing and holding the Comm transfer button for 2 seconds will select the emergency frequency of 121.500 MHz, and will show it in the "Active" frequency window.

8. The Attitude, Heading and Reference System (AHRS) requires at least one GPS or air data input to function properly. In the unlikely event that both GPS position sources fail, and the air data computer fails, the AHRS will subsequently lose attitude and heading and the pilot will be required to use the standby instrumentation. In this instance, the PFD will not provide altitude, airspeed, attitude, or navigation information.

3.1 - EMERGENCY PROCEDURE CHECKLISTS

Use the electrical fire checklists found in the M20R POH and appropriate AFM supplements.

Electrical System Failures

Alternator Failure

If the Main Alternator fails, indicated by the Master Warning “ALT VOLTS” is flashing:

Perform the Standby Alternator Emergency Checklist (repeated below)

1. Push the “Stdby Alt/Emergency Bus” switch ON. (This activates the emergency bus circuitry & Standby Alternator system) Verify:

 (a) The AMBER “EMERG BUS” annunciator illuminates, and

 (b) The RED “ALT VOLTS” flashing annunciator extinguishes.

 NOTE:
 The most efficient operating RPM is 2500 RPM when operating on the Standby Alternator System.

2. All electrical systems will remain powered and functional.

3. If the RED “ALT VOLTS” annunciator remains illuminated, then:

 -CAUTION-
 If the RED “ALT VOLTS” annunciation remains illuminated, then the standby alternator has failed, and only main battery power remains.

4. Reduce the electrical load by pulling the “BAT” circuit breaker. This load sheds the non-essential bus. The following systems remain powered by the essential bus.
-CAUTION-

`If the autopilot is engaged, when the BAT circuit breaker is pulled, the autopilot will disconnect without annunciation.`

- ALT SENSE
- EMER ALT BUS
- ALT FIELD
- EMER ALT FIELD
- ALT OUT
- STBY ALT
- BAT
- AUX PANEL
- AUX OVHD
- GLRSHIELD LIGHT
- PFD
- MFD
- AHRS
- ADC
- ENGINE INST
- STBY GYRO
- ICE PROT SYS
- STBY BUS BAT
- COM 1
- NAV 1 / GPS 1
- AUDIO
- XPONDR
- STALL WARN
- ICE LITE
- PITOT HEAT

The following systems on the non-essential bus will be unpowered:

- Com 2
-Nav 2 / GPS 2
- All lighting on the Overhead Panel
- Fuel Pumps
- Autopilot
- Electric Trim
- Landing Gear Motor and Indicators
- Defrost Blower
- WX Stormscope
- ADF/DME/DATA LINK
- TRAFFIC ALERT
- SKYWATCH
5. Terminate flight as soon as practical.

6. On approach, the pilot may engage the “BAT” circuit breaker to reestablish power to all systems if necessary.

7. If using battery power only and the primary battery has been depleted (minimum of 18 VDC), the pilot may select the alternate battery using the main battery selection switch. There will be no change in available equipment when changing battery sources. All equipment powered previously will remain powered.

AVIONICS EMERGENCIES

a) PFD OR MFD DISPLAY FAILURE

1. DISPLAY BACKUP button on audio panel PUSH

b) AHRS FAILURE

NOTE:
Failure of the Attitude and Heading Reference System (AHRS) is indicated by a removal of the sky/ground presentation and a red X and a yellow “AHRS FAILURE” shown on the PFD. The digital heading presentation will be replaced with a yellow “HDG” and the compass rose digits will be removed. The course pointer will indicate straight up and course may be set using the digital window.

1. Use Standby Attitude Indicator and Magnetic compass.

2. Course Set using digital window

3. Land as soon as practical.

c) AIR DATA COMPUTER (ADC) FAILURE

NOTE:
Complete loss of the Air Data Computer is indicated by a red X and yellow text over the airspeed, altimeter, vertical speed, TAS and OAT displays. Some FMS functions, such as true airspeed and wind calculations, will also be lost.

