"Roadmap" to Energy Efficiency in Affordable Housing March 23, 2011, Chapel, Vermont College, Montpelier, VT Sponsored by the Vermont Housing & Conservation Board & Vermont Green

8:45-9:15:	Coffee
9:15-9:30:	Welcome & Introduction – VHCB, Project Oversight Committee
9:30-11:00:	Presentation of Roadmap Report w/Q&A: Presenter: Andy Shapiro, Energy Balance
11:00-11:10:	Break
11:10-12:30:	Presentation of Optimal Mechanicals Report w/Q&A: Presenter: Cx Associates
12:30-12:45:	Break/Luncheon Served
12:45-1:45:	Luncheon presentation of International models of energy efficiency funding schemes. Presenter: Regulatory Assistance Project.
1:45-2:30:	Wrap-up discussion on next steps and way forward: Gus Seelig, VHCB & Attendees
2:30:	Adjourn
	Download Reports at

View comments:

password: roadmap1

username: roadmapfeedback

Email comments to roadmap feedback email address: roadmapfeedback@gmail.com

Agenda

Download Reports at:

www.VHCB.org/roadmap.pdf & www.VHCB.org/optimal.pdf

March 23, 2011

Cx Associates' Team

- ✓ Matt Napolitan, PE, LEED AP
 - Modeling oversight
 - Lead author, Mechanical Systems Guide
- ✓ Ben Fowler
 - Systems Modeling, Comparative Analysis
 - Lead author, Research and Findings
- ✓ Jennifer L. Chiodo, PE, LEED AP
 - Lead author, Process Guide

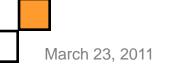
Session Overview

- ✓ Introduction
 - Team
 - Objectives
 - R&D Process
- Optimizing Mechanical Systems
 - Q&A
- Process Recommendations
 - Q&A

Mechanical Guide Objectives

- Tool for building owners, developers and design teams
- Performance metrics Targets
 - Overall
 - System
 - Heating/Cooling
- Sample system configurations
- Guidelines for contract language
- Development process

R&D Process


- ✓ Site visits
- ✓ Interviews
- Stakeholder Collaboration
- ✓ Modeling
- Interaction with architectural roadmap

Mechanical Systems Optimization

- Design Considerations
- Heating & Cooling Systems
- ✓ Domestic Hot Water
 - Solar
- ✓ Ventilation
- ✓ Controls

Modeling

- Computer simulation and sizing software
- ✓ eQuest 8760 hour modeling tool based on DOE2 modeling engine
- ✓ Whole Building Performance Analysis platform
- ✓ Order of priority:
 - 1. Optimize building envelope
 - 2. Select efficient mechanicals
 - 3. Size the equipment close to the loads

NO Oversized Heating Systems

- ✓ Building design load occurs 0.4% of the time
- Oversized boilers may short cycle even under design conditions
- ✓ Don't improve comfort
- ✓ Increase energy use
- ✓ Shorten equipment life

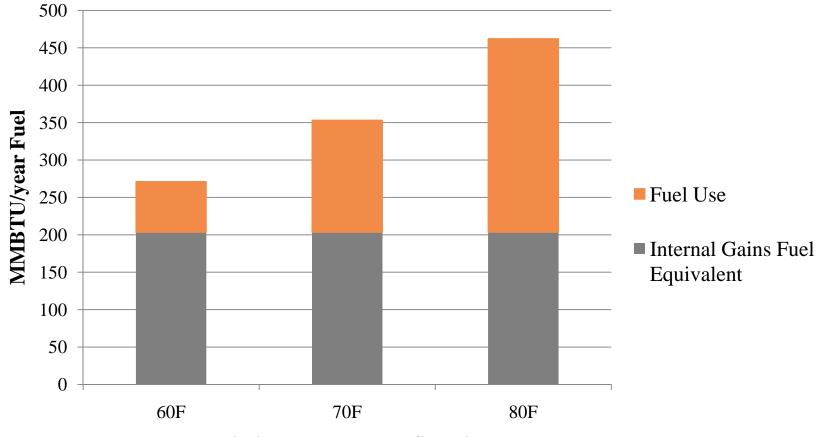
Is the equipment right?

