How coding helps with success in the learning of mathematics Written by Laura Gini-Newman and Peter Kuperman

How helpful is coding in achieving success in mathematics?

To be a competent mathematical thinker, a person needs to possess a broad range of abilities to think, act and communicate to effectively solve challenging, often unfamiliar, problematic tasks across a range of contexts, situations and purposes involving mathematics (PISA definition of mathematical literacy). Although the usefulness of mathematics is more obvious to many when a person is required to act or communicate mathematically, thinking is at the core of all mathematical competencies and success.

Since a person cannot think, act or communicate effectively without possessing a strong ability to think critically, both mathematical and coding success are highly dependent on the development of these thinking competencies. A synthesis of the mathematical skills or competencies identified by educational ministries and post-secondary educational institutions across Canada, in the American Common Core Standards of Practice, as well in Asia, Australia and the United Kingdom suggests 10 key thinking competencies are needed to proficiently think, act and communicate mathematically. Interestingly, these same competencies are applied in the practice of coding. As such, learning to code helps students learn how to be success in mathematics and vice versa.

The following table clarifies the nature of each of the 10 key mathematical thinking competencies and illustrates the role each plays in mathematics and coding allowing us to understand the degree to which learning to code and learning mathematics are related. It is clear from the details in this table that coding and mathematics require the same types of thinking or reasoning to achieve success.

Thinking Competency:	Example of coding through	How sound reasoning in coding
Sound reasoning	sound reasoning	neips with math
Sound reasoning refers to the ability to think	Let's say you want to create a maze program.	Learning how to code teaches you how to manage
about the quality of one's reasoning to ensure	Before you start to code, you will think about	projects and problems. It encourages effective
that it is sound or reasonable This is an	the parameters and how to best pull the project	decision making related to planning; to the
umbrella competency that affects the	together. You consider:	strategic selection of algorithms and their logical
quality of all other thinking competencies	What is the best size for the maze?	order to create a general plan that is then
related to thinking, acting and communicating.	What is the best way to organize the code?	continuously tested for soundness through a
	What algorithm are needed to create the maze?	thoughtful implementation process. Coding
Reasoning is sound when decisions are	Will the maze have many dead ends or only a	teaches students how to make a number of
made following the assessment of plausible	few?	decisions important to the study of mathematics in
options in light of criteria based on	What problems might be encountered the code	this process:
understanding and evidence. These	is being created and how will the code	• to know and check that what they are doing
decisions typically involve on-going sense	effectively deal with these problems.	as they solve math problems is reasonable
making and reflection to promote the use of		and makes sense;
the most productive ways to manage	In coding, sound reasoning is the on-going	• to take the time to be reflective so that
problems and learn from mistakes while	process of predicting or imagining what the	when they solve problems, they recognize
developing fluency and automaticity.	end result will be and strategically creating the	

Every aspect of mathematics and coding demands sound reasoning. Mathematicians reason to develop conceptual understanding, to communicate, structure and represent ideas effectively, to strategically manage problems, to know what tools to use and to what degree concepts and ideas are related.	code the produces what is imagined, constantly selecting, adjusting, replacing, and checking for the effectiveness of its building blocks to best meet the coding objective in the easiest, most-straightforward manner.	 weaknesses and errors in their approach, and are able to find ways to strengthen or correct them; to take the time to come how up with a number of good ideas to solve problems then triage these ideas to determine the best one to use.
Coders reason to help understand new coding languages, to plan strategically, starting from the first line of code, the best way to fulfill the objective of the program to be designed. They reason soundly when they anticipate problem areas and think about how to manage problems and		
mistakes even as they are being made (debugging).		

Thinking Competency:	Example of coding using	How conceptual reasoning in coding
Conceptual reasoning	conceptual reasoning	helps with math
Conceptual reasoning refers to the ability	Every coding project pushes the boundaries of	Learning how to develop an understanding of
o independently construct understandings	what needs to be known in terms of concepts.	concepts in code teaches students how to
nathematics or coding, and to identify	Take learning how to draw a checkerboard for	by teaching a way of thinking that:
nd use these understandings to effectively	example. This leads to a thorough	• creates understanding by exploring a
ommunicate solutions to these problems.	across and 8 times down) and of an if	number of examples of a concept to determine what properties define that
	statement (ifthen some of the squares are	concept; for example, a polygon is a closed
n mathematics , all ideas, theorems, and rinciples are concepts that can be defined	black, or some white).	geometric figure; with linear sides, number of internal angles equal to the number of
sing a set of properties; characteristics that	By having students experiment or explore what	sides and angle size dependent on the
old true for all examples of a concept. In	properties define all loops in coding, students	number of sides;
hathematics, all symbols represent	learn about the structure, its meaning, and the	 helps students to generalize patterns by
oncepts. To be able to communicate	different ways it might look. To understand the concept of a loop in coding students consider	thinking inductively to seek mathematical

