
Empirical Evidence for
Computing Immersion: A
Novel Way of Teaching

By Emmanuelle Deaton

ABSTRACT
The author provides historical evidence that pedagogical
techniques used in language immersion can provide a
pathway to more student participation in computing
education and greater retention of those students. Through
a review of interdisciplinary literature, the author
demonstrates that while some academics during the 1970s
and 1980s, including Donald E. Knuth and Francis E. Masat,
believed that computing education is as much an art as a
science, it ought to be approached first as an art. The author
proposes solutions to today’s computing education and
industry problems that have their basis in French and
language immersion and language arts, showing that there
is historical evidence that the use of their pedagogical
techniques, along with the decentralization of teaching
authority from computer science departments, can lead to
majority participation of women and increased
participation of visible minorities in computing education
as well as an excellent, if novice, grasp of a computer
language by adults with only a few days of training. As
such, it may be easier to train computing teachers than
presently believed and the best computing educators may
be those trained in teaching language arts and literacy
skills. The author examines this possibility by reviewing
the historical relationship in computing education between
decentralization of teaching authority, immersion and
language arts techniques, constructionism, and project-
based learning. Evidence is presented that block
programming, such as Scratch, is at odds with
constructionism, failing to develop requirements-based
programming skills in students and posing inherent
problems in the development of computational thinking
and computational logic. Ultimately, the best computer
languages for introductory teaching purposes, and those
most aligned with constructionism, may simply be those
that are textual with a visual interpretation.

Categories and Subject Descriptors:
• Social and professional topics~History of
computing • Social and professional topics~Historical
people • Social and professional topics~Computing
education • Social and professional topics~Computing
education programs • Social and professional
topics~Computer science education • Social and
professional topics~Computer engineering
education • Social and professional topics~Computational
science and engineering education • Social and
professional topics~Software engineering

education • Social and professional topics~Computing
literacy • Social and professional topics~K-12
education • Social and professional topics~Adult
education • Social and professional topics~Economic
impact • Social and professional topics~User
characteristics • Social and professional topics~Race and
ethnicity • Social and professional topics~Gender • Social
and professional topics~Women • Social and professional
topics~Age • Social and professional
topics~Children • Social and professional
topics~Adolescents • Social and professional
topics~History of programming languages • Social and
professional topics~Computational thinking • Social and
professional topics~Informal education • Social and
professional topics~Computing and business • Social and
professional topics~Employment issues

KEYWORDS
Immersion, French immersion, language immersion,
language arts, teaching authority, computer science
departments, computer programming, art, science, girls,
women, visible minorities, blacks, Hispanics/Latinos,
content-based instruction, project-based learning,
constructionism, pedagogy, pedagogical techniques,
Donald Knuth, Cynthia Solomon, Seymour Papert, Francis
E. Masat, Glassboro, Ohio State, computer programming,
computational thinking, computational logic, block
programming, Scratch

1. INTRODUCTION
We cannot sustain a society based on innovation unless we have

citizens well educated in math, science, and engineering. If we fail
at this, we won’t be able to compete in the global economy. How
strong the country is 20 years from now and how equitable the

country is 20 years from now will be largely driven by this issue.
—Bill Gates, Waiting for Superman, 2010

This paper addresses two intimately connected issues:
a) current instructional methodologies in computer
programming, computer science, and software
engineering are poorly structured to attract a wide swath
of entrants into the field and b) once in the field, the
instructional methodologies are particularly poor at
preparing learners for building and creating applications
in today’s economy. Today’s world is a world of the 4th
Industrial Revolution: a world in which there is rapid
movement towards automation and a workplace that
needs good software engineers. Given this world, both the
top and bottom of the funnel (for training computer
programmers) need to be wider. In other words, society
writ large needs to bring more people into the field and
once in the field, needs to do a much better job training
them to be able to meaningfully contribute to the world as
computer programmers and software engineers.

A review of the literature provides clues to a potential
solution that could handle both issues simultaneously:
teach computer programming, computer science, and
software engineering more as an art and as a language

with an instructional entry point that has much in
common with native or immersion language learning. In
other words, make computer programming easily
accessible to almost anyone on the planet.

1.1. Background
Although the world’s first computer science degree

program, the Cambridge Diploma in Computer Science,
began at the University of Cambridge Computer
Laboratory in 1953, researchers at King’s College, London
(Wingate 2018), maintain that there is as of yet very little
research about how and what to teach in school
computing programs (computing being the umbrella term
employed to describe everything from keyboarding skills
to knowledge of computer science). Henceforth, any
reference to Computing Education or Computing in this
paper should be understood as a reference to education in,
or the fields of, computer science, software engineering,
and computer programming.

It is noteworthy that the term computer science is
often used in nomenclature as a means of referencing one
or all three of the fields, as though they had no
distinguishing features. While they are distinct disciplines,
an important part of computer science and software
engineering is computer programming, otherwise
understood to mean knowledge of a computer language
that can be used to create computer programs. Through a
review of the literature, this paper demonstrates that
instructional methodologies in computer science, software
engineering, and computer programming are presently
failing students, and that while the first is widely
discussed and accepted as belonging to the “sciences”, it is
also aligned with language arts. Consequently, there are
parallels to be drawn between the development of skills in
computer science, software engineering, computer
programming, literacy, and second language development.

While there is research in the field of Computing
Education, much work remains to be done so that valid
conclusions can be drawn vis-à-vis the pedagogy that
ought to be employed at different stages of learning. In
contrast, there is sound research and good conclusions
about what works in the development of literacy and
second language acquisition. Given the parallels that exist
between skill development in language arts and computer
languages, there is reason to believe that educators should
abandon the current instructional paradigm that exists in
Computing and adopt instructional methodologies that
have been well-studied in language arts and that are
considered beneficial to students. In particular, in addition
to applying reading and writing strategies to Computing
lessons, students would benefit from learning a computer
language through content-based instruction immersion (a
type of project-based learning) and doing so as soon as
they are able to type since the plasticity of young brains
facilitates learning languages.

2. METHODOLOGY

Bearing in mind that this paper relies on
interdisciplinary studies, literature relevant to it was
collected from numerous sources. First, an electronic
search for articles pertaining to the successes and failures
of core French and French immersion was conducted. Also
sought after were articles dealing with matters of equity
in French immersion instruction. Second, an electronic
search for articles about teaching and learning in
computer science and computer programming was done.
A more specific search about immersion in computer
science followed. Finally, an electronic search dealing with
second language acquisition and development was done in
order to have a broader context for understanding core
and French immersion studies. Electronic searches were
done using Google, Google Scholar, and the academic
databases JSTOR, ERIC, and ResearchGate. The author’s
collection of articles and books dealing with child and
student development were also consulted.

The author’s approach to research was exploratory,
hypothesizing that computer programming might have
been viewed as a language or an art by other researchers
or contributors to the field. In addition, the author
hypothesized that if computer programming had
previously been viewed in that light, that other
researchers would have tried to create an immersion
environment for computer programming instruction.

3. THE STATUS QUO IN COMPUTER
SCIENCE INSTRUCTION

3.1. Enrollment and Retention Problems
The status quo in Computing instruction is a

problematic one. Statistics from various global sources
paint an alarming picture, suggesting that there are
enrollment and retention problems stemming from
instructional methodologies and approaches in the
discipline. As a consequence, there are not enough women
or visible minorities entering the field. There is also too
high a drop-off in enrollment rate for those starting course
work.

3.1.1. Girls and Women in Computer Science
In the United States, between 1984 and 2014, the

number of women graduating from computer science
declined, going from 37% to 18% (Reach Capital 2017, 10).
Those statistics must be understood in the broader context
of girls’ participation in other cognitively

 demanding areas of study. The behaviour of young
women in Advanced Placement (AP) test-taking in the
United States does not support the idea that young women
are unable or uninterested in logically rigorous academic
studies. Indeed, 55% of AP test-takers overall are girls and
girls represent 49% and 52% of the students taking AP tests
for Calc AB and Statistics, respectively. In contrast, girls
represent only 19% of AP test-takers in Computer Science
(Reach Capital 2017, 11). This suggests that something is
wrong with the presentation of computer science (more

accurately described as Computing since AP Computer
Science is really a programming class) to girls rather than
girls being unable to do the work.

3.1.2. Other (Mostly) Problem Statistics
Today, black and Latino/Hispanic people, representing

13.3% and 17.8% of the total American population (U.S.
Census Bureau 2016), account for just 8% and 7%,
respectively, of those working in Computing (Reach
Capital 2017, 8). Online, historic statistics pertaining to
their graduation from Computing programs go only as far
back as 1991 and were the only ones consulted for this
paper. It seems that since 1991, the percentage of black
students graduating with Computing degrees in the
United States has held steady at about 10-11% while the
number of Latino/Hispanic students graduating with
Computing degrees has increased from 3.5% to 9% (U.S.
Census Bureau 2016). In spite of this, the percentage of
black and Latino/Hispanic people actually working in the
Computing industry is lower than the percentage
graduating from Computing.

Furthermore, while statistics pertaining to drop out
rates in post-secondary and K-12 Computing programs are
inconsistently available, information coming from Ireland
(O’Brien, Humphreys, and McAuliffe 2016) and Norway
(Giannakos et al. 2016) respectively suggests that there is
regularly a drop-off in student enrollment in computer
science programs of 33% to 40%, and that in certain
courses in Ireland, the drop-off rate can be as high as 80%
(O’Brien, Humphreys, and McAuliffe 2016). In Canada,
Ontario’s Ministry of Education reports that in the
university stream of computer science courses between
2011 and 2016, the drop-off in student enrollment from the
Grade 11 to the Grade 12 course was consistently between
52% and 55% (Ministry of Education of Ontario, Course
Enrolment). In the community college stream, the drop-off
in enrollment was between 78% and 80%. The Ministry of
Education of British Columbia reported similar statistics
between 2009 and 2013: approximately 63% of students
taking Grade 11 computer programming decided not to
enroll in the Grade 12 course (Ministry of Education of
British Columbia, BC Schools). The global economy needs
more workers with Computing backgrounds. This can be
accomplished by increasing the size of the funnel for
people studying in the field. It can also be accomplished
by decreasing the filter effect of the funnel, i.e. changing
the approach to education such that more qualified
students per capita stay with the field and graduate.

3.2. Computer Science Programs Don’t
Lead to Industry-Ready Graduates

Other statistics, articles, and sources of evidence
pertaining to the status quo of Computing Education give
us equal cause for concern. Indeed, on April 20th, 2017,
Mint (India 2017), the Indian daily business newspaper,
ran a headline that said “95% [of] engineers in India unfit
for programming jobs: study”. The study cited in that

newspaper story found that 60% of the 36,000 computer
engineering candidates whose skills were assessed could
not write code that compiles.