- ✓ Engineers complete the Modeling / Load Calculation Information Form
- ✓ Team verifies:
 - Envelope characteristics
 - Infiltration and ventilation rates
 - Occupancy
 - Building area ratios
- Engineer reports energy related indicators
 - Compare results to expectations
 - Modeled results from Mech Ops Guide

Modeling Results

			Double
		Town	Loaded
Energy Use Index - No Cooling	Duplex	House	Corridor
Number of Units	2	12	32
Building Floor Area (sq-ft)	2,498	12,670	33,000
Modeled Space Heat Fuel Use (MBTU/yr)	37,000	87,000	168,800
Modeled DHW Heat Fuel Use (MBTU/yr), with 50% by SDHW	28,550	117,500	276,885
Total Heat & DHW Fuel Use (MBTU/yr)	65,550	204,500	445,685
PUM Year 15 Low Esc.	\$123	\$64	\$52
Modeled Peak Boiler Space Heat Load (MBTU/hr)	35.6	111.0	207.1
Modeled Peak DHW Generation Load (MBTU/hr)	50.0	105.0	210.0
	1 @ 90	2 @ 105	4 @ 105
Boiler Number and Size	MBTU/hr	MBTU/hr	MBTU/hr

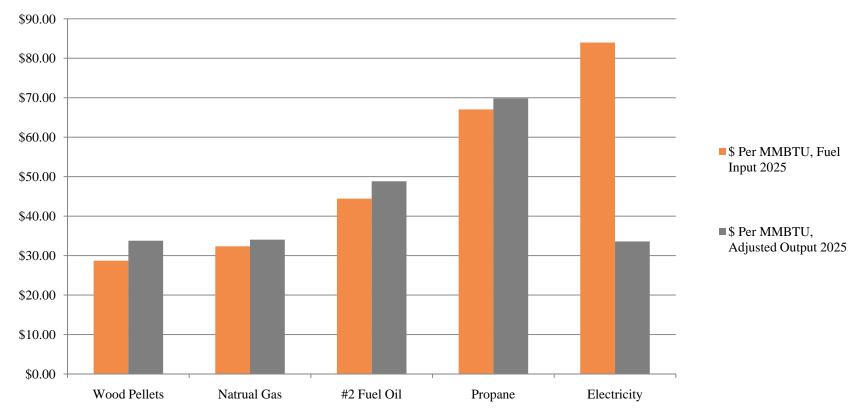
Key Points from Modeling


 ✓ High Performance Buildings Change the "Standard" Logic

- Traditionally heating load is significantly higher than DHW - NO MORE!
- Townhouse & DLC heating loads ≈ DHW
- Duplex heating load = 71%
- Annual fuel usage
 - Duplex Heat = 130% of DHW
 - Townhouse = 74% of DHW
 - DLC = 61% of DHW

ASSUMES 50% OF ANNUAL DHW ENERGY IS FROM SOLAR!

Internal Gains


Building Temperature Setpoint

Fuel Selection

Fuel Source Comparative Costs Per MMBTU

March 23, 2011

✓ Boiler selection:

Boilers

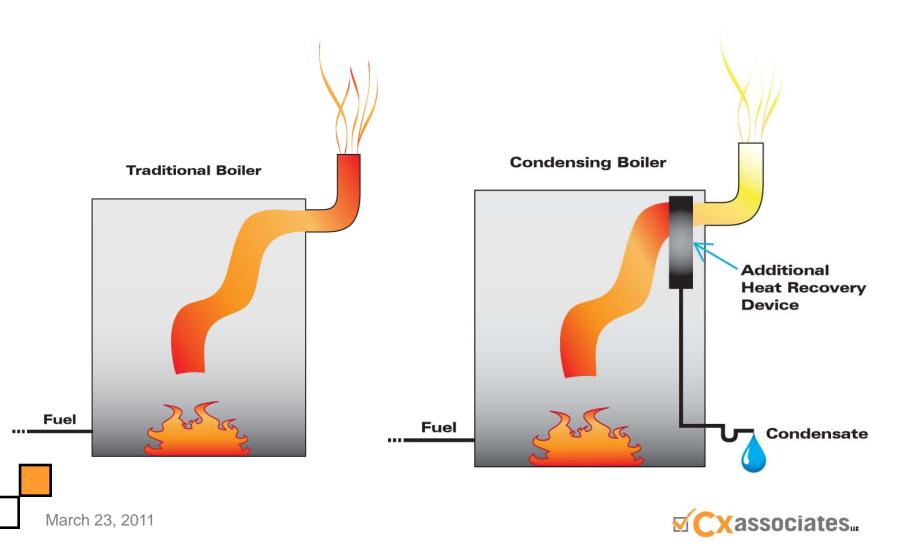
- Modulating where possible
- AFUE Efficiencies Condensing Boilers
 - Gas > 96% Eff
 - Oil > 91% Eff
- Pellet > 85% Eff

✓ Modular Boiler Arrangement

March 23, 2011

Condensing Fuel Boilers

✓ What is a condensing boiler?