thoroughly understood. Concepts in	a wide range of different examples of loops	figure that has 4 sides, 4 vertices, 4 ninety
mathematics include: equality (equal sign);	such as while, for, do loops in order to	degree angles; and sides of equal length;
the operations of addition, subtraction,	generalize what all loops have in common. In	• helps students understand that symbols
multiplication and division (+, -, x. /),	computer programming, all loops contain:	communicate a specific generally accepted
fractions, exponents, rates, functions, a	• a sequence of instructions;	meaning in code; for example a ";" means
limit or integralto name of few. Consider	• a sequence that is repeated	the end of a statement and that the
another example: understanding that the	continuously; and	instruction is complete while in math an
word 'integral' and that the symbol for	• repetition that ends when a certain	equal sign means the value represented on
integral both mean the area under a curve	condition is met.	either side is the same; and
allows people to convey more information	This also allows students to clearly	• reasoning inductively, when proving in
with fewer words helping to make	differentiate different loops by considering to	math, can also be seen as infinite loops of
communication more efficient and	what degree a particular type of loop meets	reasoning. Internalizing the concept of loop
effective, and universally understandable.	these properties. Take an infinite loop for	through coding supports the understanding
	example as a tester. This loop lacks a	of the deeper, yet related, concept of
In coding, the same hold true. To code	functioning exit routine. The result is that the	mathematical induction.
effectively requires an understanding of a	first 2 properties are met (the loop repeats	
for loop, an it statement, or an objectto	continually) however it does so until the	
students connot use the symbolic lenguage	operating system either terminates the program	
of code effectively and independently	with an error or until some other event occurs	
of code effectively and independently.	(such as having the program automatically	
	terminate after a certain duration of time)	
	rather than a condition being met.	
	A loop is a fundamental concept in coding:	
	without it effectively creating and	
	understanding code is virtually impossible	
	and standing code is virtually impossible.	

Thinking Competency:	Example of coding using	How representational reasoning in coding
Representational reasoning	representational reasoning	helps with math
Representational reasoning refers to the ability to effectively communicate (understand or interpret and visualize or represent) ideas and concepts across a variety of forms. This is one component of the broader thinking competency of communication.	Learning how to build a computer card game requires a coder to think about how they are going to represent the 52 cards in a deck of cards. They could use numbers and letters, e.g. 9H for the 9 of hearts; a simple graphic, or an animated graphic or any other set of symbols intended to communicate this idea. In laying	Representing ideas in many different ways is a fundamental competency in coding and can only be achieved if the coder reasons effectively about which representations are most appropriate given their purpose and the needs of the user, and how all effectively capture the idea the coder wishes to communicate. This competency is equally

In mathematics , this might include words, graphs, symbols, tables, pictures, visuals, algebra. For example, the idea of equality can be shown using pictures, sets, geometric figures, numbers and symbols. Variance can be shown using a bar graph, bell curve, symbol or number. In coding , representational reasoning is all about building good user interfaces making it easy for the user to see what a computer program is designed to represent. This is basically a way of creating a good communication channel between the user and the person or team who designed the computer program or software application. With strong representational reasoning skills, this communication channel will be robust and easy to understand.	out a hand of cards on the screen, you could place them side by side, overlap them, show only half the card, or just enough to identify the card. A coder also has to decide, of the 52 cards, which ones will be in the player's hand. This information will come from a database, in which the cards will be represented by numbers and symbols that will also have to connect to how the cards will be visually displayed. They will decide how to sort the cards in the player's hand properly, e.g. will you group them by number or by the four suits. All of these decisions require representational reasoning so that all the representations communicated in the code show the same ideas accurately and in the most appropriate way to effective meet the purpose of the code. Needing to make all these choices when designing a computing project requires a student to reason about how to represent ideas to build a user interface.	 Important in mathematics. Developing this reasoning capacity in coding classes helps students be more successful in mathematics as students become better able to: show mathematical ideas in many different ways effectively; select the most appropriate representations to help them solve a problem at various stages in the problem-managing process (e.g. how to better understand what the problem is; how to best communicate a solution to a problem given the context and user of the solution) better understand how various mathematical ideas are related or connected (e.g. seeing visual representations of addition and subtraction allows a young child to understand how they are both similar but different in important ways; seeing different functions graphically, in table form and algebraically helps older students understand how various function are both similar and different in important ways;
--	--	---

