
How coding helps with success in the learning of mathematics
Written by Laura Gini-Newman and Peter Kuperman

How helpful is coding in achieving success in mathematics?
To be a competent mathematical thinker, a person needs to possess a broad range of abilities to think, act and communicate to effectively solve
challenging, often unfamiliar, problematic tasks across a range of contexts, situations and purposes involving mathematics (PISA definition of
mathematical literacy). Although the usefulness of mathematics is more obvious to many when a person is required to act or communicate
mathematically, thinking is at the core of all mathematical competencies and success.

Since a person cannot think, act or communicate effectively without possessing a strong ability to think critically, both mathematical and coding
success are highly dependent on the development of these thinking competencies. A synthesis of the mathematical skills or competencies identified
by educational ministries and post-secondary educational institutions across Canada, in the American Common Core Standards of Practice, as well in
Asia, Australia and the United Kingdom suggests 10 key thinking competencies are needed to proficiently think, act and communicate
mathematically. Interestingly, these same competencies are applied in the practice of coding. As such, learning to code helps students learn how to be
success in mathematics and vice versa.

The following table clarifies the nature of each of the 10 key mathematical thinking competencies and illustrates the role each plays in mathematics
and coding allowing us to understand the degree to which learning to code and learning mathematics are related. It is clear from the details in this
table that coding and mathematics require the same types of thinking or reasoning to achieve success.

Thinking Competency:
Sound reasoning

Example of coding through
sound reasoning

How sound reasoning in coding
helps with math

Sound reasoning refers to the ability to think
about the quality of one’s reasoning to ensure
that it is sound or reasonable This is an
umbrella competency that affects the
quality of all other thinking competencies
related to thinking, acting and communicating.

Reasoning is sound when decisions are
made following the assessment of plausible
options in light of criteria based on
understanding and evidence. These
decisions typically involve on-going sense
making and reflection to promote the use of
the most productive ways to manage
problems and learn from mistakes while
developing fluency and automaticity.

Let’s say you want to create a maze program.
Before you start to code, you will think about
the parameters and how to best pull the project
together. You consider:
What is the best size for the maze?
What is the best way to organize the code?
What algorithm are needed to create the maze?
Will the maze have many dead ends or only a
few?
What problems might be encountered the code
is being created and how will the code
effectively deal with these problems.

In coding, sound reasoning is the on-going
process of predicting or imagining what the
end result will be and strategically creating the

Learning how to code teaches you how to manage
projects and problems. It encourages effective
decision making related to planning; to the
strategic selection of algorithms and their logical
order to create a general plan that is then
continuously tested for soundness through a
thoughtful implementation process. Coding
teaches students how to make a number of
decisions important to the study of mathematics in
this process:

 to know and check that what they are doing
as they solve math problems is reasonable
and makes sense;

 to take the time to be reflective so that
when they solve problems, they recognize

Every aspect of mathematics and coding
demands sound reasoning.
Mathematicians reason to develop
conceptual understanding, to communicate,
structure and represent ideas effectively, to
strategically manage problems, to know
what tools to use and to what degree
concepts and ideas are related.

Coders reason to help understand new
coding languages, to plan strategically,
starting from the first line of code, the best
way to fulfill the objective of the program
to be designed. They reason soundly when
they anticipate problem areas and think
about how to manage problems and
mistakes even as they are being made
(debugging).

code the produces what is imagined, constantly
selecting, adjusting, replacing, and checking
for the effectiveness of its building blocks to
best meet the coding objective in the easiest,
most-straightforward manner.

weaknesses and errors in their approach,
and are able to find ways to strengthen or
correct them;

 to take the time to come how up with a
number of good ideas to solve problems
then triage these ideas to determine the best
one to use.

Thinking Competency:
Conceptual reasoning

Example of coding using
conceptual reasoning

How conceptual reasoning in coding
helps with math

Conceptual reasoning refers to the ability
to independently construct understandings
of what defines concepts or ideas, be it in
mathematics or coding, and to identify
and use these understandings to effectively
understand problems and how to solve and
communicate solutions to these problems.

In mathematics, all ideas, theorems, and
principles are concepts that can be defined
using a set of properties; characteristics that
hold true for all examples of a concept. In
mathematics, all symbols represent
concepts. To be able to communicate
mathematically, concepts must be

Every coding project pushes the boundaries of
what needs to be known in terms of concepts.

Take learning how to draw a checkerboard for
example. This leads to a thorough
understanding of a for loop (repeat 8 times
across and 8 times down) and of an if
statement (if…then some of the squares are
black, or some white).