March 23, 2011

Condensing Fuel Boilers

✓ Up to 10% Additional Energy Available

Biomass – Pellet Fuel

- ✓ Lowest dollar/BTU fuel
- Fuel related considerations
 - Bulk Fuel Availability
 - Access for delivery
 - Capacity to minimize deliveries
 - Fuel level indication
 - UV tolerant system
 - Fire separation
 - Pellet Quality

Biomass – Outdoor Pellet Storage

March 23, 2011

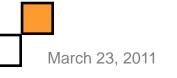
Biomass

- PFI Pellet Fuels Institute
- Premium Grade
 - Low Moisture
 - Low Ash Content
 - Low Fines Content
 - Small tolerances for size, shape and mass
- In other words, very homogeneous

Thermal Energy Storage

✓ TES

- ✓ Buffer Tank
- ✓ Necessary for
 - Biomass
 - Non-modulating boilers
- ✓ Stores Heat
- ✓ Needs a Little Space
- ✓ Increases Boiler Efficiency
 - Reduces short cycling
 - Increases boiler fire time



Thermal Energy Storage

✓ DHW Priority

- Boilers Focus on DHW, Not Space Heat
- TES Acts as Additional Heat Source
- Additional Heating Capacity
 - Adds capacity to system
 - Without over-sizing
 - Without adding additional equipment (fuel consumers)
 - Effectively provides a margin of security for designers

Terminal Units

Ratings: (heat output) /(linear foot)

- Traditional Design
 - 180° F supply water = Appx 750 BTU/h/LF output
- Condensing Boiler Friendly
 - 130° F supply water = Appx 250 BTU/h/LF output
 - Allows condensing boilers to remain in condensing mode

Building Type Modeled	BTU Per Liner Foot Perimeter
Double Loaded Corridor	132
Townhouse	129
Duplex	99

Non-heating Season Comfort

- ✓ High performance envelope keeps heat in
- ✓ Great in heating season
- ✓ Holds heat in mild weather
- Models show higher indoor temps in shoulder season
- People may need to open windows to release heat
- ✓ Mechanical cooling?

When Cooling is in the Mix

- Resident provided window ACUs are incompatible with casement windows
- ✓ If developer wants to allow tenant provided AC then include provision in design

OR

- ✓ Install cooling
 - High performance air source heat pump systems (can also meet heating PUM reqs for Townhouses & DLC)

Air Source Heat Pump - ASHP

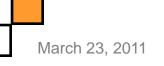
- ✓ What Is It?
 - Heating
 - A/C
- ✓ Up to 8 indoor units for small systems
- ✓ Up to 50 indoor units for large scale systems

HOWEVER

- ✓ High ASHP efficiency means effective delivery of heating or cooling.
- ✓ High efficiency mitigates high cost-per-BTU of electricity
- Able to meet heating PUM with performance envelope (except in duplex)

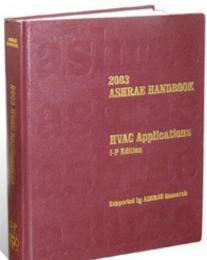
VRV - Variable Refrigerant Volume

- ✓ What Is It?
 - Large scale Air Source Heat Pump
- Allows load sharing
- Centralizes Outdoor Condensing Units


VRV - Variable Refrigerant Volume

- Refrigerant, not water is the distributed heat source / sink.
- ✓ Reference ASHRAE 15 /ASHRAE 34
 - American Society of Heating, Refrigeration and Air Conditioning Engineers
 - Safety Standard for Refrigeration Systems
 - Designation and Safety Classification of Refrigerants
- Consider adding alarm points to indicate a leak.