While such a study has not been conducted in Canada,
Shopify, a large Canadian business headquartered in
Ottawa that relies heavily on “development” (slang for
computer programming) and “devs” (meaning, developers
or coders who write computer programs), initiated a
partnership agreement with Carleton University in
Ottawa in 2016. The agreement is for an intensive
internship program at Shopify. The students attend
university, but engage in on-the-job practice and skill
development by doing “full stack development” work (ie:
programming in multiple computer languages in order to
deliver fully functional web applications). In a 2018
personal conversation with the author, Jean-Michel
Lemieux (the SVP Engineering at Shopify) explained that
the goal of the internship program is to have a pipeline of
industry-ready software engineers; which the company
felt it did not have at its disposal prior to commencing the
internship program.

A study conducted in Ghana provides further evidence
that Computing programs don’t lead to industry-ready
graduates. Indeed, the authors, Sarpong, Arthur, and
Amoako (2013, 27-28) repeatedly assess student
proficiency in computer programming at the Institute of
Computer Science at Valley View University in Ghana as
being weak and confused. Yet, the students at Valley View
University are only a few hundred amongst millions of
other Computing students having similarly disappointing
educational experiences. If the drop-out rate of programs
failed to provide complete clarity on the matter, the
popularity of books providing guidance and exercises to
help software engineers learn how to program is further
evidence that Computing programs around the world fail
to ready students for the workforce. The book “Learn
Python the Hard Way” is one of hundreds of books that
teach programming through practice and repetition.
Discussions between reputable software engineers about it
and other such books abound on Internet forums such as
Quora (2016), supporting the contention that Computing
programs are failing to teach students in three ways: a)
how to write computer programs, b) a computer language,
and/or c) how to do development work.

3.3. What We Know From the UK
The United Kingdom instituted a national elementary

and secondary school curriculum in Computing Education
in 2014. In the years since, other countries, such as
Australia, and some provinces and states in Canada and
the United States (respectively) have done the same. On
November 10, 2017, The Royal Society (2017, 6) published
a report calling Computing Education in the UK “patchy
and fragile” in no small part due to having a shortage of
Computing teachers; a problem that can be remedied with
training.

Perhaps unsurprisingly, researchers at King’s College,
London (Wingate 2018), say that where Computing
Education is concerned, there is presently very little
research about how and what to teach in schools. They
also report that “studies of effective pedagogies in
university computing courses have only recently begun to
emerge.” This is despite the fact that Computing has been
an area of academic study in one capacity or another in K-
12 schools in the UK, Canada, and the United States since
the 1960s.

According to a review of the literature conducted by
Jane Waite (2017, 41-53) on behalf of The Royal Society
and as an addendum to The Royal Society’s computing
education report, there seems to be agreement amongst
many researchers that having a variety of different
instructional methodologies and tools is to the advantage
of both students and teachers—though more research is
essential. We must remain concerned with finding
instructional methodologies that work well for many
people given that the task at hand, as evidenced by The
Royal Society’s report, is not just the education of K-12
students, but also the training of teachers.

4. WHY ENROLLMENT AND RETENTION
IN COMPUTER SCIENCE MATTERS
Klaus Schwab (2016, 38) of the World Economic Forum,

citing work done at the Oxford Martin School, anticipates
that 47% of current jobs will have been destroyed by 2034
and (Cann 2016) that there will be a net loss of over 5
million jobs in 15 developed and emerging economies by
2020 which means that enrollment and retention statistics
in Computing programs must be of major concern to us
all. The research being done by the World Economic
Forum (Cann 2016) suggests strongly that the most
important skills for workers in the coming decade are soft
skills, Computing skills, and ability in data analysis. The
ramifications of declining enrollment of women in the
field of computer science, the dismal statistics pertaining
to enrollment of visible minorities in the United States,
and the atrocious drop-out rates in post-secondary
computer science programs must lead to our: a) resuming
instructional methodologies that lower barriers to entry
and retention in the field and, b) further developing some
now long-forgotten (or abandoned) instructional
approaches (to be explored in more detail below) so that
enrollment and retention of women, visible minorities,
and people with disabilities is improved.

5. LOW ENROLLMENT, POOR
RETENTION—HOW WE GOT HERE

5.1. Computer Programming as an Art
Donald E. Knuth, in his 1974 acceptance speech for the

Association of Computing Machinery (ACM) Turing
Award (sometimes called the Nobel Prize for computer
science) (Brown 2011), spoke eloquently about how art

and science complement one another as fields of study. He
spoke with some amusement of the historical
transformation of computer programming, saying:

Meanwhile we have actually succeeded in
making our discipline a science, and in a
remarkably simple way: merely by deciding
to call it ‘computer science.’ Implicit in these
remarks is the notion that there is something
undesirable about an area of human activity
that is classified as an ‘art’; it has to be a
Science before it has any real stature. On the
other hand, I have been working for more
than 12 years on a series of books called ‘The
Art of Computer Programming’ (667).

Knuth’s remarks are of utmost importance as we seek
to understand why there is an exodus of students from
computer science programs and why those who graduate
from Computing are ill-prepared for jobs in the industry.
The question remains: what is happening in Computing
Education and how do we solve its problems? As we
consider those questions, we must remember that Donald
E. Knuth is a distinguished and multi-award winning
scholar in the discipline of Computing. He is no
intellectual lightweight. His remarks about the discipline
and the direction it was taking in 1974 may help us to
understand why the field has had ongoing enrollment and
retention problems since the mid-1980s.

In his remarks, Knuth (1974) appeals to his colleagues
that they should consider computer programming both an
art and a science and take pleasure in the dual nature of
the discipline. Most of his remarks are devoted to
expressing the idea that he and others are motivated to
write computer programs because of the creative process.
He builds a persuasive argument that by simply writing
many short programs an individual becomes an able
computer programmer. While he believes that a scientific
approach to computer programming has value, he also
expresses what seems to be urgent concern that science
not overtake the creative learning process—and the
creative drive.

5.2. An Accident of History Deliberately
Joins Computer Programming to
Mathematics

Ultimately, as we consider that computer science
departments began to be established in universities across
the United States and Canada only in the mid-1960s in the
midst of the nuclear arms race, we should linger over
Knuth’s (1974) observation that “[activity] has to be a
Science before it has any real stature” (667). The politics
involved in establishing a new university and college
department, and the conversations surrounding the
chosen title, would not have escaped him.

It is an accident of the Cold War era that computer
programming has come to be associated with
mathematics. The politics behind the selection of the title

“computer science” for the emerging discipline of
Computing and the power of the title’s nomenclature are
indirectly addressed by a contemporary of Knuth’s,
Francis E. Masat, who wrote in his 1981 book titled
“Computer Literacy in Higher Education” that

The place of computer literacy in the
curriculum depends on whether it is viewed
as general education, a basic skill, or just
another “math” requirement. In the past,
social relevance was used to support the
addition of computer science to the
mathematics requirement that exists at
many major universities today. This
rationale, besides assuming that practically
anything can be justified on the grounds of
social relevance, relies on the popular and
problematic assumption that computer
science, or even computer literacy, is
mathematics. It is not. Although
mathematics is useful to someone using a
computer, language and logic are more
useful (18).

In the above paragraph, Masat reveals his belief that
social pressure joined computer science to mathematics.
Joining mathematics and Computing together may have
been done because of the social association between
mathematics and science, thus lending “real stature”
(Knuth 1974, 667) to Computing and justifying the
creation of computer science departments at universities
and colleges. It is also possible that mathematics
departments were viewed as the best fit for the discipline
given its dependance on numeric representation.

Still, Masat, who was first and foremost a
mathematician, contends (1981, 19) that spoken language
and logic are more foundational to Computing than is
mathematics. (Note: mathematics is a language in the
same way that computer languages are—they are all
dependent on a spoken language and dependent on that
language’s culturally accepted logical presentation. Logic
is critical to all forms of language.) His assertion that
Computing is not mathematics is important and perhaps
unusual given that the term “Computing” comes from the
discipline’s reliance on numbers. He says (1981, 19) that
“many in higher education believe that computer literacy
and language literacy can be combined since they are
fundamental, intellectually similar, and mutually
reinforceable forms of communication.” Ultimately, Masat
is explaining that computer programming (Computing)
relies on spoken language communication even if at the
machine level it reposes on mathematics. The result, in
Masat’s view, is that mathematics is not the only field of
study that can develop in students the logic needed to do
Computing.

Indeed, Masat (like Knuth), is clearly in favour of
treating Computing as an art and a language and so his
approach to situating it in the curriculum is sophisticated.
He denies (1981, 21) that computer science is mathematics,

and while he advocates for the study of mathematics for
students doing advanced Computing in second, and third
programming courses he is clear on the point that having
students undertake mathematical studies serves the
singular purpose of developing in them the ability to
reason sequentially and chronologically.

Masat (1981, 21) is not opposed to the development of
these skills by other means, being at pains to distinguish
between mathematics, language, and logic since he knows
that language, like maths, can develop logical ability. He
understands that advanced logic can be developed through
the study of mathematics because he is firstly a
mathematician. A professor of English literature or
political theory could similarly attest to the fact that logic
can be developed through reading, writing, and debate. In
Masat’s case, because computer science was initially
introduced to his college by adding it to the mathematics
department—perhaps (as Knuth argues) to legitimize the
new discipline—Masat was tasked with teaching
computer science and his personal means of developing
logical aptitude in his students was, naturally,
mathematics (Masat 1981, 24). So it would have been with
his peers at other colleges and universities.

5.3. Lost Findings from the 1970s and early
1980s

Francis E. Masat’s 1982 “Journal of Educational
Technology Systems” article, An Immersion Course in
BASIC, proposed an instructional methodology for
computer science (though all activity described therein
seems related to computer programming) that should be
seen as a full immersion program. It is a program that
could potentially be used to successfully teach computer
programming and to solve the shortcomings of present-
day instructional methodologies. As of this writing, its
findings seem to remain unchallenged and don’t seem to
have been reproduced—at least, not for research purposes.
The article reports the results of a study conducted
between 1979 and 1981. The study tracked the progress of
103 students at Glassboro State College in New Jersey
(renamed Rowan University in 1996) who participated in a
standard course in computer programming (referred to as
computer science in the article) covering the same content
over either a 12 day or 6 week period to learn the
computer language BASIC, comparing their academic
results to those of 49 students in the regular 16 week
semester classes. The study pertained to the activity of 152
students in total (Masat 1982, 327).