Thinking Competency:	Example of coding using	How structural reasoning in coding helps with
Structural Reasoning	structural reasoning	math
Structural reasoning refers to the ability	Learning how to sequence the steps of a	Being able to reason structurally involves the
to understand and use structure and form to	solution with the fewest steps possible in an	ability to communicate effectively using logically
effectively communicate ideas.	order that logically develops the solution	sound structures and forms that tend to be, for the
Structural reasoning ensures not only	without including redundant ideas is another	most part, generally accepted language
knowledge but understanding of the	fundamental competency of computer science.	conventions. Learning to code helps students
generally accepted conventions of the		

language of mathematics or computer programming so that it can be read and written by anyone in the field. This form of reasoning is another component of the broader competency of communication.

In **mathematics**, this includes an understanding and use of the rules of logic in both an informal or formal sense; including inductive and deductive logical reasoning to arrive at generalizable structures and forms and to identify, interpret and create specific examples of these generalizations. Take for example the form and structure of an equation using a variety of operations. BEDMAS is a generalized convention that allows an equation to effectively communicate its meaning.

In coding, generalized structures and forms that are the conventions of a computer language are needed to build computing projects that derive solutions in a logical manner. For example, being able to understand that a loop is a structure that allows the same steps repeated multiple times in the same way allows the coder to communicate these steps more effectively in a manner understood by all computer scientists. Reorganizing a set of steps (called refactored in computer science) allows the same end result to be delivered in a more efficient and logically sound way. All coding conventions, e.g. tabbing, spaces, indentations, parentheses, brackets formatting make the code readable.

An example of this in coding is when ordering a list of names alphabetically, there are several sorting algorithms. The most basic one (albeit not the most efficient) involves comparing pairs of names one by one, deciding which one comes first, and setting them into the correct place in an array. These are the logical sequence of steps taken to develop the solution to the problem of ordering alphabetically without including redundant information or steps. These steps serve as a map for the writing of the specific code that will perform the task of sorting.

Another example of how structural reasoning in coding works is trying to locate an address on a map after it has been typed in. There are at least 4 parts to an address: a) the street number, b) the street name, c) the city, and d) the Postal Code or Zip code. There are also the province or state and the country, but let's consider the first four in this example. Once an address has been entered into a software application, the problem to be solved is to find the correct location of that address on a map; a map which contains hundreds of millions of addresses.

The solution is to narrow down all the addresses in 4 stages until we get to the unique address that was originally entered. Is it more efficient and logical for the 1st step to be "All the addresses with street number X"; "All the addresses with street name Y"; "All address in a specific city"; or "All addresses with a specific postal code"? What should logically go next step? Figuring out the answers to these questions involves structural reasoning.

develop the capacity to reason structurally in mathematics so that they can:

- know how to appropriately use the structure and form of the language of mathematics to effectively and universally communicate mathematical ideas, problems and solutions (simplified form of an equation using BEDMAS)
- understand why and how a structure has become a generalized way to communicate (reason inductively to understand why and how mathematical structures and forms have been created and eventually how to think through the development of new innovation structures of their own; for example, does it matter where to place an equal sign in an equation and if so why?)
- understand and effectively apply logic to describe and solve mathematical problems and present solutions effectively (in the simplest, most justifiable way without the inclusion of unnecessary or redundant evidence)

Learning to code allows students to understand the importance of structure and form, of logical sequences, and of presenting information in a proper order, using appropriate conventions to format ideas in the most effective manner that will be accessible to all its users. How students reason structurally in coding is also how they reason structurally in math.