1. Use Standby Airspeed Indicator and Altimeter

2. Land as soon as practical at a suitable airport
d) ERRONEOUS OR LOSS OF ENGINE AND FUEL DISPLAYS

NOTE:
Loss of an engine parameter is indicated by a red X through the data field. Erroneous information may be identified by indications which do not agree with other system information. Erroneous indications may be determined by comparing a display with other displays and other system information.

1. Set power based on throttle lever position, engine noise and speed.

2. Monitor other indications to determine the health of the engine.

3. Use known power settings in the POH Chapter V for approximate fuel flow values.

4. Use other system information, such as annunciator messages, fuel quantity and flow, to safely complete the flight.

 e) ERRONEOUS OR LOSS OF WARNING/CAUTION ANNUNCIATORS

 NOTE:
Loss of an annunciator may be indicated when engine or fuel displays show an abnormal or emergency situation and the annunciator is not present. An erroneous annunciator may be identified when an annunciator appears which does not agree with other displays or system information.

1. If an annunciator appears, treat it as if the condition exists. Refer to the POH/AFM Emergency or Abnormal procedures or the procedures contained in this AFMS.

2. If a display indicates an abnormal condition but no annunciator is present, use other system information, such as engine displays, fuel quantity and flow, to determine if the condition exists. If it cannot be determined that the condition does not exist, treat the situation as if the condition exists. Refer to the POH/AFM Emergency or Abnormal procedures or the procedures contained in this AFMS.
SECTION IV - NORMAL PROCEDURES

NOTE:
View ability of the PFD and MFD displays may be degraded when wearing polarized sunglasses.

The following normal procedures have been modified as the result of the G1000 installation. Procedures which have not been modified as a result of the G1000 installation should be used as written in the POH/AFM.

DETAILED OPERATING PROCEDURES

Normal operating procedures for the G1000 are described in the GARMIN G1000 Cockpit Reference Guide and the GARMIN G1000 Pilot's Guide.

1.5 - NORMAL PROCEDURES CHECKLISTS

BEFORE STARTING ENGINE

Preflight Inspection .. Complete
Seats, Seatbelt, Shoulder Harness Adjust and Secured
Magneto/Starter Switch Off
Master Switch .. On
Alternator Field Switch Off
Fuel Boost Pump Switches Off
Circuit Breaker Switches Check–All In
ELT Switch .. Armed
Rocker Switches ... Off
Alternate Static Source Push Off
Throttle .. Closed
Propeller ... Full Forward (High RPM)
Mixture ... Idle Cut Off
Brakes ... Set
Wing Flap Switch .. Flaps Up
Defrost ... Push Off
Cabin Heat ... Push Off
Cabin Vent ... As Desired
Fuel Selector .. Fullest Tank
Landing Gear Switch Down Position
Red Emergency Gear Extension Handle Down and Latched
Internal Lights .. Off
Passenger Briefing Completed
Refer to SECTION IX – Supplemental Data for other Optional Equipment Procedures and Checks.

-WARNING-
IFR flight should not be initiated if the operation of the standby alternator and emergency bus is not in satisfactory condition prior to take off.

BEFORE TAXI

Engine Start Checklist Completed
Elevator Trim Switch On
Internal/External Lights As Desired
PFD/MFD ... Check Normal Operation
Comm/Nav Radios Checked and Set
Altimeter .. Set
Fuel Selector Switch Tanks, verify engine runs on other tank
Cabin Heat As Desired
Defroster ... As Desired
Cabin Vent .. As Desired
Flight Plan .. As Desired
Optional Equipment Checks Reference Section IX

TAXI

Before Taxi Checklist Completed
Rudder Trim .. As Desired

-CAUTION-
With Rudder Trim in the full right position the aircraft will tend to steer to the right during taxi.