By having students experiment or explore what
properties define all loops in coding, students
learn about the structure, its meaning, and the
different ways it might look. To understand the
concept of a loop in coding, students consider

Learning how to develop an understanding of
concepts in code teaches students how to
independently understand mathematical concepts
by teaching a way of thinking that:

 creates understanding by exploring a
number of examples of a concept to
determine what properties define that
concept; for example, a polygon is a closed
geometric figure; with linear sides, number
of internal angles equal to the number of
sides and angle size dependent on the
number of sides;

 helps students to generalize patterns by
thinking inductively to seek mathematical
truths; for example, a square is a closed

thoroughly understood. Concepts in
mathematics include: equality (equal sign);
the operations of addition, subtraction,
multiplication and division (+, -, x. /),
fractions, exponents, rates, functions, a
limit or integral…to name of few. Consider
another example: understanding that the
word ‘integral’ and that the symbol for
integral both mean the area under a curve
allows people to convey more information
with fewer words helping to make
communication more efficient and
effective, and universally understandable.

In coding, the same hold true. To code
effectively requires an understanding of a
for loop, an if statement, or an object…to
name a few. Without this understanding
students cannot use the symbolic language
of code effectively and independently.

a wide range of different examples of loops
such as while, for, do loops in order to
generalize what all loops have in common. In
computer programming, all loops contain:

 a sequence of instructions;
 a sequence that is repeated

continuously; and
 repetition that ends when a certain

condition is met.
This also allows students to clearly
differentiate different loops by considering to
what degree a particular type of loop meets
these properties. Take an infinite loop for
example as a tester. This loop lacks a
functioning exit routine. The result is that the
first 2 properties are met (the loop repeats
continually) however it does so until the
operating system either terminates the program
with an error or until some other event occurs
(such as having the program automatically
terminate after a certain duration of time)
rather than a condition being met.

A loop is a fundamental concept in coding;
without it effectively creating and
understanding code is virtually impossible.

figure that has 4 sides, 4 vertices, 4 ninety
degree angles; and sides of equal length;

 helps students understand that symbols
communicate a specific generally accepted
meaning in code; for example a “;” means
the end of a statement and that the
instruction is complete while in math an
equal sign means the value represented on
either side is the same; and

 reasoning inductively, when proving in
math, can also be seen as infinite loops of
reasoning. Internalizing the concept of loop
through coding supports the understanding
of the deeper, yet related, concept of
mathematical induction.

Thinking Competency:

Representational reasoning
Example of coding using

 representational reasoning
How representational reasoning in coding

helps with math…

Representational reasoning refers to the
ability to effectively communicate
(understand or interpret and visualize or
represent) ideas and concepts across a
variety of forms. This is one component of
the broader thinking competency of
communication.

Learning how to build a computer card game
requires a coder to think about how they are
going to represent the 52 cards in a deck of
cards. They could use numbers and letters, e.g.
9H for the 9 of hearts; a simple graphic, or an
animated graphic or any other set of symbols
intended to communicate this idea. In laying

Representing ideas in many different ways is a
fundamental competency in coding and can only
be achieved if the coder reasons effectively about
which representations are most appropriate given
their purpose and the needs of the user, and how
all effectively capture the idea the coder wishes to
communicate. This competency is equally

In mathematics, this might include words,
graphs, symbols, tables, pictures, visuals,
algebra. For example, the idea of equality
can be shown using pictures, sets,
geometric figures, numbers and symbols.
Variance can be shown using a bar graph,
bell curve, symbol or number.

In coding, representational reasoning is all
about building good user interfaces making
it easy for the user to see what a computer
program is designed to represent. This is
basically a way of creating a good
communication channel between the user
and the person or team who designed the
computer program or software application.
With strong representational reasoning
skills, this communication channel will be
robust and easy to understand.

out a hand of cards on the screen, you could
place them side by side, overlap them, show
only half the card, or just enough to identify
the card.

A coder also has to decide, of the 52 cards,
which ones will be in the player’s hand. This
information will come from a database, in
which the cards will be represented by
numbers and symbols that will also have to
connect to how the cards will be visually
displayed. They will decide how to sort the
cards in the player’s hand properly, e.g. will
you group them by number or by the four suits.
All of these decisions require representational
reasoning so that all the representations
communicated in the code show the same ideas
accurately and in the most appropriate way to
effective meet the purpose of the code.
Needing to make all these choices when
designing a computing project requires a
student to reason about how to represent ideas
to build a user interface.

important in mathematics. Developing this
reasoning capacity in coding classes helps students
be more successful in mathematics as students
become better able to:

 show mathematical ideas in many different
ways effectively;

 select the most appropriate representations
to help them solve a problem at various
stages in the problem-managing process
(e.g. how to better understand what the
problem is; how to best communicate a
solution to a problem given the context and
user of the solution)

 better understand how various
mathematical ideas are related or connected
(e.g. seeing visual representations of
addition and subtraction allows a young
child to understand how they are both
similar but different in important ways;
seeing different functions graphically, in
table form and algebraically helps older
students understand how various function
are both similar and different in important
ways)

Thinking Competency:
Structural Reasoning

Example of coding using
structural reasoning

How structural reasoning in coding helps with
math…

Structural reasoning refers to the ability
to understand and use structure and form to
effectively communicate ideas.
Structural reasoning ensures not only
knowledge but understanding of the
generally accepted conventions of the

Learning how to sequence the steps of a
solution with the fewest steps possible in an
order that logically develops the solution
without including redundant ideas is another
fundamental competency of computer science.