ASHP - Considerations


- \checkmark Not plug-and-play like other systems
 - Components limited to existing manufacturer
- Service may be limited to "certified technicians"

Domestic Hot Water

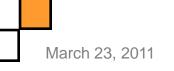
- Systems tend to be oversized
- ✓ ASHRAE Handbook Applications
 - Detailed sizing information
- Determine occupancy mix and occupants per unit based on developer projections
 - Allows determination of Low, Medium or High Use

DHW Equipment Sizing

✓ Select combo of boiler & storage capacity

Meet load over all conditions

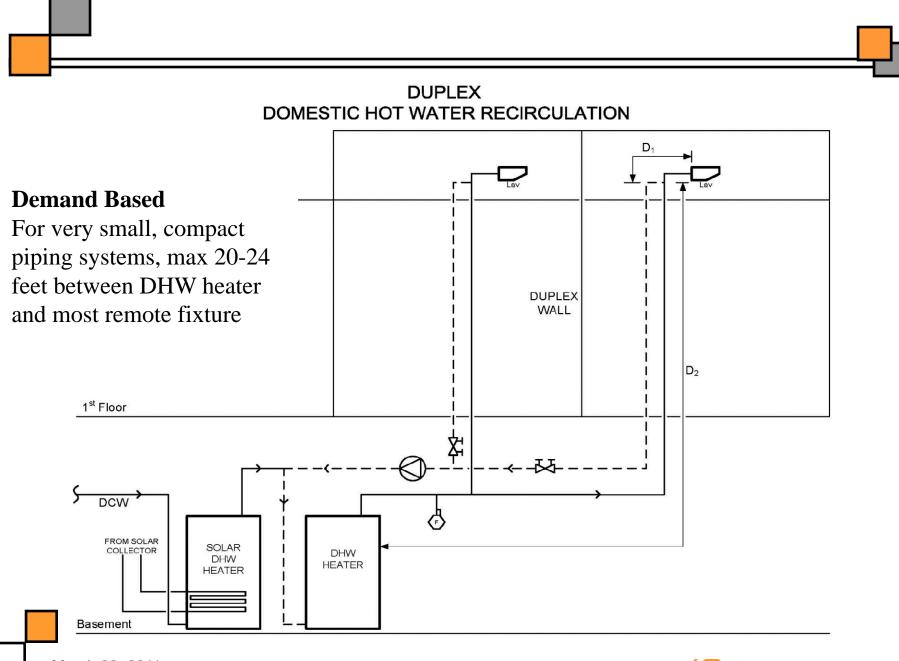
Table 8Hot-Water Demand and Use Guidelines for
Apartment Buildings


]	Peak N	Maximum	Average			
Guideline	5	15	30	60	120	180	Daily	Daily
Low	0.4	1.0	1.7	2.8	4.5	6.1	20	14
Medium	0.7	1.7	2.9	4.8	8.0	11.0	49	30
High	1.2	3.0	5.1	8.5	14.5	19.0	90	54

(Gallons per Person at 120°F Delivered to Fixtures)

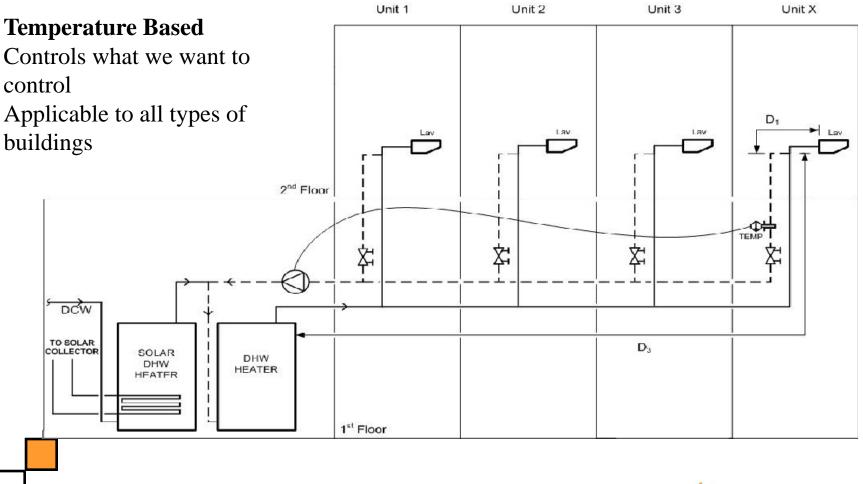
DHW Distribution

- Adds heat to the building
- ✓ Piping
 - Size with velocity in mind
- ✓ Insulation
 - Code requires 1" on DHW supply & recirculation
 - Recommendation 2" insulation
- ✓ Recirculation Pump
 - EC motor if pump is available in "Lead-Free"