22 of 33
FAA APPROVED
Parking Brake .. Release
Brakes ... Check during taxi
Heading Indicator Proper Indication During Turns
PFD/MFD .. No Flags/Red X’s
Throttle ... Minimum Power
Propeller .. Full Forward (High RPM)

-CAUTION-
To prevent battery depletion in prolonged taxi or holding position before takeoff, increase RPM until the “AMPS” indication on the G1000 indicates a positive number.

BEFORE TAKEOFF

Taxi Checklist .. Complete
Parking Brake .. Set
Fuel Selector .. Fullest Tank
Throttle ... 1000 RPM
Propeller ... High RPM
Mixture ... Full Forward
Alternate Air .. Verify Closed
Alternator Field Switch Verify ON
Throttle ... 2000 RPM
Parking Brake .. Set
Propeller ... Cycle/Return to High RPM
Magneto Switch Check – BOTH to L, BOTH to R, BOTH
Verify engine operates smoothly on each magneto separately (150 RPM MAX drop on each magneto, 50 RPM MAX difference)

Standby Alternator Preflight Check
Alt Field Switch .. OFF
Verify Red ALT VOLTS light illuminates
Stdby Alt/Emerg Bus switch .. ON
 Verify Amber Emerg Bus light illuminates
 Verify positive charge on battery ammeter
 Verify Red ALT VOLTS light extinguishes

Stdby Alt/Emerg Bus switch .. OFF
 Verify Red ALT VOLTS light illuminates

Alt Field Switch ... ON
 Verify Red ALT VOLTS light extinguishes

Standby Alternator Checks Complete

Ammeter .. CHECK Positive Charge Indication
Main Battery Voltage Greater than 26.5VDC
 Select the other battery using the BAT 1/2 selector
Ammeter .. CHECK Positive Charge Indication
Main Battery Voltage Greater than 26.5VDC
 Select desired Main Battery for use during flight using BAT 1/2 selector

Throttle .. RETARD to 1000 RPM

Low Fuel Boost
Pump Switch ON–Verify annunciator light illuminates BLUE
Low Fuel Boost Pump Switch .. OFF

Elevator Trim .. TAKEOFF SETTING
Rudder Trim .. TAKEOFF SETTING

Wing Flaps .. CHECK operation
 SET AT TAKEOFF POSITION (10 degrees)

Flight Controls CHECK free and correct movement
Cabin Door .. CHECK SECURED
Seats, Seat Belts and Shoulder Harness SECURED

Avionics and Autopilot CHECK – (Refer to section IX)
Annunciator Lights .. CHECK

Internal/External Lights AS DESIRED
Strobe Lights/Rotating Beacon ON

Pilots Window .. CLOSED
Emergency Gear Extension (RED) Handle DOWN and LATCHED

Oil Temperature 75°F (24°C) minimum

CHT ... 250°F (121°C) minimum

Parking Brake RELEASE

TAKEOFF

Proper engine operation should be checked early in the takeoff roll. Any significant indication of rough or sluggish engine response is reason to discontinue takeoff. When takeoff must be made over a gravel surface, it is important that the throttle be applied SLOWLY. This will allow the aircraft to start rolling before high RPM is developed, and gravel or loose material will be blown back from the propeller area instead of being pulled into it.

TAKEOFF (NORMAL)

Power ... FULL THROTTLE (2500 RPM)

Mixture Check and set at top of the white arc on EGT

Annunciator CHECK

Engine Instruments CHECK for proper indications

Lift Off/Climb Speed . As specified in SECTION V (Takeoff Distance)

Landing Gear RETRACT IN CLimb after clearing obstacles

Wing Flaps ... UP

TAKEOFF (HIGH ALTITUDE)

For maximum engine power, the mixture should be adjusted during the initial takeoff roll to the top of the white arc on the EGT. The power increase is significant above 3000 feet and this procedure should always be employed for field elevations greater than 5000 feet above sea level.

NOTE:

If maximum performance takeoffs are desired obtain full power before brake release. Use lift off and climb speed as specified in Section V.