In both math and coding structural reasoning also helps the limited capacity of the human brain to deal with limitless amounts of complex information in an effective manner. The complexity of rich, meaningful problems students

		are invited to solve is most often far beyond what even the highest trained mind can contemplate at once. The way both coders and mathematicians tackle this limitation is through structural reasoning.
--	--	--

Thinking Competency:	Example of coding using	How detail-minded reasoning in coding
Detail-minded Reasoning	detail-minded reasoning	helps with math
Detail-minded reasoning refers to the ability to pay close attention to details when completing a task to fully understand the complexity of the task and to respond with accuracy and precision. In mathematics , this refers to the ability to consider every relevant detail in a problem no matter how small or insignificant it may first appear, and to consider how it may impact on the arrival of a solution to a mathematical task or problem. For example, when asked to find the total number of oranges across a set of 5 baskets, all fruit must be considered to determine which are oranges in order to arrive at the most accurate count of oranges. Or, if a student is trying to determine their final mark on a test given in decimal form to 4 decimal places, the student must consider all numbers following the decimal to decide which numbers are relevant to determine their mark as a percentage whole number. In coding , a programmer must pay close attention to the details of the code to clarify whether the code will effectively meet the	Often in computer science being able to count properly in abstract situations means the difference between a program that works and one that falls apart. Take for example, if you have a field that is 100 meters wide and you want to put fencing along the entire length with fence posts every 10 meters, how many fence posts do you need? The answer is 11 – you need one for every 10 meters plus one more at the very beginning or else the first section of fencing will fall down. This is known as the fence-post problem, which illustrates the "off by one" error that occurs often in computer science. This problem illustrates the importance of detail-minded reasoning in computer science. When building a video game, figuring out when two objects collide, or if when a hero jumps from one platform to another, if he successfully lands on the new platform, are important. Paying attention to elements that may initially seem trivial and unimportant may have a significant impact on the outcome of a program. In this case, the coder must decide the degree of error he should allow because visually, players will be upset if it looks like	 Learning to think about all details or possible outcomes when coding ensures a coder creates a well-functioning successful program. The ability to do so is also of fundamental importance in mathematics. When students reason in this way in coding they transfer this ability to math so that they: understand all the potential complexities of a math problem before attempting to solve it; ensure they derive solutions that are <i>accurate and precise</i> rather than arriving at incomplete or inaccurate conclusions/solutions prematurely; generate a <i>fulsome</i> set of mathematical ideas to consider when solving a problem; learn to persevere.

purpose the program and to make sure it does so in all situations, including odd-ball situations where a creative or modified approach to the solution is required such as with Edge Cases – cases that are nonstandard like being at the very edge of a screen, having a price less than zero when applying a refund, or having a four point play in basketball (foul plus a three pointer). It is also needed when dealing with unusual situations in which there are many permutations at play.

Often in computer software development a non-technical person asks for a new feature in the program, for example, I want all employees to get a notice when their paycheck has been deposited. In a typical case if each employee's bank information is correct, everything runs smoothly. The job of a good software engineer is to think about all the ways this feature can break down. Let's say the bank has locked or frozen the employee's account – the bank information is correct but an odd-ball (edge case) situation has occurred. What should the software do? Being detail-minded means that before the employee gets mad because the software doesn't work properly, the engineers have actually accounted for all plausible unusual situations so the employee gets an appropriate message given the situation. In essence, thinking about all the details needed to solve the problem allows a coder to handle the nuances and complexities of all possible situations, not just the simple or obvious standard situations.

they made the jump but the code says they didn't.

The same issue exists when a video game is trying to figure out if a hero and an enemy or a hero's bullet and an enemy, have collided. If the collision does or does not happen leads ultimately leads to the player being either rewarded or punished. If it looks like something happened one way, but the software records it a different way, a very significant "off by one" type error occurs. Minimizing or eliminating the difference between the code and the visual experience by the user involves detailed-minded thinking.

Computers are the most ruthless teachers of detailed-minded thinking. A comma out of place can cause the entire program to break down. Even if a program seems to run smoothly, it may produce useless or misleading results if the slightest of details is overlooked in its design. Only when every single possibility is carefully accounted for in the code will the machine produce the desired results.

These are but a few examples that illustrate the way in which good coders think about all problems; they consider all the details, nuances or unusual situations in the problem before beginning to and while they code.