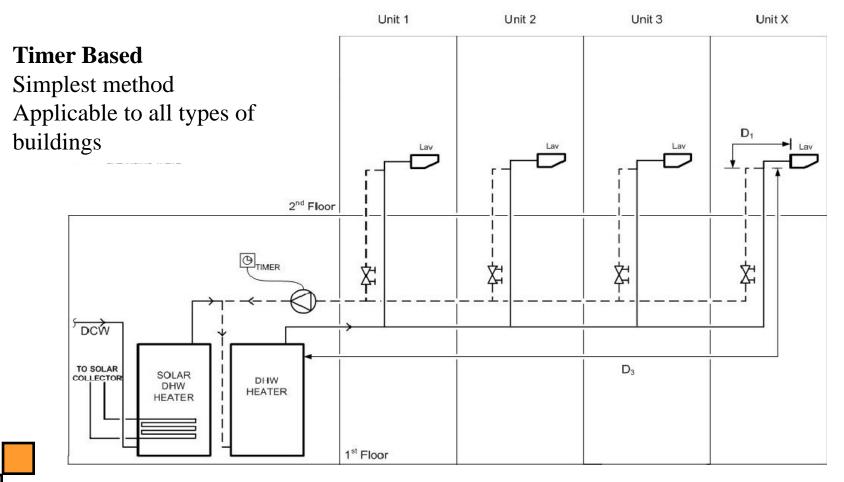

DHW Distribution - Recirculation

✓ Strategies for Recirculation

- Continuous NOT RECOMMENDED
 - Most pumping energy use
 - Highest heat loss to building
 - ✓ Issue in non-heating season
 - ✓ Uses more fuel to re-heat circulating water
- Demand Based
- Temperature Based
- Timer Based
- Based on 5 second wait time for Hot Water



March 23, 2011


TOWN HOME DOMESTIC HOT WATER RECIRCULATION TEMPERATURE SENSOR APPROACH

March 23, 2011

TOWN HOME DOMESTIC HOT WATER RECIRCULATION TIMER APPROACH

March 23, 2011

Solar DHW

- ✓ Need 50% Solar to meet affordability criteria
- ✓ 4-8 year simple payback
- ✓ Design Issues:
 - Site "Solar Access"
 - Building orientation
 - Roof pitch and style

Flat Plate Collector Area	Solar DHW Storage
10-15 Square Feet Per Building Occupant	1.5 gallons per square foot of collector area.

✓ Collectors

March 23, 2011

- ✓ Storage Tank
- Circulator & Controls
- Installation Considerations:
 - Structural: wind and snow loading
 - Mechanical room space
 - Chaseway for collector pipework and controls.

Ventilation

Three applicable codes

- VT RBEC
 - Minimum
- ASHRAE STD 62.2
- ASHRAE STD 62.1

Table 2.1

Capacity Requirements for Whole-House Ventilation Systems

# of Bedrooms	Minimum Rated Capacity (CFM ¹)	Minimum # of Fans (if not centrally ducted system)		
1	50	1		
2	75	1		
3	100	1		
4	125	2		
5	150	2		
Homes over 3000 sq. ft.	0.05 x sq. ft.	2		
$^{1}CFM = cubic feet per minute$				

Ventilation

- ✓ HRV / ERV
- Per-unit for townhouse and duplex
- ✓ Central for DLC
- Supply in bedrooms and common rooms
- ✓ Exhaust from bathrooms
- ✓ Maintenance

Heating Controls

✓ Efficient pumps✓ Zone control✓ System control

Heating Water Supply Temperature Reset

Outdoor Air Temperature	Hot Water Supply Temperature
0	130
55	100

Heating Plant Controls

Duplex

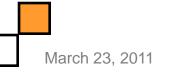
- On-board boiler controller
- Pumps run only on call for heat
- ✓ Do not use balance valves to control pump flow
- Pumps should have ECM motors – vary speed to match flow

Townhouse

- ✓ Same as Duplex except
- Tekmar type controller for multiple zones
- Ability to swap lead/lag circulation pumps
 - Allows for redundancy

DLC Pumping

- ✓ VFDs on system pumps
- ✓ Differential Pressure Control
- Automatic balance valves
- ✓ Lead/Lag pumps



Optimal Mechanicals in Short

\checkmark Keys to a Great Mechanical System

- Integrated Design
- Upfront Consensus
- High Efficiency Equipment
- Correct Terminal Devices
- Optimized Controls
 - Multiple boilers fire in tandem
 - HW Reset
 - Lowest possible pressure set points for pumps

Questions?