CLIMB

NOTE:

If applicable, use noise abatement procedures as required. See Section V, for rate of climb graph.
CLIMB (CRUISE)

Power ... 2500 RPM
Manifold Pressure 24 Inches
Mixture ... FULL RICH or white arc on EGT
Rudder Trim .. AS DESIRED
Airspeed ... 120 KIAS

CLIMB (BEST RATE) (Vy)

Power ... FULL THROTTLE / 2500 RPM
Mixture ... FULL RICH or white arc on EGT
Rudder Trim .. As Desired
Airspeed ... 105 KIAS

CLIMB (BEST ANGLE) (Vx)

Power ... FULL THROTTLE / 2500 RPM
Mixture ... FULL RICH
Rudder Trim .. As Desired
Airspeed ... 85 KIAS

Leaning may be required during CLIMB depending on atmospheric conditions.

SHUTDOWN

Parking Brake ... Set
Throttle ... Idle RPM
Interior/Exterior Lights Off
Pitot Heat ... Off
Magneto/Starter Switch Grounding Check
Mixture ... Idle Cut–Off
Alternator Field Switch Off
Master Switch ... Off
Magneto/Starter Switch Off
SECURING AIRCRAFT

Magneto/Starter Switch Verify Off/Key Removed
Master Switch .. Verify Off
Electrical Switches Verify Off
Interior Light Switches Verify Off
Emergency Bus Switch Verify Off
Parking Brake Release – Install Wheel Chocks
Extended Parking Control Wheel Secured
Cabin Windows and Doors Closed and Locked

SECTION V - PERFORMANCE

No change.

SECTION VI - WEIGHT AND BALANCE

See current weight and balance data.

SECTION VII - SYSTEM DESCRIPTIONS

The GARMIN G1000 Integrated Avionics System consists of a Primary Flight Display (PFD), a Multi-Function Display (MFD), an Audio Panel, and Attitude and Heading Reference System (AHRS), an Air Data Computer (ADC), and the sensors and computers to process flight and engine information for display to the pilot. The system contains dual GPS receivers, dual VOR/ILS receivers, dual VHF communications receivers, a transponder, and an integrated annunciation system to alert the pilot of certain abnormal conditions.

The Primary Flight Display (PFD) typically displays airspeed, attitude, altitude, and heading information in a traditional format. Slip information is shown as a trapezoid under the bank pointer. One width of the trapezoid is equal to a one ball width slip. Rate of turn information is shown on the scale above the compass rose; full scale deflection is equal to a standard rate turn. The following controls are available on the PFD (clockwise from top right):

- Communications frequency volume and squelch knob
- Communications frequency set knobs
- Communications frequency transfer button
• Altimeter setting knob (baro/QNH set)
• Course knob
• Map range knob and cursor control
• FMS control buttons and knob
• PFD softkey buttons, including master warning/caution acknowledgment
• Altitude reference set knob
• Heading bug control
• Navigation frequency transfer button
• Navigation frequency set knobs
• Navigation frequency volume and Identifier knob

The PFD displays the crew alerting (annunciator) system. When an alert message is received, an aural tone will be heard. Selecting the Alert button will allow the flight crew to see additional information regarding the alert message.

Trend vectors are shown on the airspeed and altimeter displays as a magenta line predicting 6 seconds at the current rate. The turn rate indicator also functions as a trend indicator on the compass scale.

The PFD can be displayed in a composite format for emergency use by pressing the DISPLAY BACKUP button on the audio panel. In the composite mode, the crew alerting function remains operative, but no map functions are available.

The Multi-Function Display (MFD) typically displays engine data, maps, terrain, traffic and topography displays, and flight planning and progress information. The display unit is identical to the PFD and contains the same controls as previously listed.

The audio panel contains traditional transmitter and receiver selectors, as well as an integral intercom and marker beacon system. The marker beacon lights appear on the PFD. In addition, a clearance recorder records the last 2½ minutes of received audio. Lights above the selections indicate what selections are active. Pressing the red DISPLAY BACKUP button on the audio panel causes both the PFD and MFD to display a composite mode.