Thinking Competency:	Example of coding using	How problem-managing reasoning in coding
Problem-Managing Reasoning	problem-managing reasoning	helps with math
Problem-managing reasoning refers to	Coders are required to make many decisions to	Managing problems is what coders do. As students
the ability to manage problematic situations	solve real world problems. They need to figure	learn to code, they learn to manage problems in a
in mathematics and coding. It includes	out what part of the problem needs to be	way that parallels what they need to do to manage
understanding when and how a problem in	tackled first and how to manage or arrange all	problems in mathematics. Coding helps students
any context can be mathematical or	the different parts of the problem in the most	become more successful in math because it helps
computational in nature and that the very	effective manner. Much like preparing to solve	them understand that managing a problem in math
nature of mathematics and coding is	a jigsaw puzzle, coders must understand which	requires that:
problematic.	pieces are the corner pieces, which are the	• a number of important decisions need to be
	edge pieces and which ones are the easy	made and that they need to be made well
In mathematics , managing problems	middle pieces and hard middle pieces.	(thoughtfully);
involves understanding that solving		• decisions need to be sequenced and serve
problems is itself problematic by nature	Let's take for example, a coder who in 2009	different purposes to allow for larger
requiring the selection of appropriate	thinks he can build a better way for people to	complex problems to be broken down into
background knowledge, strategies, models,	call and pay for taxis using their smart phones.	smaller, related, more manageable
technologies, representations/visuals,	The coder needs to break this problem down in	problems that can be more readily solved;
conventions and structures, etc. It promotes	manageable pieces. First, she needs to consider	and
a powerful and useful general way of	who the drivers are going to be and how to get	• they understand that math, like code, is a
thinking. It also involves being able to see	these drivers to use the coder's platform? She	language that can be used to describe a
the world as mathematical in nature	need to figure out who the customers are going	significant number of real world situations
(human behavior and functioning, nature,	to be and what will encourage them to start	and to solve problems within it.
finances and economics, motion and forces,	using the app? Other parts of the problem will	
etc), understanding the significant role it	involve what the road map will look like and	
plays in understanding and living within it,	how it will best represent all the taxis available	
asking questions about the world and	and all the people who want a taxi, how to	
posing problem about it in mathematical	decide which taxi goes to which person, what	
terms. For example, considering whether it	to do when a person cancels their request or	
is better for a person to cross a field	when a driver cancels their availability, and so	
diagonally to get home or walk around a	on and so on. Once these smaller problems are	
square block is a math problem that can	identified, the coder has to decide which of	
apply the Pythagorean theorem and an	these problems to solve first through the	
understanding of rates and perhaps even	software and how. The programmer who gets it	
vectors.	right turns out to be Uber, a company worth	
	10s of billions of dollars. Coding is	
Similarly, coding is problematic by nature	problematic by nature and coders requires	
as it requires that an ongoing set of	effective problem managing to be successful.	
decisions to be made including what		

language and conventions are best to use;	
what appropriate representations to use,	
what data structures to use, what	
architecture to use for all the moving parts	
of an application, etc.	
Coding can also be used to describe	
elements of the world in computational	
terms, and to describe real world situations	
and solve real world problems. Consider	
for example the weather. Over the past 12	
years, forecasts for daily high temperatures	
have become more and more accurate.	
Forecasts can now correctly estimate	
tomorrow's peak warmth to within 3	
degrees of the actual highest temperature	
about 80 percent of the time. Twelve years	
ago, the margin of error was 4 degrees.	
Weather impacts how many fans attend	
sports events, how much energy is	
generated from wind farms or used in	
people's home and many other events	
where the use of company resources will	
change based on accurate predictions.	
Computer models that have lead to more	
accurate weather forecasting impact widely	
on how lives are led and how real world	
decisions are made.	

Thinking Competency:	Example of coding using	How reflective reasoning in coding helps with
Reflective Reasoning	reflective reasoning	math
Reflective reasoning refers to the ability	Suppose a coder is tasked with a shopping	As students learn to code, they learn to make
to continuously seek clarification and a	website they have been hired to build. They	coding decisions by reflecting on the quality of
richer understanding of ideas by making	start with a few items to purchase and simple	their code, continuously seeking improvement
on-going iterative connections between	ways to search for those items. As more items	every step they take. Learning to reason in this
	and more categories of items are added, they	

existing and new knowledge and understanding.