According to Grabe and Stoller (1997, 15), where
languages are concerned, immersion programs use the
second language being studied and a subject of study (eg:
history, geography, maths) in order to motivate students
in second language learning and to deepen their
understanding of the second language (this is content-
based instruction immersion). Ultimately, this is project-
based learning. It is this procedural paradigm that makes it
possible for immersion students to spend their days

thinking and using the subject being studied to develop
their linguistic abilities. By doing project-based learning
with a subject like history or geography, students have
more opportunities to practice speaking a second
language, e.g. Spanish, in a real-world context. This model
of learning closely approximates the way native language
speakers learn to communicate in their native tongue,
including both content-learning and language learning
activities in order to facilitate linguistic development
(Grabe and Stoller 1997, 6-7).

Although short, Masat’s 12 day course of study was an
immersion program since immersion in a language can be
for a short period of time. What matters is the structure of
the learning. Yet Masat’s results (1982, 327) might be
considered surprising since, as will be discussed fully in
Section 5.4, he held variables pertaining to evaluation and
assessment constant in his courses and the course with the
best results (albeit not statistically significant) was also the
shortest course (i.e.: the 12 day course).

Unlike today’s Computing student demographics, there
was a nearly even split between women and men in the
classes whose activities and results Masat studied. More
striking is the fact that women were a majority in the
study, totaling 53% of all participants (1982, 327). That
said, Francis E. Masat himself does not seem to believe
that this is the norm as he says in his 1981 book
“Computer Literacy in Higher Education” that “Minorities,
women, and the physically handicapped continue to be
underrepresented in the profession” (9). Women
participated most in Masat’s (1982, 327) 6 week immersion
course in BASIC: in that course they were 57% of all
participants. Of further interest in the Glassboro study is
the fact that none of the participants seem to be majoring
in computer science. To the contrary, Masat documents
(1982, 327) that 36% of the students were in Management
(18% were women), 16% in Accounting (7% were women),
7% in Marketing (5% were women), 11% in Math and
Science Education (7% were women), and 30% were listed
as majoring in “Bio., Psych., Soc., etc.” (16% were women).
Clearly, in the early 1980s, Computing—at the very least,
computer programming—was still drawing in a wide
variety of different people with different skills and
backgrounds. While the field of computer science was
integrated into the mathematics department at Glassboro,
the fact that most students in Masat’s study weren’t in
mathematics or in Computing speaks to the reality that
this latter area of study (or— more specifically, and
again—computer programming as a subset of computer
science), was not yet entrenched as a field considered best
suited to mathematicians. In fact, at that time, it was
believed that small amounts of computer programming
would be done by a variety of different professional
classes (Masat 1981, 15-16). Indeed, Masat (1981) wrote
that

Computer literacy courses are not computer
science or computer programming per se,
although a first course in computer literacy

will usually include simple programming
experiences. In fact, learning a computer
language, if only the rudiments of one as
simple as BASIC, prepares one for new and
expansive learning experiences (16-17).

A course proposal published, rather startingly, as a
journal article in the December 1985 issue of “North
American Colleges and Teachers of Agriculture” by John
R. Fiske, Marvin T. Batte, and Reed D. Taylor of (what was
then) the Agricultural Economics and Rural Sociology
Department at Ohio State University attests to their
agreement with Francis E. Masat’s stance (1985, 6). Their
work supports Masat’s belief that computer literacy
includes knowing a computer language for the purpose of
creating computer programs. In their course proposal, the
professors write that

The computer literate individual would not
be expected to know computer architecture
or how to configure hardware, although he
or she should know the functions of each
major class of hardware. The computer
literate individual would not be expected to
have the ability to write any but the simplest
algorithms although he should understand
what an algorithm is and its importance to
data processing. Computer literacy does not
imply the ability to design and code efficient,
general purpose programs, although it
should imply an understanding of when
such standard procedures as looping or
branching are appropriate (4).

We could read the statement “Computer literacy does
not imply the ability to design and code efficient, general
purpose programs” (Fiske, Batte, and Taylor 1985, 4) as an
assertion that computer literate individuals don’t need to
learn a computer language or be able to do simple
programming. However, this would be a
mischaracterization of the authors’ intent, which is to
align themselves with Francis E. Masat (whom they cite)
and to have students in the Agricultural Economics and
Rural Sociology Department learn a computer language
well enough to write some simple programs. This is made
clear by their next assertion:

In the context of graduates of colleges of
agriculture, computer literacy should mean:
(1) The ability to identify and understand the
functions of the hardware components of a
computer system. (2) An understanding of
the impact, both current and expected, of
computer technology on agriculture. (3) The
ability to conceptualize a computer solution
to typical agricultural problems such as farm
record keeping, feed ration analysis, and
budgeting. (4) The ability to write simple
computer programs that contain read and
write commands and branching and looping
procedures (4-5).

Given the above paragraph, and given their
explanation that the computer literate individual would
not be expected to know computer architecture or
hardware configuration, we should surmise that their
comments about designing and coding efficient, general
purpose programs refer to advanced computer
programming skills. Indeed, they also write that “The
ability to write algorithms to solve simple problems and to
do elementary programming in a language such as BASIC
or Pascal is consistent with the characteristics of the
computer literate student” (1985, 6). In other words:
everyone should be comfortable with some simple
computer programming in the same way that everyone
should be comfortable with reading the newspaper—while
not everyone needs to be able to write a novel.

5.4. Computing Immersion: More About
the Glassboro Study

Francis E. Masat’s idea of Computing immersion was
to have an accelerated learning experience by requiring
that students engage in both problem-solving and project
creation. The class environment he described was busy,
engaging, and productive:

Generally, the first part of each class is
question and answer, followed by student
chalkboard work of instructor generated and
text exercises. Many times, as many as nine
to ten students will be producing programs
at the boards. This provides experience,
alternate views, and methods for
programming the same problem, and facility
in reading and correcting programs. . . many
times a student takes over the computer
keyboard to make the changes or additions
suggested by the instructor or class. The
exchange between computer, student, and
instructor becomes dynamic, stimulating,
and exciting (1982, 323).

What is most interesting about the scenario is that all
this activity occurred in an introductory computer science
course that Masat says “was designed to contain more
programming content, more hands on experience, and
academic measures of achievement” (1982, 322).
Presumably, the students had had no previous exposure to
Computing. Yet their lack of knowledge does not seem to
have held them back. Masat’s immersion approach
required collaboration and an ongoing exchange of ideas.
It also clearly demanded that students engage in a serious
amount of trial and error (or cause and effect)
programming. In fact, the students were encouraged to
spend 3.5 hours a day in the computer lab in order to
create programs and learn how to debug with the
assistance of a student lab supervisor. In addition to
which, the students needed to formally turn in six
computer programs (projects) every two days and a dozen
daily homework problems (1982, 323-324).

This Computing immersion program, which was
reported on in Masat’s Glassboro study (1982), was
instituted between 1979 and 1981 “As the College's
introductory computer course was over-subscribed (an
understatement)” (321). Put differently, Masat started the
different length courses as a means of meeting the
enormous student demand for introductory computer
science. Without making use of intersessional weeks,
Glassboro simply could not meet the student demand for
that course. In an attempt to meet student demand, the
aforementioned 12 day and 6 week immersion programs
were established and student progress was tracked. The
objective was to teach the same curriculum in an
accelerated manner by focusing first and foremost on
having students practice programming skills. Clearly
articulated at numerous points throughout the study is the
goal that the integrity of academic standards be
maintained in spite of the short length of the program of
study. In the end, students who registered in Glassboro’s
immersive 12 day and 6 week program did as well as, or
better than, their peers registered in the regular 16 week
long semester classes. In every case, including the 12 day
immersion program, grades hovered around the 81% mark
but, of the groups examined, the 12 day immersion group
of 1980 did best: the average grade was 85%. Overall, the
12 day immersion group had the best results with a
combined average (mean) of 83% compared to 81% in the 6
week immersion group and 81% in the regular 16 week
semester class group. The results are meaningful because,
as Masat explains, in order to maintain the academic
integrity of the courses of study and of the research being
done,

Each twelve-day and six-week class was told
at the beginning of the respective course
that only the time frame was different:
content, programming, homework, and
testing were to be considered to be the same
as that offered in a semester course. As a
match, the same homework problems,
exams, and programs were given to two
sixteen week semester classes (different
semesters), and two six-week summer
session classes, 1979 and 1980. All the exams
and programs for the courses were graded
by the instructor using the same criteria and
scales (1982, 326).

In 1985, Fiske, Batte, and Taylor of Ohio State
University’s Department of Agricultural Economics and
Rural Sociology not only published the aforementioned
course proposal (Section 5.3 above) detailing their belief
that students could successfully study computer
programming within non-computer science departments,
they also co-authored an empirical study based on the
activity of 172 students who learned computer
programming through a course in their department titled
“Agricultural Economics 250” (AE 250). This empirical

study was published in the journal “North Central Journal
of Agricultural Economics”.

The study tracked student performance in three areas
of learning including computer literacy—the term used by
the researchers to mean competency in computer
programming (in this case, with the computer language
BASIC)—giving a separate percentage grade for all three
areas. Student work and activity was similar to that
described by Francis E. Masat. Of the 172 course
participants, only 29 had previously had any exposure to
computer programming (127). The computer literacy
(computer programming) average for students with prior
exposure to computer programming was 84.23% while the
average for those 143 students novice to computer
programming was 84.57% (126). Of the participants, 66%
were male while 34% were female. 28% were from a
commercial farm while an additional 22% came from rural
areas other than commercial farms. The rest of the
students came from small towns and cities (121). This
empirical study is important as it echoes Francis E.
Masat’s findings with his own non-computer science
cohort of students. It also provides evidence to
substantiate Fiske, Batte, and Taylor’s claim that students
can successfully be taught computer programming outside
computer science departments and by professors whose
own expertise lies elsewhere. Moreover, it serves to
illustrate that by centralizing teaching authority for
computer programming to computer science departments,
academics may have inadvertently decreased the number
of women learning computer programming and later on
participating in the Computing industry.

6. WHAT WENT WRONG IN COMPUTING
EDUCATION?

Based on the Glassboro study, it would seem that there
existed between 1979 and 1981 a program of study that
appealed (a bit) more to women than to men, that
facilitated the development of excellent computer
programming skills, and which was accessible to all and
even primarily, to non-maths majors. Based on the Ohio
State Study, we also know that many women in
agricultural economics and rural sociology were also
interested in computer programming and that students in
AE 250 had excellent results learning computer
programming outside Ohio State’s Department of
Computer Science. So why don’t such teaching and
learning opportunities exist at today’s post-secondary
institutions?

6.1. Historic Limitations in Communication
and Academic Pressures

We can answer the above questions through inference.
The Glassboro study and its significance most likely failed
to take root because the era of publication was pre-
internet and pre-email, therefore impeding the flow of
information and discourse. It is also possible, given the

academic interest in making computer programming into
a science (as explained by Donald E. Knuth), that
academics in the field were most focused on dealing with
transformative, abstract, ideas in computational thinking
and computational logic—at the expense of understanding
the art of teaching computer programming. That is to say,
historically, the pedagogy of Computing Education has
not been of central importance to the growth of computer
science as a field.