The Attitude and Heading Reference System (AHRS) uses GPS, rate sensors, air data, and magnetic variation to determine pitch and roll attitude, sideslip and heading. Operation is possible in a degraded mode if the system loses any of these inputs, but the AHRS must have at least the ADC or GPS input to function. Status messages alert the crew of the
loss of any of these inputs. The AHRS will align while the aircraft is in motion, but will align quicker if the wings are kept level during the alignment process.

The Air Data Computer (ADC) provides airspeed, altitude, vertical speed, and air temperature to the display system. In addition to the primary displays, this information is used by the FMS and TIS systems.

Engine instruments are displayed on the MFD. Discrete engine sensor information is processed by the GARMIN Engine Airframe (GEA) sub-system. When an engine sensor indicates a value outside the normal operating range, the legend will turn yellow for caution range, and turn red and flash for warning range.

The G1000 also interfaces to the STEC 55x autopilot and repeats the autopilot mode annunciators on the G1000 PFD. This provides easy viewing of the autopilot operating mode and status, but remains a supplemental display of autopilot operating modes.

The GDL 69A is a remote sensor that receives broadcast weather data from a service of XM Satellite Radio and delivers the data to the G-1000 MFD. Highly reliable, near real-time weather information is transmitted to the aircraft via XM Satellite Radio. XM WX Satellite Weather service operate in the S-band frequency to provide continuous uplink capabilities at any altitude throughout North America. Also available with the GDL-69A is XM’s digital audio entertainment, which provides 130-plus channels of music, news, talk, sports and information. For detailed operating instructions, see Garmin G-1000 Cockpit Reference Guide for the Mooney M20R.

The TSO’d KN 63, if installed, is a complete 100 watt, 200-channel remote DME system. Distances up to 389 nm (at line-of-sight altitude), groundspeeds up to 999 knots and time-to-station up to 99 minutes are computed digitally and displayed on the G-1000 PFD and controlled by the G-1000 interface controls. Distance lock-on is virtually instantaneous (usually within one second) with accurate groundspeed and time-to-station readouts following in less than a minute. For detailed operating instructions, see Garmin G-1000 Cockpit Reference Guide for the Mooney M20R.

The TSO’d Becker ADF 3502-(2) Automatic Direction Finder system, if installed, provides accurate bearing-to-station in the 200 kHz to 1799 kHz frequency range, complete with ADF, ANT and BFO tuning modes, plus audio output for station identification and monitoring AM broadcasts. It is displayed on the G-1000 PFD and controlled by the PFD interface controls. For detailed operating instructions, see Garmin
Traffic data detected by the L-3 Communications Goodrich SKYWATCH™ Traffic Advisory System (TAS), if installed, will appear on the MFD and traffic display pages of the G-1000. For detailed operating instructions regarding the interface of the G-1000 with the SKYWATCH™ refer to the Pilot’s Guide for the SKYWATCH™ and the Garmin G-1000 Cockpit Reference Guide for the Mooney M20R.

Refer to the GARMIN G1000 Cockpit Reference Guide for the M20R MODEL aircraft, GARMIN P/N 00-00450-01, Rev. A or later FAA approved, for complete descriptions of the G1000 system and operating procedures.

7.1 - LANDING GEAR

Gear down and locked positions are indicated by a single indicator located on the aircraft floor and a red “GEAR WARN” light is located in the system indicator lights, as well as a green “GEAR DWN” indicator. Refer to the aircraft POH/AFM for additional information.

7.2 - ELECTRICAL SYSTEM

The M20R has a 28 Volt DC system, powered by a 100-amp alternator which is mounted on the front of the engine. It is driven by the engine crankshaft through a shear mechanism and charges the main batteries. The alternator is the primary source of aircraft power and is connected to the aircraft electrical system at the main bus. In the event of an alternator failure, the ship’s battery provides the system with electrical power, in conjunction with a 20 Amp standby alternator that is actuated by the pilot using a manual switch in the cockpit labeled EMER BUS.