In **mathematics**, reasoning is reflective when there are on-going checks for reasonableness and correctness as new knowledge and understanding is attained. Take for example a student who understanding that two geometric shapes are congruent if all of their measurable attributes are the same. After learning about similarity, the same student can describe congruent shapes as possessing a 1:1 relationship with respect to their measureable attributes; a more precise, richer understanding is attained by connecting new learning to previous learning.

Similarly, in **coding**, students continuous ask, now that I have learned something new, how does this affect the stuff I already know, have already completed, and how can I make it clearer and more effective? For example, when coders refactor (revisit old code and rebuild it in a more effective / efficient way), they are reasoning reflectively. Coder continuously revisit their code upon reflection to make their programs more effectively and accurately meet their code's objective.

Reflective reasoning is encouraged in both coding and mathematics when students are given a larger more complex task or problem to complete—one they are not fully equipped to handle yet—to which they build a respond or solution over time as they continuously connect new learning go back to their previous search method and refactor it to account for the new complexities. For example, before the coder had only one brand of item for which to create a search code but then more items and therefore brands need to be added. The code now has to be modified to search for 5 different brands, not just one, requiring the software to do more. In order to make sure the software works properly with the additional functionality, strong reflective reasoning skills are needed to figure out what is working in the existing version, what needs to be added, and how it can be added without breaking the existing functionality.

Consider another example. A student coder builds a checkerboard by drawing 64 squares using 64 lines of code. She then learns what a loop is, and refactors the code to draw 8 sets of 8 squares, one for each column. Next, she learns what a nested loop is (one loop inside another loop) and refactors the code to draw 8 sets of 8 sets of a single squares, the first part for each row and the 2^{nd} part for each column. Now the finished code goes left to right in a loop and top to bottom in a loop. When coders see patterns like this one and use the patterns to simplify their code they are reasoning reflectively. They are continuously checking on the quality of their work and iteratively connecting new learning or ideas to the problem at hand in order to make it most effective.

way helps students experience greater success in math as it teachers them how to:

- **1.** ensure all of their mathematical decisions are reasoned and make sense;
- 2. be aware of their learning gaps and how to close these gaps as they continue to learn;
- **3.** ensure they are accurate and precise in their thinking;
- **4.** develop clarity and depth of understanding of the math they are learning over time;
- 5. develop a growth mind set (continued effort, perseverance, flexibility) and to understand why it is important;
- **6.** become confident, independent, on-going self-regulators and assessors.
- **7.** focus on understanding the essential components of a problem and weeding out unnecessary distractors.

Reflective reasoning ultimately helps students develop a "thinking toolkit" to be used in the solving of future problems.

back to their previous responses based on	
old learning to develop richer, more	
detailed and at times innovative responses.	

Thinking Competency:	Example of coding using	How communicative reasoning in coding helps
Communicative Reasoning	communicative reasoning	with math
Communicative Reasoning: The ability to	Every computer language has generally agreed	Learning to communicate effectively using code is
effectively use mathematics or code as a	upon coding conventions – when to use spaces,	especially useful in learning how to communicate
language to understand and express ideas.	when to use indentations, how to arrange the	effectively in math. Coding helps students learning
	code so that it is easiest to read and understand.	mathematics to:
In mathematics , this refers to the capacity		1. understand (for themselves and others) the
to communicate effectively in a way that is	For example, a coder who uses the language of	value and purpose of mathematics as a
appropriate to the purpose and audience of	code effectively makes sure a code is indented	universal language that can be read and
the communication. For example, to reason	properly and separates functionality inside the	written (accessible and useful) by all
communicatively means making effective	program into discrete smaller functions that	people;
decisions about what form of	work with each other rather than as one large	2. sustain the continuous development of new
representation to use (visual, graphical,	function which does the same thing but is more	mathematical thought;
algebraic, geometric), how to structure	difficult for a reader to follow and understand.	3. develop the skill of effective argumentation
these forms correctly (nature and position	Also, communicative reasoning ensures that	as they are able to justify their ideas to
of title for example), how to best interpret	coder knows how to recognize and fix code	others;
and read these forms and how to infer	that breaks down at any particular point.	4. work well and collaborate with others.
meaning when necessary (by making		
assumptions). Representational and	Often a coder is communicating with	This type of reasoning is often neglected by
structural reasoning are component parts of	herself/himself. Properly organizing and	mathematically oriented thinkers. However, any
this broader competency.	commenting in the code will help the	mathematical ideas, conclusions or results, even
	programmer to quickly understand for the	brilliant ones, that are not properly communicated
In coding , this refers to the capacity to	future what the program does precisely, and	are destined to be deemed not valuable and
communicate effectively with code and	enable it to be re-used or modified according to	ultimately ignored. In addition, research grants, or
with commenting code in a way that is	present needs.	any employment requiring mathematical reporting,
appropriate to the audience reviewing the		accountability, or any form of (persuasive)
code being written. This audience includes:	In code, each line of code is executed in order.	communication (finance, sales, business deals,
the person coding today, the same person	A coder could technically write all the	banking, etc.) must be able to communicate the
reviewing the code in the future, and any	software for a complex website like Facebook	intricacies, strengths, and potential benefits of a
team members present or future who will	all in one row without any structure, empty	proposed mathematical idea in a manner that is
also be looking at the code to review,	lines, or organization as long as the lines of	both accessible and eloquent.
refactor or improve it.	codes all fit together and are presented in the	
	right order. These millions of lines of code all	