Indeed, as Knuth (1974, 673-674) indicated in his ACM
Turing Award lecture, academics at the time were
particularly interested in the development of new
computer languages, operating systems, and programming
efficiency (e.g.: computer architecture). It is possible that
even in introductory courses to Computing, the academics
of the era wound up focusing on what they themselves
were most interested in: computer architecture, data,
semantics, syntax; the theory that would help make
computer programming into a science. In the process, they
may have inadvertently set a course for student exodus of
the field.

Impossible to overlook as a driver for women’s exodus
(specifically) from Computing is the possibility that
women’s ability to access introductory computer science
courses was cut off or dramatically reduced when teaching
authority for Computing was restricted to computer
science departments in and around 1985. The fact that
Francis E. Masat’s (1982, 327) students seem to have all
majored in areas other than computer science and to have
been successful in a very hands-on, non-theoretical,
computer programming course lends credibility to the
position held by Fiske, Batte, and Taylor: that almost
anyone from any discipline can teach and learn computer
programming when theory is not the focal point.

This is the position that they present in their 1985
course proposal and which they substantiate with their
empirical study. In the proposal they explain that there is
tension between professors who want to emphasize the
scientific part of Computing and professors such as
themselves who think that without a focus on theory,
computer programming instruction can be integrated into
other subject areas such as biology or agriculture (1985, 5).
That Fiske, Batte, and Taylor published their course
proposal in a journal serves to illustrate the depth of their
feeling that teaching authority for computer literacy—
including computer programming—should not be
centralized in, or restricted to, computer science
departments. We can surmise that they were fighting an
academic and pedagogical turf war.

In their course proposal, they quote their colleague, Dr.
Bruce W. Weide, a professor of computer science. They
cite his words from the March 1985 issue of The Chronicle
of Higher Education where he says that “‘There are good
academic reasons why computer science ought to be
taught by computer scientists. There is some theory about
computing, some intellectual content to the science’” (5).
Importantly, Donald E. Knuth’s explanation of the

transformation of computer programming into a “science”
and the way in which Fiske, Batte, and Taylor structure
their arguments, lead to the conclusion that while Weide
says “computer science” he is also thinking of computer
programming: certainly, Fiske, Batte, and Taylor believe
that to be the case. Fiske, Batte, and Taylor, as well as
another Ohio State colleague, Dr. Russel V. Skavaril, a
professor of genetics, disagree with Weide’s assessment,
arguing in the Ohio State course proposal of 1985 that
they should have the right to teach computer literacy,
including computer programming, in their own
departments (5). Unlike Weide, they were uninterested in
teaching Computing theory and did not conflate computer
programming with computer science.

When seen as part of a timeline of important events
and insights, Donald E. Knuth’s 1974 comments about the
transformation of computer programming into a science
help shed light on the development of problems in
Computing and Computing Education: we go from 1974
comments about the fact that computer programming is
partially becoming a science (while also remaining an art),
to departmental and pedagogical turf wars in the mid-
1980s about who should be able to teach computer
programming, to the knowledge, in 2018, that while
computer scientists have been able to centralize (or
restrict) teaching authority of computer programming,
they have failed, to some degree, to be effective in
Computing Education since there are now serious
enrollment and retention problems in Computing
programs and most students graduating from a
Computing degree are unable to code.

Academics like Donald E. Knuth and Francis E. Masat
spoke eloquently about the relationship between computer
programming and language, proposing that strong logic
and linguistic ability along with ongoing practice (Knuth,
672) develop computer programming skills. However, it is
clear that they had colleagues who thought that theory
was far more important. In fact, Donald E. Knuth
references colleagues working in artificial intelligence
who, already in 1974, perceived computer programming as
an artifact: little more than a relic that would soon be
taken over by machines (1974, 669). Given that view of
computer programming and the integral role of computer
programming within computer science, it is perhaps
unsurprising that little attention has been given to the
pedagogy of Computing Education. Indeed, since, as
Donald E. Knuth (1974, 669-672) explains, the science of
computing was new in the 1970s, it is to be expected that
it continues to go through an extraordinary growth phase
even today. As a result, while the teaching authority for
Computing lies squarely in the hands of computer
scientists, there has been little impetus to pay attention to
successful experiments in teaching computer
programming (such as Francis E. Masat’s) and even less
reason to try repeating them: the scale and rapidity of
change have been the focal points in Computing.

6.2. Industry Pressures
The immense pressures of industry have also

contributed to the failures of Computing Education.
Beyond an evidenced desire from academia to see
computer programming made into a science, lies the fact
that in Computing in the 1970s and 80s, industry needed
to build operating systems in order to accelerate and
streamline data processing. This is substantiated by some
of Masat’s observations in the Glassboro immersion study.
Toward the end of the Glassboro article, Masat writes
(1982, 328) that

The twelve-day design compares favorably
to that used by Colorado College and several
industrial firms. However, in terms of course
content and emphasis, the Glassboro State
twelve-day course appears to differ
significantly from the more data processing-
oriented course offered by Colorado College
and information science companies.

With this statement, Masat shows his awareness that
Colorado College and information science companies were
focused more on data processing-oriented courses and
that they too were using an immersion approach to
teaching Computing. Thus, Masat is aware in 1981 that
while industry employed immersion approaches in
teaching, the curricular content and emphasis at Glassboro
differed significantly from that of information science
companies and at least one other academic institution:
Colorado College. Whereas his course content was
focused on computer programming, Colorado College and
private industry were interested in the issues of retrieving,
transforming, and classifying information—in other
words: computer science.

The genuine shape and structure of Colorado College’s
and industry’s immersion programs is presently unknown,
as are the type and rate of success they experienced. Yet,
we do know that they were focused more on data
processing—and consequently, computer science and,
with it, advanced mathematics. Given that this is the
predominant type of instruction that exists in computer
science programs today, we can infer that industry
pressure had a significant impact on the creation of a
program of study that is predominantly designed for
students who excel at advanced mathematics. Yet Francis
E. Masat (1981), for whom neither computer science nor
computer literacy—including computer programming—
repose on mathematics (19), had a different pedagogical
approach: he introduced to students some small amount of
fact-based learning of a computer language (BASIC)
followed immediately by large amounts of practice: albeit
over as little as 12 days (1982, 322).

We must consider that Francis E. Masat’s hands-on
approach to learning computer programming went
unadopted by computer science departments because they
were focused on teaching skills required to build operating
systems and to create new computer languages. The

development of those skills at the college and university
level is far less hands-on and based far more on learning
and understanding abstract ideas. We can speculate that
this approach to teaching Computing was then brought to
K-12 schools by teachers who graduated from this type of
information science, data processing-oriented computer
science degree. More realistically, K-12 Computing
teachers have probably taken but one or two computer
science courses.

Moreover, the rapid evolution of computer languages
and their jockeying for dominance will have also
negatively impacted the instruction of computer
programming as classroom teachers will not have had any
of the resources (of time, material, or professional
development) required to keep up or to understand what
and how to teach. As Masat (1981) writes, “The potential
for change in curricular development is enormous” (44).

The alignment of Colorado College’s data processing-
oriented course with the activities of information science
companies speaks to the impact of industry on the work of
academics. To be sure, there is a connection between
industry’s need for better data processing and the
academic focus on computer science and its development:
building operating systems for use in data processing
requires significant ability in abstract thought, advanced
mathematics, and physics.

6.3. The Association of Mathematics with
Computing Changed the Instructional
Approach

In coming to terms with why Francis E. Masat’s
successful pedagogical approaches weren’t widely adopted
we’ve dealt with three factors: historic limitations in
communicating, academic pressures, and industry
pressures. In the end, the latter two contributing factors
created a close association between mathematics and
computing that Masat himself rejected.

Masat distinguished clearly between logic,
mathematics, and languages in order to facilitate
understanding what is possible in computer programming
instruction. While Masat was a mathematician, he turned
to immersion—an instructional methodology used for the
development of second languages—as a means of quickly
developing computer programming skills in his students
because he viewed programming as an art, both practical
and hands-on. The instructional approaches used to teach
computer programming appear to be significantly
impacted by whether or not we accept and adopt the belief
that computer programming isn’t the same thing as
mathematics—Masat’s clearly stated position. In 1981, he
wrote “Although mathematics is useful to someone using
a computer, language and logic are more useful”
(8). Indeed, in a post-1985 world where computing is
entrenched as a science, novices to computer
programming (in high school and post-secondary
computer science classes) are expected to learn what

amounts to be the theory of computer programming
before they ever get to experience the act. In fact, they
take classes where the content favours students who are
already expected to function at a high level of
mathematical abstraction; no surprise given how industry
shaped computer science. Knuth and Masat, on the other
hand, having approached computer programming as an
art, were clearly advocating for creating in the discipline
rather than focusing on theory or science. They
understood that by writing small computer programs,
students develop awareness and knowledge of a computer
language in much the same way they do a spoken
language. Indeed, Masat (1981) states that

The task of programming a computer
becomes a linguistic one: analysis, synthesis,
semantics, logic, sequential reasoning, and
punctuation. Computers either understand
you or they do not. Cause and effect take on
dynamic and immediate meaning, what you
do makes a difference. Clarity and precision
are necessary when you are communicating
with a computer; rigid adherence to syntax
is the rule. In fact, some authors claim that a
person’s experience with computers will
transfer to his or her use of grammatical
rules. Thus, computer programming, and
computer literacy in general, is not a
hallowed area reserved only for scientists or
mathematicians. It may benefit anyone
capable of learning it (17).

In assessing the reasons why computer science is today
taught the way it is, we also need to remember that
historical and social forces associated computer
programming with mathematics and deemed computing a
science in order to give it stature. Given the comments
made by Knuth and Masat, we have reason to believe that
the deliberate association of computer programming with
mathematics, which was viewed as an elite field of study
due to its close rapport to the nuclear arms race (Dean,
2007), served to transform the art of computer
programming into a science—with a focus on abstract
theory. In the process, computer science was legitimized
as a field of study. The more computer science relied on
mathematics as the basis for work—in data processing
and developing operating systems—the more it came to
be associated (conflated) with maths. Conversations about
the relationship between language, logic, and computer
programming stopped because they became irrelevant to a
discipline now disproportionately associated with theory
and mathematics. The Ohio State battle for integration of
computer programming into separate courses of study
showcases how the discipline came to be housed in
computer science departments: how studying abstract
theory won the battle against studying practical
application. The result of tying the study of computer
science to abstract mathematics has resulted in both a
smaller number of students entering the field, and also, in

an ongoing focus on abstract theory, taking away a path
that is more useful to the outside world: learning
computer programming for practical and project-based
work.