Addressing the Barriers

- Incentives
- Communication
- ✓ Integration
- Decision making process
- ✓ Shared Results

Project Vision

- Team Members Should Know
 - Key attributes associated with project funding calculations
 - Energy and operating costs
 - Maintenance reserve fund
 - Annual maintenance cost
 - Lifetime of major components
 - Occupancy types over building life

Point of View

Owner

- ✓ Vision of building
- Service to community
- Enduring Value
- ✓ Comfort
- Affordable operations
- Built on budget and on time
- Team of experts to execute vision

Design Team Member

- \checkmark Selected on price \implies
 - Price is Owner's highest priority
- \checkmark Low fee
 - Fewer hours to design project
 - Less time for interaction, innovation and iterations
 - Redesign avoidance
 - Over sizing

Perspective

Engineer

- ✓ Systems approach
 - Controls increase efficiency
 - Optimize systems to meet energy target
- Systems have to fit in allotted space
- Boilerplate O&M is lowest first cost
- Only hears when a perceived failure occurs

✓ Components not systems

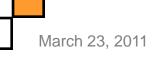
 Solve the immediate problem

Operator

 Unaware of energy target, building consumption or impact of changes

Owner's Project Requirements

- What will a successful project look like?
- Owner and user requirements
- ✓ Sustainability
- ✓ Energy Performance
- ✓ IEQ
- ✓ Operations & Maintenance



- \checkmark Defines 50 year roof life
- DD cost estimate requires project adjustments
- ✓ 40 year roof identified as best option
- ✓ Update OPR
- ✓ Design and construction include 40 year roofing material
- ✓ OPR provided to operator
- Property maintenance funds managed for 40 year roof replacement

Design Team Procurement

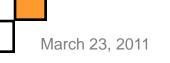
- Include project performance requirements in RFP and contract documents
- ✓ Selection Criteria
 - Knowledge and experience with high performance design
 - Successful execution within budget
 - Project performance results
 - Team integration

Design Proposals

- ✓ How team will use OPR, RHEA and MSOG
- Process to achieve integration
 - Basis of Design
 - Building modeling/load calculations
 - Interactive method for prioritizing and selecting the final building components and design approaches
- Project examples including realized performance

Other Consultants

- ✓ Energy
 - Asset in ensuring right sizing
 - Independent view focusing on approach
 - Demonstrates priority of EE
- ✓ Commissioning
 - Independent view focusing on functionality
 - Verifies design, construction and ops against OPR
 - Docs available for recommissioning


- ✓ Charrette
- ✓ Modeling
 - Mechanical system selection and sizing
 - Opportunity to iterate with envelope changes
- ✓ Basis of design
 - How the team will meet OPR
 - How incorporating energy performance req's

What's in the BoD?

- Project description
- ✓ Design assumptions (heating set point = 72°F)
- Standards and codes
- ✓ System Narratives
 - Why selected
 - How address the OPR
 - Expected performance
 - Controls

Design Reviews

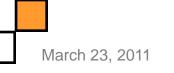
- ✓ Leave enough time
- Document and track to ensure issues are addressed
- Include Commissioning Agent

		Comments	Response	By & Date	sion	Party	
1 Mech F	zoi	Look at adding "sub- one" isolation valves to ow for maintenance on ne section of piping to limit disruptions.		Mech Engineer - 12/03/10	12/06/10 – Plan review indicates some zoning included.	Mech Engineer	CLOSED

Capacity Discrepancies

- Document and understand uncertainty
- ✓ Address where feasible
 - Add performance testing to spec
 - Include an energy consultant on team
- ✓ If more capacity needed, consider:
 - Storage
 - Provision for future & budget
- Document agreements in writing

- ✓ Design docs are *valuable*
- ✓ Range between \$100-550k
- Ensure they are used by contractors as a basis for as-builts
- Verify drawings are updated to reflect installation prior to contractor payment
- After turn-over building management has responsibility
 - Know, Love, Use and Maintain them
 - Buildings have long lives
 - Future operators need to know what we did



Operations and Maintenance

- Include in-house personnel in OPR development and Design Review
- Look at training in design review

- Sub-contracts require use and maintenance of as-built documents
- Include annual energy use review and report
- Ensure adequacy of staff training and allocation of resources