Code is not instantly readable like language	written in one row would be called Spaghetti	
is – it is a collection of symbols and a very	code – something that delivers the correct end	
limited number of full words. Instead,	result but isn't functional in terms future	
programmers with high levels of	improvements or modification. It would be	
communicative reasoning will ensure that	difficult to fix problems, make improvements,	
every piece of code they write will be	getting rid of parts that aren't needed, etc. with	
readable in the future by choosing good	code communicated in this way.	
variable names and by writing comments		
inside the code which explain what every	Overall, a coder who spends extra time to	
chunk of code does, where a chunk can be	properly format their code displays higher	
anywhere from a single line to an entire	levels of communicative reasoning.	
function worth of code. This being said, a		
high level of communicative reasoning will		
be displayed when there are helpful		
comments every few lines.		

Thinking Competency:	Example of coding using	How connective reasoning in coding helps with
Connective Reasoning	connective reasoning	math
Connective reasoning refers to the ability	Consider the design of a website that sells	
to understand the nature of how, and degree	many items; books with a specific number of	Learning how to reason to connect elements, ideas,
to which, ideas are related.	pages, clothing items in various sizes, TVs of	concepts in code in a useful manner helps students
	various screen sizes, toys made of a certain	be successful in math because:
Connective reasoning in mathematics	amount of pieces.	1. helps to improve and strengthen their
refers to the ability to seek out useful		mathematical understanding of important
relationships between mathematical	To effectively keep an inventory of all the	ideas and concepts;
concepts or ideas. For example, it is useful	items being purchased and their price, the	2. helps to ensure they are considering all the
to understand the degree to which concepts	coder must sort the items based on their	mathematical details to decide which and
such as addition and subtraction; addition	various degrees of similarities and differences.	to what degree they are important;
and multiplication; multiplication and	For example, all the items have a quantity,	3. helps them to see mathematical
exponents; functions and relations; average	some share similar identifiable characteristics	relationships and seek meaningful patterns
and instantaneous rates of change are	such a size or number to pieces, and have a	(for example, multiplication can be
similar and different. Understanding	price. All the items also have elements that are	described as a loop of additions and
relationships like this helps to make	unique to them, e.g. no other item has a	exponents as loops of multiplication);
decisions on how to solve problems with	number of pages other than books.	