7. INSTRUCTIONAL METHODOLOGIES
THAT DEVELOP(ED) COMPUTER
PROGRAMMING ABILITIES

7.1. Constructionism
Interestingly, Knuth and Masat’s defence of computer

programming as an art form, an activity, and a skill set
accessible to all is aligned with the constructionist theory
of learning developed by Seymour Papert at MIT. The
constructionist theory of learning holds that students
learn best when they are able to use knowledge so as to
construct—that is, to create for authentic purposes
(Papert, 1986). As such, it is aligned with language
immersion practices that give students some exposure to
facts, but encourage them to use these facts in a creative
and hands-on capacity. In doing so, the students
inadvertently practice skills. This is what Papert (1986)
calls “learning without curriculum” (30).

Papert, along with Cynthia Solomon and Wally
Feurzeig, created the first computer language deliberately
designed to teach programming to children: Logo
(Solomon, 2018). The team conceptualized the idea in 1966
and had the language ready by 1967. Field work was done
and the language subsequently totally redesigned.
Between 1968 and 1969, Papert and Solomon used it to
teach a class of Grade 7 students; turtles, robots that could
be programmed using Logo, were added at the end of that
year. According to The Royal Society’s report on the state
of Computing Education in the United Kingdom (2017, 26),
17% of primary teachers responding to their survey said
that they used Logo to teach Computing while 5% of
secondary teachers said they used it (28). Within the
report itself, Logo is identified as a block-programming
“language” (26), but this is false. Logo allows for the full
expression of computational thought and logic and uses
syntax and vocabulary, whereas block-programming does
not. Cynthia Solomon has explained (2018) that Logo was
created to provide visual outputs to help students develop
abstraction. This was done on the understanding that
there is usually a relationship between age and an
individual’s ability in abstraction—a relationship
currently being studied in the hopes of mapping what
researchers are calling “levels of abstraction” in
computational thinking (Waite et al., 2018; Waite 2017,
89).

While there is no specific mention of Logo in Masat’s
writings, he is clearly familiar with Papert’s work in
constructionism and with children as he discusses Papert’s
1980 book “Mindstorms, Children, Computers, and
Powerful Ideas” in his own educational treatise (1981),
saying that

Seymour Papert of M.I.T. conducted
computer-learning experiments with
elementary school children and found they
could use the computer to solve complex
problems in physics, geometry, and
physiology and that they also were capable
of generating music and poetry (15).

The above excerpt must be read with the knowledge
that in her first-hand account about the development of
Logo (hosted on the now defunct Wikispaces), Cynthia
Solomon (2018) says that the work she, Papert, and
Feurzeig did in the late 1960s was the foundation for
Papert’s 1980 “Mindstorms” book, already referenced
above. Since Masat is familiar with the book, and it
thoroughly discusses Logo and how children were
learning computer programming with it, it is curious that
Masat doesn’t talk about it himself. The inference here is
that Masat—like Knuth, Papert, Solomon, and Feurzeig—
is in favour of constructionism, but is not yet prepared to
draw conclusions about which computer language(s)
should be used to teach children. He does say that there is
a “need to consider a computer literacy curriculum that
spans elementary through college levels . . . national in
scope [and in the process] criteria need to be developed
for each level” (1981, 16). He also says that “there is no
consensus on precisely what constitutes a basic course in
computer science, nor in computer literacy” (1981, 16).

In computer programming, the founding principle of
constructionism—furthering knowledge and
understanding by creating something meaningful,
recognizable, and based in the real world (Papert, 1986)—
is best achieved by having students apply their knowledge
in a creative capacity as quickly and as much as possible.
Indeed, Knuth says “When we teach programming
nowadays, it is a curious fact that we rarely capture the
heart of a student for computer science until he has taken
a course which allows ‘hands on’ experience with a
minicomputer” (1974, 671). This position is echoed in the
research presented by Sarpong, Arthur, and Amoako of
Valley View University in Ghana. Their research (2013, 30)
found that 88% of the students surveyed agreed that
writing programs and applying concepts learned from
their teachers was the best way of learning computer
programming. In addition, 74% of the students surveyed
said that the second best way of learning computer
programming was to complete lots of projects. According
to the article, the students believe that completing lots of
projects “enhances their understanding of concepts and
sharpens their skills in the course” (30). This opinion is
shared by many professional computer programmers
(Quora, 2016).

7.2. Immersion
Masat’s Computing immersion study at Glassboro

came at a time when immersion, which can be considered
concurrently as an approach, a framework, and a
methodology (Stryker and Leaver 1997, 5), was being

heralded as a very successful means of developing second
language abilities in young and old students alike (Grabe
and Stoller 1997, 6). Spoken immersion was first developed
in Canada during the 1960s as a means of teaching English
to native French speakers in Quebec (Paikin, 2016). It was
subsequently introduced in Ontario during the 1970s and
to other Canadian provinces and territories in order to
teach French to speakers of other native tongues,
including English (Paikin, 2016). Extensive studies on the
success of French immersion (as it is known in Canada)
and the failures of core French (in Canada, the more
common form of French as a Second Language
instruction) affirm that French immersion is a successful
means of developing fluency in all students (Cummins,
2014) particularly if explicit language learning activities
are used to support content-learning activities in the
classroom (Grabe and Stoller 1997, 6).

French immersion has its roots in an instructional
approach called content-based instruction (CBI), that
Stryker and Leaver (1997) say

...can be at once a philosophical orientation,
a methodological system, a syllabus design
for a single course, or a framework for an
entire program of instruction. CBI implies
the total integration of language learning
and content learning. It represents a
significant departure from traditional
foreign language teaching methods in that
language proficiency is achieved by shifting
the focus of instruction from the learning of
language per se to the learning of language
through the study of subject matter (5).

In other words, the more the learning environment
facilitates practicing the language in real-life scenarios,
the more CBI is successful. Needing to discuss geography
in French—either in a geography class or in a social
setting—is an example of a real-life opportunity to
practice speaking French (Stryker and Leaver 1997, 288-
290). This methodology is so successful at developing
second language proficiency that it has been the
methodology of choice employed by the US Department of
State’s Foreign Service Institute (Stryker and Leaver 1997,
31-33). Additionally, if the success of a methodology is
determined by how many people are positively impacted,
then we should also bear in mind that a review of the
literature published in 2007 in The Canadian Modern
Language Review references a body of work dating back to
the 1970s that demonstrates that, “below-average students
in early immersion scored just as well as average and
above-average early-immersion students on speaking and
listening tests” (Genesee 2007, 659).

Francis E. Masat’s Glassboro study is one of just two
deliberately designed immersion studies in Computing
that were discovered in the research process for this
paper, although some of the instructional strategies that
he employs are also used in non-immersion settings
(Waite 2017, 8). The other deliberately designed

Computing immersion study, discovered through
research, was undertaken by Miguel Velez-Rubio. His
study formed the foundation of his doctoral dissertation
(2013). Unfortunately, the dissertation fails to share some
much-needed information, notably, how many students
participated by sex and how many of those students were
part of a visible minority group. Velez-Rubio does report
that all of the participants were first year computer
science majors, approximately ⅓ of whom dropped the
course (2013, 128). In Masat’s (1982) immersion study, the
female-male split was 53% to 47% while there was
“minority enrollment” of 17%, 17.4%, and 15.3% in the 12
day, 6 week, and 16 week programs, respectively (326).
Here too, it would be helpful to have more accurate
information about the “minority enrollment”. Masat does
not report on drop-out at all, but the reason for
establishing the immersion programs was to deal with the
overwhelming popularity of the computer programming
course (321).

Most of the Glassboro study findings have already been
reported, but not yet compared to the K-12 French
immersion instructional setting and instructional
approaches. Such a comparison is absolutely vital if we
accept, as Masat and Knuth do, that computer
programming is ultimately a literacy skill and, as such,
that it should be developed at a young age in order to take
advantage of the plasticity of young students’ brains (Eliot
1999, 364). Only time and research will tell us if adopting
such an approach helps to improve enrollment and
retention rates in post-secondary Computing programs,
but there is good evidence in language arts studies
showing that early literacy development is beneficial to
students (Bakken, Brown, and Downing 2007, 265-268;
Jones, Reutzel, and Fargo 2010, 334-338).

The Glassboro study lends itself well to comparison
with K-12 French immersion programs because of the
cross-section of students majoring in different subject
areas (Masat 1982, 327), the fact that the 12 day and 6
week immersion groups had classes every day (323-325) in
the same way that students in French immersion
programs have French immersion classes daily, and
because of the detailed account of type and quantity of
work produced (323-325) which paints a clear picture of
the pattern “learn facts, then practice by creating a lot”:
hallmarks of instruction both in French immersion and in
constructionism (Lapkin et al. 2009, 10; Papert 1986, 6).

The study conducted by Velez-Rubio, on the other
hand, does not give the impression of being an immersion
program that aligns itself well with what happens in K-12
classrooms—for three reasons. First, all of the participants
in his study were computer science majors (Velez-Rubio
2013, 2), which is not reflective of the diverse cross-section
of students in a French immersion program. Second,
Velez-Rubio does not report on whether or not students
had ongoing daily exposure to computer programming: in
K-12 settings, daily practice is an element that frequently
is a part of spoken immersion programs. Note however,

that in general, linguistic immersion is defined by
environment and type of activity—which tends to be
constructionist (i.e.: project-based; content-based
instruction) and to be bolstered by explicit language
activities—rather than by length so that outside the K-12
environment, immersion could happen once a week (or
more often) for ongoing weeks (Stryker and Leaver 1997,
190). Third, Velez-Rubio insufficiently reports on the type
and quantity of work given to students and on the
deadlines, which makes it impossible to know if the work
was project-based (i.e.: content-based instruction;
constructionist) and to have a genuine understanding of
the extent to which students were successful. Indeed, a full
assessment of pedagogical value cannot be provided when
there is no clarity on the types of assignments given to
students, their number, or the amount of time given for
completion.

Thus, for the purpose of his dissertation, Velez-Rubio
created a learning experience that he deemed immersion,
but failed to clearly illustrate why it should be considered
immersion. Unfortunately, as few demographic details
were included, the participants were all computer science
majors, and there is a dearth of details about how learning
was done, what was built or created that was new, and
how students were assessed, Velez-Rubio’s dissertation
cannot be said to contribute in a meaningful way to our
understanding of what is possible in Computing Education
and specifically, in immersion. For similar reasons, the
study that inspired Velez-Rubio’s dissertation, “Immersion
language theory meets CS” (Harper 2006, 85-91), fails to
find an alignment with K-12 French immersion programs
although Harper (2006) does attest to the fact that using
principles of language instruction allowed him to better
understand his students’ needs (88) and says that using the
principles of language immersion created a richer
Computing Education experience for his students (90).