Post Occupancy

- Review OPR with O&M staff and share with occupants
- Expected building performance
 - Comfort
 - No ACU's in casement windows
 - Hot water within 5 seconds

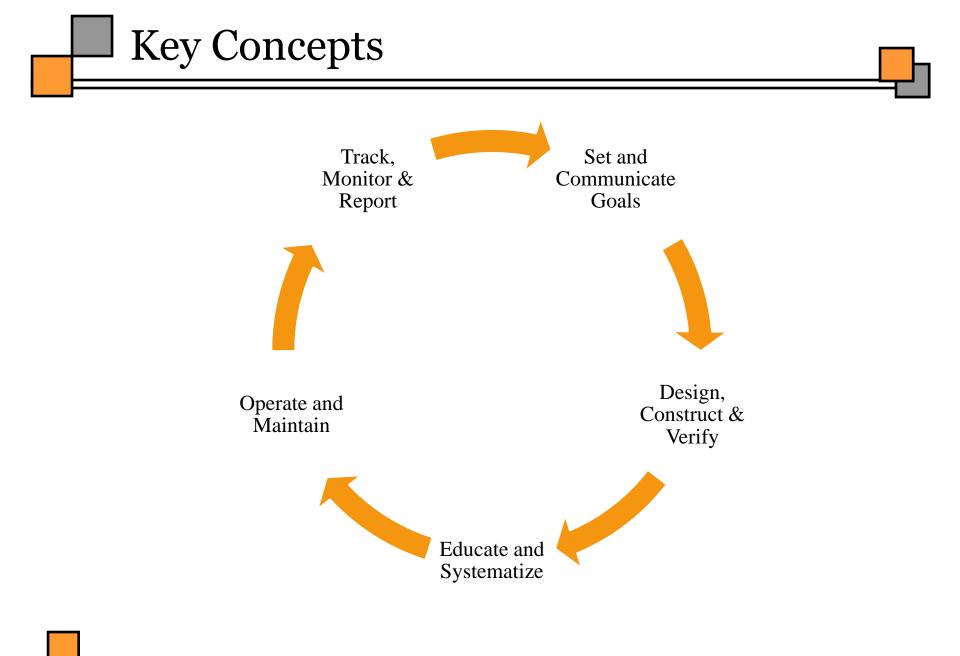
When things go wrong, address, document, reset

Ensuring Performance

Maintenance


- ✓ Preventive
- Keeps components in working order
- Responds to complaints
- Documents failures/problems
- Records activities

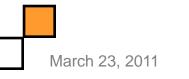
Operations


- Understands systems
- Tracks & Reports
 - Preventive maintenance
 - Problems and complaints
 - Energy Use
- Looks for Trends
 Pursues optimal function
 Maintains records

Areas for Additional Exploration

- Master OPR for affordable housing
- Standardized training and proficiency for building operations and maintenance personnel
- ✓ Resident education
- Smart controls/smart grid remote energy monitoring

March 23, 2011


✓CXassociates...

Matt Napolitan – <u>matt@cx-associates.com</u>

Ben Fowler – <u>ben@cx-associates.com</u>

Jennifer L. Chiodo – jennifer@cx-associates.com

802.861.2715 www.cx-associates.com

"Roadmap" to Energy Efficiency in Affordable Housing March 23, 2011, Chapel, Vermont College, Montpelier, VT Sponsored by the Vermont Housing & Conservation Board & Vermont Green

8:45-9:15:	Coffee
9:15-9:30:	Welcome & Introduction – VHCB, Project Oversight Committee
9:30-11:00:	Presentation of Roadmap Report w/Q&A: Presenter: Andy Shapiro, Energy Balance
11:00-11:10:	Break
11:10-12:30:	Presentation of Optimal Mechanicals Report w/Q&A: Presenter: Cx Associates
12:30-12:45:	Break/Luncheon Served
12:45-1:45:	Luncheon presentation of International models of energy efficiency funding schemes. Presenter: Regulatory Assistance Project.
1:45-2:30:	Wrap-up discussion on next steps and way forward: Gus Seelig, VHCB & Attendees
2:30:	Adjourn
	Download Reports at

View comments:

password: roadmap1

username: roadmapfeedback

Email comments to roadmap feedback email address: roadmapfeedback@gmail.com

Agenda

Download Reports at:

www.VHCB.org/roadmap.pdf & www.VHCB.org/optimal.pdf