greater effectiveness (in the simplest,	Being able to figure out what are the common	4. supports creative and innovative thinking
clearest, more convincing) way.	and unique elements helps the coder to create	in mathematics by allowing students to
	an appropriate data structure and database to	make new and valuable connections;
Connective reasoning in coding is all about	properly store, access and manipulate the	5. helps to contextualize and decontextualize
being able to take the real-world elements	stored items to keep an ongoing inventory	problems making them easier to solve in
that you are creating code for and properly	from a coding perspective.	more mathematically sound ways.
translating them into a code structure that		
makes it easiest for the code base and for	If coders do not consider the degree to which	In essence, mathematics is the science of
the user using the application to interact	elements in the database are related, they will	connecting ideas that are precisely defined, and
with, use, retrieve and manipulate the real-	build a database with an architecture that	absolute in their truth. Students that come to
world elements and their digital	makes the use of the software slow, clunky and	understand this by making on-going mathematical
equivalents.	replaceable. Optimizing database response	connections and seeing relationships between
In essence, connective reasoning in coding	time means optimizing the length that a user	various concepts are able to develop a sense of the
is about understanding how certain types of	has to wait before a page loads. Waiting 10	"oneness" of mathematics.
applications are best solved with certain	seconds or more for a page to load means users	
algorithms and design choices. For	will disengage and stop using the software.	
example, an e-commerce website which	Connective reasoning in code can ultimately	
accesses small amounts of data at a time	lead to creating code that is deemed valuable	
needs one type of database while a data	and desirable rather than creating one an end	
analytics application that accesses the data	that no one wants to use and another coder can	
very often and accesses lots of data at a	do better.	
time needs a different type of database.		
Understanding the relationship between		
different types of databases and how easy it		
is to access the data helps to make		
decisions on how to solve problems and		
build software with greater effectiveness		
(in the simplest, fastest, most easy-to-use		
way).		

Thinking Competency:	Example of coding using	How strategic reasoning in coding helps with
Strategic Reasoning	strategic reasoning	math
Strategic reasoning refers to the ability to	When sorting a large amount of different	Reasoning strategically in code helps student be
select appropriate strategies, methods or	numbers, e.g. prices, all of which are different	more successful in math as it:
approaches, and supporting tools, to	from each other, a different sorting algorithm	1. supports all mathematical thinking (sense-
effectively aid in completing mathematical	would be more appropriate than the one used	making, representing, organization,
or coding tasks or problems.	to sort a large amount of similar number, e.g.	mathematizing, problematizing),

In mathematics, completing a task or solving a problem requires the selection of the most appropriate strategy, method, model and tools from a wide range of alternatives. For example, a mathematician chooses to use a computer or a calculator instead of using mental math or other devices because it will lead to the completion of a task or helps to solve a problem more effectively (more precise, accurate, efficient, fitting to the nature of the task or problem). This is also true of strategies, models or approaches they decide to use. For example, multiplication is more appropriate when multiplying a large number of equivalent sets of values than addition.

This is also true in **coding.** When building software, there are multiple approaches to complete the work. A "quick and dirty" fix may solve a problem quickly but may not allow for solving other problems that come up in advance; building a simple function which might be re-used a few times; or importing or creating a library for use not only for the current problem, but for a long-term set of software challenges. For example, when building software to quiz users on mathematics, you might build a "graphie" library containing multiple functions, classes and models to handle all variations of software needed for coordinate plane math, e.g. functions, derivatives, trigonometry, etc. Once built, this library could be imported whenever content is being developed that involves the coordinate plane.

sorting heights of a large number of people. The latter will only come from a small set of values (from 48 inches to 96 inches as people are generally between 4 feet and 8 feet tall) while the prices in a store might vary from 5 cents to \$99,999.99, i.e. a larger set of numbers with tens of thousands of different values. A sorting algorithm must be strategically selected that best fits the nature and quantity of the information being sorted.

Another example is picking a computer language to work in for a specific project. Some languages work really fast but are difficult to use. These might be appropriate for building operating systems like Windows or the Apple operating system. Some languages are very useful for mathematical and statistical manipulation, so if you are building an application whose primary purpose is do this kind of work, you might use a language specifically built for this task. Some languages are built so that the code written is easy to read (good for large teams) while other languages are written to be easy to write (many shortcuts and abbreviations are included within the language).

Understanding the objective of the code to be created helps to select the best strategies and tools to use to meet the objective. Strategic reasoning in code helps to better create and implement more effective solutions. ensuring that best mathematical decisions are made strategically;

- 2. supports the development of fluency;
- 3. helps to deepen understanding; and
- 4. helps to improve efficiency, accuracy, and precision as the most fitting selections are made to solve a problem.

Note both mathematical thinking and computational thinking are defined by a set of thought processes needed to formulate and solve problematic situations and task in an effective manner; both are iterative processes that move through, sometimes back and forth, 3 well-defined stages: problem formulation; problem solution expression or representation; and solution execution and analysis. All of these stages executed well ensure that the language of mathematics or coding are used effectively to communicate solutions.