7.2.1. Reading Strategies for Literacy Development
An important part of learning any language is the

ability to read, but in computer programming this is
especially true since the languages used to program are
written and, barring special accommodations, never
spoken. Masat’s Glassboro study is interesting because it
produced excellent results in an accelerated period of time,
but also because he gives us an excellent sense of the
environment in which students learned and the
methodologies used to teach them. Masat’s study is
important for three reasons: first, his study helps to define
what a Computing immersion program includes from an
instructional standpoint, second, he shows that immersion
achieves excellent results, and third, he shows that the
same results can be achieved in either 12 days or 6 weeks.
While Harper and Velez-Rubio’s work do not have much
in common with K-12 French immersion programs they,
along with Masat, did use some of the same reading
strategies that school teachers use to develop literacy
skills in their students.

According to the documents “A Guide to Effective
Instruction in Reading, Kindergarten to Grade 3” , “A
Guide to Effective Literacy Instruction, Grades 4-6”, and
“Think Literacy: Cross-Curricular Approaches, Grades 7-
12”, all published by the Ministry of Education of Ontario,
reading strategies that should be used and taught by
school teachers to develop student literacy skills include:
previewing a text, analyzing the features of a text, finding
organizational patterns, using an anticipation guide,
finding signal words, using context to find meaning,
making inferences, summarizing, questioning, predicting,
synthesizing, sorting ideas, using a concept map,
visualizing, making notes, drawing conclusions, making
judgements, guided reading, shared reading (which
includes paired reading), and independent reading (2003;
2006; n.d.).

Variations of these reading strategies were variously
used by Masat, Harper, and Velez-Rubio. Masat testifies to
the success of these strategies when he writes that

The second half of the class session usually
is devoted to new concepts and material.
Examples are demonstrated on one of the
TRS-80 microcomputers that is connected to
two large TV monitors in the classroom.
[previewing a text] The concept of linking
computing concepts and BASIC commands
to a visual demonstration has been effective
and efficient beyond the author’s original
expectations [analyzing the features of a
text; finding organizational patterns;
guided reading; shared reading].
Students are able to see, hear, and use new
commands and processes immediately.
Moreover, the technique allows students to
amend and change the programs generated
[drawing conclusions; making
judgements; independent reading;
synthesizing; sorting ideas] (1982, 323).

 Harper (2006) and Velez-Rubio (2013) used
similar instructional methodologies with their students
(Harper 2006, 86-87, 89; Velez-Rubio 2013, 19, 58-59). For
them, these instructional methodologies seem to be the
foundations of immersion, whereas they are in fact
reading and writing strategies that can be employed in
both immersion and non-immersion settings.

7.2.2. Writing to Develop Literacy Skills
A joint position statement issued by the International

Reading Association and the National Association for the
Education of Young Children (1999) says that “writing
challenges children to actively think about print. As
young authors struggle to express themselves, they come
to grips with different forms, syntactic patterns, and
themes” (7). Study after study corroborates the position
(Bakken, Brown, and Downing, 2017; Hall et al., 2015;
Jones, Reutzel, and Fargo 2010, 334-338).

The Glassboro immersion study, which relied on now
well-researched and well-endorsed reading strategies to
help students learn at an accelerated pace, also relied on
some writing strategies to further develop literacy skills—
notably, group and shared writing (Stahl, 2014). Indeed,
this is what was happening when students “[took] over
the computer keyboard to make the changes or additions
suggested by the instructor or class” (Masat 1982, 323).
Furthermore, in the Glassboro study, both shared and
independent writing opportunities abounded in the daily
computer lab sessions that students were expected to
engage in. Both in the class setting and in the lab, the
students seem to have had the freedom to work alone, in
pairs, or in groups. In both settings, students learned that
“the power of writing is expressing one’s own ideas in
ways that can be understood by others” (National
Association for the Education of Young Children 1998, 7;
Masat 1982, 323). The fact that Masat had his immersion
students doing computer lab projects daily—where they
were reading and writing—mirrors educational
recommendations that students engage in daily reading
and writing activities in order to develop literacy skills
(Ministry of Education of Ontario, 2003; 2006; n.d.; Jones,
Reutzel, and Fargo 2010, 334-338; Stahl 2015, 263-265).
Indeed, literacy and fluency seem to depend on
immersion.

Given that educational research shows that forms,
syntactic patterns, and themes are developed by writing, it
should perhaps come as no surprise that amongst aspiring
computer programmers, one of the most popular means of
learning the art of computer programming is an exercise
known as Type-What-You-See. This sort of exercise has
long been the go-to both for independent, autodidacts
learning computer languages and people who simply need
to learn something quickly:

Auriel Fournier had no choice but to learn
programming. The ecology PhD student
wanted to use a complex set of calculations
to estimate migratory populations from field
observations, and doing so efficiently
required a software package that ran in the
programming language R. Her principal
investigator (PI) did not know the language.
Neither did anyone else in her lab at the
University of Arkansas in Fayetteville. “My
PI said, 'Figure it out',” says Fournier. She
began googling online tutorials, mastered
the package and now helps other researchers
to make sense of R and similar tools (Baker
2017, 563).

Similar stories are reported by many Computing
students and people who are good programmers who
indicate that they’ve learned computer languages
independently and through repetitive exercises because
they needed to figure it out (Quora, 2016).

Type-What-You-See was introduced to the general
public in a popular instructional tome: “Learn Python the

Hard Way”. The title is the author’s tongue in cheek way
of saying that learning a computer language happens by
doing, notably by reading and re-typing lines of code in
order to develop understanding of forms, syntactic
patterns, and themes (Shaw, 2015).

Accordingly, proficiency in computational thinking
and computational logic is developed by creating projects
through a trial and error process. This echoes “Research
[which] indicates that seeing a word in print, imagining
how it is spelled, and copying new words is an effective
way of acquiring spellings” (National Association for the
the Education of Young Children 1998, 7). Consequently, it
may be true that reading followed by writing helps in the
development of literacy in a computer language just as
much as in a spoken language.

8. SOME CONSIDERATIONS: FORMS
TEACHING,
IMMERSION/CONSTRUCTIONISM, &
INTENSITY
Given the evidence presented in the previous sections

of this paper, it seems that there is a strong case for
treating computer programming as an art rather than a
science. When Masat did so, he used instructional
methodologies that are commonly used in language arts
today—and with great results. Yet, many of the
instructional practices that are used in Computing
programs today are reminiscent of forms (or focus on
forms) teaching which is “discrete-point grammar teaching
[. . .] in which classes spend most of their time working on
isolated linguistic structures in a sequence predetermined
externally by a syllabus or textbook writer” (Long 2000,
179).

Harper (2006, 86) and Velez-Rubio’s (2013, 6) reasons
for experimenting with pedagogical techniques in
Computing Education are absolutely reminiscent of this. A
focus on forms style of teaching also seems to typify the
instructional practices at Valley View University (Sarpong,
Arthur, and Amoako 2013, 31). In a 2009 analysis by
Sheard et al. about the teaching and learning of computer
programming, the use of K-12 reading and writing
strategies such as paired reading and writing are
considered a novelty in Computing instruction (99-100).
Jane Waite’s work (2017) suggests that this still holds true
(37-39).

According to Wu Yakun (2006) of Liaoning University,
he and other professors

Usually [begin their] lectures with the
introduction of the syntax of a particular
programming construct. Then, it is
demonstrated in isolation and later
incorporated into a larger program that
solves a particular problem. Students are
able to understand the construct in isolation
and recognise it in the sample program but

are unable to transfer this knowledge to
their own programming (64).

Yakun’s description of how Computing instruction
occurs at his university accords with aforementioned
accounts. It also parallels what used to happen in core
French classes in Ontario: direct and teacher-centred
instruction, shows of understanding in isolated contexts,
subsequently followed by a failure to transfer skills to
broader and more meaningful communication contexts
(Lapkin, Mady, and Arnott 2009, 19-22). Indeed, unlike
French immersion, we know that the traditional forms
focus methodology (Long 2000, 182) of core French (in
which students focus on exercises that teach grammatical
structure) has been unsuccessful in developing second
language abilities in students because in the past: a) only
3% of Ontario students who began the program in Grade 4
stayed with it until the end of Grade 12, signalling a
retention problem, and b) of those students, most
graduated with little ability to speak or understand the
language, signalling a failure to achieve the objective—
fluency in a second language—even after 9 years of
French lessons (Cummins, 2014).

In order to move away from a forms focus methodology
in core French, the Province of Ontario adopted a version
of the Common European Framework of Reference for
Languages (CEFR) in 2013. A report commissioned by the
province in 2017 shows that the CEFR approach is
methodologically related to French immersion as its focus
is on speaking French for “authentic, everyday uses”
(Rehner 2017, 23) and that after training, teachers are
moving away from the old paradigm (Rehner 2017, 23).
Indeed, in language arts, teaching methodologies and
environments that facilitate student-centred learning and
the use of language for authentic communication are
constructionist, or project-based, because by their very
nature, they encourage student creation. In fact, Papert
(1986) uses speaking French while visiting France as an
example of constructionism (6). Furthermore, in a review
of the literature (2009) dealing with core French teaching
and learning, Lapkin, Mady, and Arnott say that studies of
core French students who have spent an intensive amount
of time in a French learning environment (which they
define as existing when 60 to 75 percent of instruction
occurs in French), have shown that this environment
“allows ‘a language arts approach to teaching FSL’” (17) by
which they mean that there is greater focus on
“communication (oral and written), literacy, interaction
with others, and project-based pedagogical principles”
(17). This, of course, has clear echoes of the Glassboro
study both in design and result.

9. FUTURE STUDIES: BLOCK
PROGRAMMING
The consensus in the field of linguistics is that because

synapses close off as the brain matures, the younger
individuals are when they begin learning a language, the

better (Eliot 1999, 364). In light of that information, it may
be advisable to start learning computer languages at a
young age. Today, students who are not yet able to type
can begin learning some of the principles of
computational thinking and computational logic with
block based programming languages such as Scratch.
While the advantages of this early exposure may parallel
the advantages of early literacy experienced in spoken
languages, there may also be unfortunate problems that
arise from this specific type of Computing instruction.

Notably, the nature of block programming is such that
it hides real lines of code and does not give students the
chance to engage in the type of learning that happens in
Type-What-You-See exercises. Block programming also
limits opportunities to apply reading and writing
strategies that would help develop proficiency in students.
More research needs to be done to understand the extent
to which this masking effect is either a hindrance to
understanding Computing or an on-ramp to typed
computer languages (Waite et al., 2018).