Power is stored in two 11 amp-hour lead acid battery which are mounted in the tailcone of the aircraft, and either battery may feed both the essential and non-essential busses. In the event of an alternator failure, the standby alternator and selected main battery will power the following:

- A reduced subset of the G1000 system, which is comprised of the PFD/MFD, AHRS, ADC, Com1, Nav1, GPS1, transponder, audio panel, and Engine Instruments;
- An independent, standby attitude indicator (artificial horizon);
- Lighting for the attitude indicator, altimeter, airspeed indicator, and compass;

When the EMER BUS switch is set to ON, the Emergency Bus annunciator is activated, the Standby Alternator is energized and brought on line The standby alternator is capable of powering a limited amount of
electrical systems, but load shedding may be required to avoid depletion of the main battery. The Emergency Bus specifically powers the standby attitude indicator, and lighting for the standby instrumentation. Activating the EMER BUS switch bypasses the master switch and electrically feeds the standby attitude indicator and all standby lighting using both main batteries.

The circuit breaker panel is located on the right side of the instrument panel. Each breaker is clearly marked to show which circuit it protects. Also, circuit provisions are made to handle the addition of communications and navigation equipment.

Standard electrical accessories include the starter, the electric fuel pump, and the stall warning horn. Electrical accessories include the navigation lights, anti-collision strobe lights, instrument panel lighting, and cabin courtesy lights. Make sure the lighting and Emergency Bus switch are off when leaving the aircraft. Leaving the lights on for an extended period of time could cause depletion of the battery.

Two lights, mounted in the overhead panel, provide instrument and cockpit lighting for night flying. A wing tip recognition/landing light system consists of 2 lights (one in each wing tip) and is operated by a rocker type switch mounted in the overhead switch panel. Landing and taxi lights are mounted on the wing leading edges on both wings.

The M20R electrical system is divided into two power buses. A simplified schematic of the electrical system is shown in the diagram which follows.

ESSENTIAL BUS

The Essential bus is tied directly to the main aircraft battery via the non-essential bus. When the master switch is turned on, power is immediately supplied to the Essential and non-Essential busses. The Essential bus provides power to the G1000 equipment and to the backup instruments. When the Emergency Bus switch is activated by the pilot, the standby alternator is brought online and two relays close to power the essential bus via a secondary path. The selected main battery (two main batteries are available) remains online.

NON-ESSENTIAL BUS

The non-essential bus powers the autopilot, turn coordinator required for the autopilot, the Stormscope, and GIA #2. This bus is load shed manually by the pilot by pulling the BAT circuit breaker when the standby alternator and emergency bus switch are activated.

EQUIPMENT LOCATION

The G1000 ADC and GEA LRU’s are located behind the PFD and MFD, which may be removed using a hexagonal tool. The magnetometer is located in the right wing outboard of the landing light. The AHRS, and remaining LRU’s are located behind the cabin near the main batteries.
7.3 - VACUUM SYSTEM

GX aircraft are all electric, there is no Vacuum System in the standard aircraft.
7.4 - INSTRUMENT PANEL

The instrument panel has been designed to incorporate the G1000 Integrated Cockpit. All Communications, Navigation, Engine Instruments, and System annunciations have been integrated into a custom design package specifically for the M20R series aircraft.

Engine and electrical switches are located on the left side of the switch panel. Nav, strobe, recognition / landing and taxi light switches are located on the overhead switch panel.

Instrument panel lighting is provided by post lights, overhead panel lights and the internally lighted G1000 Integrated Cockpit System. Optimum cockpit panel lighting for night flying is achieved by using a combination of panel lights and overhead map lights.

SECTION VIII – HANDLING AND SERVICING

No change.

SECTION IX – SUPPLEMENTAL DATA

Add this supplement to this Section.

SECTION X – SAFETY TIPS

No change.