9.1. Student Performance with Scratch
As a contribution to understanding how block

programming fits into the taxonomy of Computing
Education, Meerbaum-Salan, Armoni, and Ben-Ari (2013)
examined how well a group of Israeli middle school
students could learn Computing with the block
programming language, Scratch. The researchers
determined that the group failed to understand key
concepts such as repeated execution, functions, and
concurrency (Meerbaum-Salan, Armoni, and Ben-Ari 2013,
73-75). The research team based their assessment of
student understanding of Computing concepts on the
students’ ability to define said concepts, as opposed to
basing their assessment on the students’ ability to create
computer programs.

While the team acknowledges that creating is
considered a pedagogically more important proof of
understanding than is the definition of terms, they can’t
quite seem to accept it as they say “Creating is considered
to be much more complex than Understanding, but can we
really say that creating a simple project – whose goal is to
move one sprite from one point to another – is cognitively
[more] complex than fully understanding the concept of
concurrency?” (71). Perhaps the researchers, themselves
graduates of computer science programs that have a bias
toward theory which is reflected in teaching and
assessment practices, cannot accept that the skills needed
to create computer programs require a different
pedagogical approach for their development and that
there is also a need for different assessment practices to
understand and evaluate student learning. Their
aforementioned rhetorical question is reminiscent of
Donald E. Knuth’s 1974 opinion that for many of his
colleagues in the field of artificial intelligence, computer
programming is an artifact (669). Knuth also believes that
whatever discoveries are made in the science of

Computing serve to create better art (669), but art
demands an outlet for expression that is not constrained
by definition.

While the 2013 study by Meerbaum-Salan, Armoni, and
Ben-Ari shows that the middle school students they
followed had difficulty defining certain Computing
concepts, the study also shows that students had a lot of
difficulty creating a functional computer program with
Scratch. Unfortunately, in the final analysis, the
researchers deem student performance quite disappointing
since the mean grade for creating was only 32.8 (73). It
seems that the students were unable to code a Scratch
program from this requirement,

Construct an animation with two sprites.
The sprites will be placed in two corners of
the stage facing the center of the stage. Pick
one sprite whose task will be to broadcast
the message switch to the other sprite. After
the message is received the two sprites will
change their places using the instruction
glide 1 secs to x: 0 y: 0. During the process of
changing places, the sprites will say
something to each other when they meet
(73).

What stands out is that by all the metrics for success
established by this team of researchers, the students seem
to have done poorly. The results outlined above speak to
some of the failures. However, the researchers had also
previously established that students could be considered
to have successfully learned some Computing if they
could give good definitions of Computing concepts (71).
While student failure in that regard was less abject than it
was in the creation of computer programs, the results
were still weak: the report shows that in the post test,
students correctly answered only 7.5% of questions about
Multistructural Understanding, only 37.5% of questions
about Multistructural Applying, and only 62.5% of
questions about Relational Applying (75).

The research team of Meerbaum-Salan, Armoni, and
Ben-Ari published a follow-up study in 2015. The 2015
study included students who had learned Scratch (a visual
language) during the first, 2013, study. The 2015 study
focused on student and teacher experiences in high school
as students moving from middle school had their first
exposure to a textual computer language: either Java or
C#. The results of this study highlight the limitations of
block programming; more specifically, Scratch.

First, the researchers found that students who had
previously learned Scratch (i.e.: “Scratch students”)
recognized some Computing concepts while those who
had had no prior exposure, did not (Meerbaum-Salan,
Armoni, and Ben-Ari 2015, 9). Second, they also found
that experienced computer science teachers ,who were
teaching Scratch students, reported being able to teach
concepts in Java or C# more quickly than in years prior
(9). This is a hopeful bit of information, yet without
further study, we cannot know how much exposure in

middle school to a computer language of any kind would
make for faster conceptual explanations to those same
students in following years. Third, they found that on
interim test results measuring student ability to create a
computer program in Java or C#, there was no significant
difference in knowledge and understanding between the
Scratch students and those students with no Scratch
coding experience (8). In the final analysis, they say that
the Scratch students had final test scores for program
creation that were better in a statistically significant way
(8). However, the final test question for computer program
creation “(e) [Relational creating] Write a program
segment that gives the same results but that uses only one
loop” (13), is a question that can be answered with logic
learned in Scratch that is supported in Java and C#, that
can compile when run, but which would be assessed as
inelegant, qualitatively poor, and simply wouldn’t have
been taught to students studying Java or C#. For example,

while (1 == 1) { LOOP }
a) will compile, b) is similar to an unbounded or

“forever” loop in Scratch, and c) is poor form when more
straightforward, bounded, loops like “for … next” are
available.

In other words, Scratch students might have answered
the final test question using unbounded loops, while non-
Scratch students would have attempted to answer with
bounded loop logic because that was the only logic they
learned. It is possible that the Scratch students received
points on their final test for being technically correct in
their work: the report does not explain what logic was
used to answer the question and does not look at whether
or not there was a trend amongst the two different groups
of students. Additionally, there is no reportage on what
interim test questions (for program creation) were asked,
making it difficult to know why the interim test results
showed no significant differences between the groups of
students, while the final test question for program
creation had Scratch students pulling ahead.

There remains another outstanding question for this
research team: Why was there a jump in Scratch student
ability to write code that compiles between 2013 and 2015?
Given that the test results for program creation in the
2013 study were atrocious while Scratch student test
results in 2015 were not, this question must be answered.
A possible answer is that having a visual language
provides a valuable, concrete, starting point for teaching
and learning abstract thought, but that block
programming languages inhibit the expression of
computational thinking and computational logic to the
point where coding in a block programming language is
very difficult to do: requirements-based programming
becomes slow and laborious.

In an article published in January 2018, Jane Waite et
al. discuss the fact that novice teachers of the block
programming language Scratch, feel that they have been
learning computer programming through trial and error
(Waite et al., 2018). The researchers show that teachers

participating in the study don’t clearly understand the
concept of algorithms and have difficulty pointing out the
algorithms created in Scratch (Waite et al., 2018). Yet in
constructionism and in French immersion, trial and error
is a key component of eventual success in learning. If
block programming languages such as Scratch fail to allow
coherent development of computer programs and
coherent understanding of a computer program’s
component parts, it may not be due to a failure in the
theory of constructionism, but rather due to a failure in
the pedagogical approach of block programming.

This possibility is addressed by Cynthia Solomon
(2015), who pioneered Logo (a visual programming
language) with Seymour Papert and Wally Feurzeig, and
who says in a lecture preserved on YouTube, that while
she admires the community that Scratch has built, in
Scratch the “code goes on and on and on and on” which
means that there is little room to practice valuable
computer programming skills: procedures, sub-
procedures, and recursion—a very common type of
algorithm (Solomon, 2015). When users of Scratch, such as
the aforementioned teachers in Waite et al.’s 2018 study,
have difficulty understanding algorithms, it would appear
that the masking nature of block programming languages
hinders a trial and error learning process. In addition,
while content-based instruction represents the bulk of the
work done in French immersion, there is evidence that
students benefit from the introduction of direct learning
language activities to clarify concepts discovered or used
in project-based learning (Grabe and Stoller 1997, 6). This
type of activity is difficult to do in block programming
languages because they mask syntax and vocabulary and
truncate the full expression of computational thinking and
computational logic.

10. CONCLUSION: LITERACY, SOFT
SKILLS, & COMPUTER
PROGRAMMING AS AN ART
As the world moves ever faster towards full

automation and genuine artificial intelligence we face the
prospect of enormous economic changes. We also see that
the calls made in the 1970s and 80s for national curricula
in Computing are finally being heeded. Fundamentally,
the curricula should be based on research. Yet, at present,
we are far away from having any definitive answers about
what instructional approaches and methodologies work
best. It will be years, maybe even decades, before we have
excellent information. In the meantime, educational
researchers can look outside the field of computing
education for guidance in instructional methodologies and
approaches.

This research paper has focused on drawing parallels
between spoken language development and the
development of Computing skills. Of distinct importance
is the evidence brought to bear that computer
programming is an art as much as it is a science. An

analysis of some of the literature published by Donald E.
Knuth and Francis E. Masat in the 1970s and 80s shows
that computer programming education did not always fail
students. Masat’s work in particular sheds some light on
instructional methodologies that worked—and most of
those are rooted in constructionism, reading and writing
strategies, and a learning environment similar to that of
French immersion. Ultimately, educators who are trained
in teaching language arts and literacy skills may make the
best computer programming teachers. While more
research does need to be done, there is reason to believe
that a Computing immersion program which (through a
creative trial and error process) engages critical and
creative thinking competencies in K-12 students can
prepare them for the new world. In the final analysis,
treating computer programming as an art would allow
educators to simultaneously: a) develop literacy skills in
either a native or a second spoken language, b) develop
computer programming skills and, c) use collaborative
reading and writing strategies to develop students’ soft
skills so that they do well in the years to come.

REFERENCES
Baker, Monya. 2017. “Scientific Computing: Code alert.”
Nature 541, no.7638 (January): 563-565.
https://doi.org/10.1038/nj7638563a.

Bakken, Linda, Nola Brown, and Barry Downing. 2007.
“Early Childhood Education: The Long-Term Benefits.”
Journal of Research in Childhood Education 31, no.2
(February): 255-269.
https://doi.org/10.1080/02568543.2016.1273285.

Brown, Bob. 2011. “Why there's no Nobel Prize in
Computing.” Network World: Data Centers, June 6, 2011.
https://www.networkworld.com/article/2177705/data-
center/data-center-why-there-s-no-Nobel-prize-in-
computing.html.

Cann, Oliver. 2016. “Five Million Jobs by 2020: the Real
Challenge of the Fourth Industrial Revolution.” The World
Economic Forum (January).
https://www.weforum.org/press/2016/01/five-million-jobs-
by-2020-the-real-challenge-of-the-fourth-industrial-
revolution/.

Cummins, Jim. 2014. “To What Extent are Canadian
Second Language Policies Evidence-Based? Reflections on
the intersections of research and policy.” Frontiers in
Psychology 5 (May): Article 358.
https://doi.org/10.3389/fpsyg.2014.00358.

Dean, Cornelia. 2007. “When Science Suddenly Mattered,
in Space and in Class.” The New York Times: Science,
September 25, 2007.
https://www.nytimes.com/2007/09/25/science/space/25edu
c.html.

Eliot, Lise. 1999. What’s Going on in There?: How the Brain
and Mind Develop in the First Five Years of Life. 1st ed. New
York: Bantam Books.

Fiske, John R., Marvin T. Batte, and Reed D. Taylor. 1985.
“A Computer Literacy Course for the College of
Agriculture: A Survey of Student Attitudes, Evaluation
and Performance.” North Central Journal of Agricultural
Economics (July): 119-128.
https://kb.osu.edu/bitstream/handle/1811/65725/CFAES_E
SO_1170.pdf?sequence=1&isAllowed=y.

— — —. 1985. “Course Proposal: Providing Computer
Literacy.” North American Colleges and Teachers of
Agriculture Journal (December).
https://www.nactateachers.org/attachments/article/1207/F
iske_NACTA_Journal_December_1985.pdf.

Genesee, Fred. 2007. “French Immersion and At-Risk
Students: A Review of Research Evidence.” Canadian
Modern Language Review 63, no.5 (August): 655-687.
https://doi.org/10.3138/cmlr.63.5.655.

Giannakos, Michail N., Ilias O. Pappas, Letizia Jaccheri,
and Demetrios G. Sampson. 2016. “Understanding student
retention in computer science education: The role of
environment, gains, barriers and usefulness.” Education
and Information Technologies 22, no.5 (October).
https://doi.org/10.1007/s10639-016-9538-1.

Grabe, William, and Fredericka L. Stoller. 1997. “Content-
Based Instruction: Research Foundations.” In The Content-
based Classroom: Perspectives on integrating language and
content, edited by Marguerite Ann Snow and Donna
Brinton, 5-21. London: Longman Publishing.
http://www.univie.ac.at/Anglistik/Dalton/SE08%20clil/Stol
ler&Grabe970001.pdf.

Hall, Anna H., Amber Simpson, Ying Guo, and Shanshan
Wang. 2015. “Examining the Effects of Preschool Writing
Instruction on Emergent Literacy Skills: A Systematic
Review of the Literature.” Literacy Research and Instruction
54, no.2 (January): 115-134.
https://doi.org/10.1080/19388071.2014.991883.

Harper, Steve. 2006. “Immersion language theory meets
CS.” Journal of Computing in Small Colleges 22, no. 2
(December): 85-91.

India. 2017. “95% engineers in India unfit for programming
jobs: Study.” Live Mint: Industry April 20, 2017.
https://www.livemint.com/Industry/cFUpp8wN9sXhXBVa
BXRHlM/95-engineers-in-India-unfit-for-software-
development-jobs.html.

Jones, Cindy D’On, D. Ray Reutzel, and Jamison D. Fargo.
2010. “Comparing Two Methods of Writing Instruction:
Effects on Kindergarten Students’ Reading Skills.” The
Journal of Educational Research 103, no.5 (August): 327-
341. https://doi.org:10.1080/00220670903383119.

Knuth, Donald E. 1974. “1974 ACM Turing Award Lecture:
Computer Programming as an Art.” In Communications of
the ACM 17, no. 12. (December): 667-673. New York: NY:
ACM. https://doi.org/10.1145/1283920.1283939.

Lapkin Sharon, Callie Mady, and Stephanie Arnott. 2009.
“Research perspectives on Core French: A Literature
Review.” Canadian Journal of Applied Linguistics 12, no.2.
6–30.
https://journals.lib.unb.ca/index.php/CJAL/article/view/19
936/21811.

Long, Michael H. 2000. “Focus on Form in Task-Based
Language Teaching.” In Language policy and pedagogy:
Essays in honor of A. Ronald Walton, edited by R. D.
Lambert, E. Shohamy, and A. R. Walton, 179-192.
Philadelphia: Benjamins.

Masat, Francis E. 1981. Computer Literacy in Higher
Education. Washington, D.C.: American Association for
Higher Education.

— — —. 1982. “An Immersion Course in Basic.” Journal of
Educational Technology Systems 10, no. 4 (June): 321-329.
https://doi.org/10.2190/cl7h-bdxq-t03f-hpbh.

Meerbaum-Salan, Orni, Michal Armoni, and Mordechai
Ben-Ari. 2013. “Learning Computer Science Concepts with
Scratch.” ICER ‘10 Proceedings of the sixth international
workshop on Computing education research workshop.
(August): 69-76. Aarhus, Denmark: ACM.
https://doi.org/10.1145/1839594.1839607

— — —. 2015. “From Scratch to “Real” Programming.” ACM
Transactions on Computing Education 14, no. 4 (February):
Article No. 25. https://doi.org/10.1145/2677087.

Ministry of Education of British Columbia. “BC Schools -
Enrolment and Completion by School.”
Catalogue.data.gov.bc.ca.
https://catalogue.data.gov.bc.ca/dataset/bc-schools-course-
enrolment-and-completion-by-school (accessed April 12,
2018).

Ministry of Education of Ontario. 2003. “A Guide to
Effective Instruction in Reading, Kindergarten to Grade 3:
Ontario Early Reading Strategy.”
http://www.eworkshop.on.ca/edu/resources/guides/Readi
ng_K_3_English.pdf.

— — —. 2006. “A Guide to Effective Literacy Instruction,
Grades 4 to 6.” Foundations of Literacy Instruction for the
Junior Learner 1, no.1
http://www.eworkshop.on.ca/edu/resources/guides/guide_
lit_456_vol_1_pt1_junior_learner.pdf.

— — —. “Think Literacy: Cross-Curricular Approaches,
Grades 7-12.”
http://www.edu.gov.on.ca/eng/studentsuccess/thinkliterac
y/files/Reading.pdf.

— — —. “Course enrolment in secondary schools.”
Ontario.ca. https://www.ontario.ca/data/course-
enrolment-secondary-schools (accessed April 8, 2018).

National Association for the the Education of Young
Children. 1998. “Learning to Read and Write:
Developmentally Appropriate Practices for Young
Children: A joint position statement of the International
Reading Association and the National Association for the
Education of Young Children.” Young Children 53, no.4
(July): 30-46.
https://www.naeyc.org/sites/default/files/globally-
shared/downloads/PDFs/resources/position-
statements/PSREAD98.PDF.

O'Brien, Carl, Joe Humphreys, and Nora Ide McAuliffe.
2016. “Concern over drop-out rates in computer science
courses.” The Irish Times: Education January 11, 2016.
https://www.irishtimes.com/news/education/concern-
over-drop-out-rates-in-computer-science-courses-
1.2491751.

Paikin, Steve. 2016. “The History of French Immersion.”
Toronto: TVO. Transcript.
https://tvo.org/transcript/2391707/video/programs/the-
agenda-with-steve-paikin/the-history-of-french-
immersion.

Papert, Seymour. 1980. Mindstorms: Children, Computers,
and Powerful Ideas. Basic Books.

— — —. 1986. Constructionism: A new opportunity for
elementary science education. Massachusetts:
Massachusetts Institute of Technology, Media Laboratory,
Epistemology and Learning Group.

Quora. 2016. “How good is Learn Python the Hard Way
for learning Python and coding.” (May)
https://www.quora.com/How-good-is-Learn-Python-the-
Hard-Way-for-learning-Python-and-coding (accessed
March 25, 2018).

Reach Capital. 2017. “Field Report on K12 CS.” (March).
https://drive.google.com/file/d/0B2eCjHNmaBGZeGpwTG
lRTUJKZlU/view.

Rehner, Katherine. 2017. “The CEFR in Ontario:
Transforming Classroom Practice.” Curriculum Services
Canada. https://transformingfsl.ca/wp-
content/uploads/2017/12/LGY769-DELF.pdf.

Sarpong, Kofi Adu-Manu, John Kingsley Arthur, and
Prince Yaw Owusu Amoako. 2013. “Causes of Failure of
Students in Computer Programming Courses: The Teacher
Learner Perspective.” International Journal of Computer
Applications 77, no.12 (September): 27-32.
https://doi.org/10.5120/13448-1311.

Schwab, Klaus. 2016. The Fourth Industrial Revolution. New
York: Crown Business.

Shaw, Zed. 2015. Learn Python the Hard Way: A very
simple introduction to the terrifyingly beautiful world of
computers and code. Upper Saddle River, NJ: Addison-
Wesley.

Sheard, Judy, S. Simon, Margaret Hamilton, and Jan
Lönnberg. 2009. “Analysis of research into the teaching
and learning of programming.” ICER ‘o9 Proceedings of the
fifth international workshop on Computing education
research workshop. (August): 93-104. Berkeley, CA: ACM.
https://doi.org/10.1145/1584322.1584334.

Solomon, Cynthia. 2015. “Oct 2015 - Cynthia Solomon -
Computer Cultures: Logo, Scratch and Beyond.” Uploaded
on Oct 9, 2015. YouTube, 1:12.
https://www.youtube.com/watch?time_continue=90&v=6
OsmkUVWZY0.

— — —. 2018. Logothings.
https://logothings.wikispaces.com/. This website, Cynthia
Solomon’s first hand account of her work with Papert and
Feurzeig, will be defunct as of July 31, 2018. As much of it
as possible is being preserved.

Stahl, Katherine A. Dougherty. 2014. “New Insights About
Letter Learning.” The Reading Teacher 68, no. 4
(November): 261-265. https://doi.org/10.1002/trtr.1320.

Stryker, Stephen B., and Betty Lou Leaver. 1997. Content-
Based Instruction in Foreign Language Education: Models
and Methods. Washington, D.C.: Georgetown University
Press.

The Royal Society. 2017. After the reboot: computing
education in UK schools. London: The Royal Society.
https://royalsociety.org/news/2017/11/invest-tenfold-in-
computing-at-schools/.

U.S. Census Bureau. 2016. U.S. Census Bureau QuickFacts:
United States.
https://www.census.gov/quickfacts/fact/table/US/PST0452
16

Velez-Rubio, Miguel. 2013. “Introductory Computer
Programming Course Teaching Improvement Using
Immersion Language, Extreme Programming, and
Education Theories.”
https://dl.acm.org/citation.cfm?id=2574995.

Waite, Jane. 2017. “Pedagogy in teaching Computer
Science in schools: A Literature Review.” In After the
reboot: computing education in UK schools. London: The
Royal Society.
https://royalsociety.org/~/media/policy/projects/computin
g-education/literature-review-pedagogy-in-teaching.pdf

Waite, Jane Lisa, Paul Curzon, William Marsh, Sue
Sentance, and Alex Hadwen-Bennett. 2018. “Abstraction in
action: K-5 teachers uses of levels of abstraction,
particularly the design level, in teaching programming.”
International Journal of Computer Science Education in
Schools 2, no. 1 (January): 14-40.
https://doi.org/10.21585/ijcses.v2i1.23.

Wingate, Richard. 2018. New Interdisciplinary Computing
Education Research Centre (CERC) at KCL. London: King’s
College. https://blogs.kcl.ac.uk/cser/2018/01/12/new-
interdisciplinary-computing-education-research-centre-
cerc-at-kcl/

Yakun, Wu. 2006. “Applying a hybrid problem-based
learning method to the teaching of computer
programming.” The China Papers: Tertiary Science and
Mathematics Teaching for the 21st Century (November): 63-
66.
https://web.archive.org/web/20180411182505/http://scienc
e.uniserve.edu.au/pubs/china/vol6/IT6.pdf.