Being able to reason structurally involves the
ability to communicate effectively using logically
sound structures and forms that tend to be, for the
most part, generally accepted language
conventions. Learning to code helps students

language of mathematics or computer
programming so that it can be read and
written by anyone in the field. This form of
reasoning is another component of the
broader competency of communication.

In mathematics, this includes an
understanding and use of the rules of logic
in both an informal or formal sense;
including inductive and deductive logical
reasoning to arrive at generalizable
structures and forms and to identify,
interpret and create specific examples of
these generalizations. Take for example the
form and structure of an equation using a
variety of operations. BEDMAS is a
generalized convention that allows an
equation to effectively communicate its
meaning.

In coding, generalized structures and forms
that are the conventions of a computer
language are needed to build computing
projects that derive solutions in a logical
manner. For example, being able to
understand that a loop is a structure that
allows the same steps repeated multiple
times in the same way allows the coder to
communicate these steps more effectively
in a manner understood by all computer
scientists. Reorganizing a set of steps
(called refactored in computer science)
allows the same end result to be delivered
in a more efficient and logically sound
way. All coding conventions, e.g. tabbing,
spaces, indentations, parentheses, brackets
formatting make the code readable.

An example of this in coding is when ordering
a list of names alphabetically, there are several
sorting algorithms. The most basic one (albeit
not the most efficient) involves comparing
pairs of names one by one, deciding which one
comes first, and setting them into the correct
place in an array. These are the logical
sequence of steps taken to develop the solution
to the problem of ordering alphabetically
without including redundant information or
steps. These steps serve as a map for the
writing of the specific code that will perform
the task of sorting.

Another example of how structural reasoning
in coding works is trying to locate an address
on a map after it has been typed in. There are
at least 4 parts to an address: a) the street
number, b) the street name, c) the city, and d)
the Postal Code or Zip code. There are also the
province or state and the country, but let’s
consider the first four in this example.
Once an address has been entered into a
software application, the problem to be solved
is to find the correct location of that address on
a map; a map which contains hundreds of
millions of addresses.

The solution is to narrow down all the
addresses in 4 stages until we get to the unique
address that was originally entered.
Is it more efficient and logical for the 1st step
to be “All the addresses with street number X”;
“All the addresses with street name Y”; “All
address in a specific city”; or “All addresses
with a specific postal code”? What should
logically go next step? Figuring out the
answers to these questions involves structural
reasoning.

develop the capacity to reason structurally in
mathematics so that they can:

 know how to appropriately use the
structure and form of the language of
mathematics to effectively and universally
communicate mathematical ideas,
problems and solutions (simplified form of
an equation using BEDMAS)

 understand why and how a structure has
become a generalized way to communicate
(reason inductively to understand why and
how mathematical structures and forms
have been created and eventually how to
think through the development of new
innovation structures of their own; for
example, does it matter where to place an
equal sign in an equation and if so why?)

 understand and effectively apply logic to
describe and solve mathematical problems
and present solutions effectively (in the
simplest, most justifiable way without the
inclusion of unnecessary or redundant
evidence)

Learning to code allows students to understand the
importance of structure and form, of logical
sequences, and of presenting information in a
proper order, using appropriate conventions to
format ideas in the most effective manner that will
be accessible to all its users. How students reason
structurally in coding is also how they reason
structurally in math.

In both math and coding structural reasoning also
helps the limited capacity of the human brain to
deal with limitless amounts of complex
information in an effective manner. The
complexity of rich, meaningful problems students

 are invited to solve is most often far beyond what
even the highest trained mind can contemplate at
once. The way both coders and mathematicians
tackle this limitation is through structural
reasoning.

Thinking Competency:

Detail-minded Reasoning
Example of coding using
detail-minded reasoning

How detail-minded reasoning in coding
helps with math…

Detail-minded reasoning refers to the
ability to pay close attention to details
when completing a task to fully understand
the complexity of the task and to respond
with accuracy and precision.

In mathematics, this refers to the ability to
consider every relevant detail in a problem
no matter how small or insignificant it may
first appear, and to consider how it may
impact on the arrival of a solution to a
mathematical task or problem. For
example, when asked to find the total
number of oranges across a set of 5
baskets, all fruit must be considered to
determine which are oranges in order to
arrive at the most accurate count of
oranges. Or, if a student is trying to
determine their final mark on a test given in
decimal form to 4 decimal places, the
student must consider all numbers
following the decimal to decide which
numbers are relevant to determine their
mark as a percentage whole number.

In coding, a programmer must pay close
attention to the details of the code to clarify
whether the code will effectively meet the

Often in computer science being able to count
properly in abstract situations means the
difference between a program that works and
one that falls apart. Take for example, if you
have a field that is 100 meters wide and you
want to put fencing along the entire length with
fence posts every 10 meters, how many fence
posts do you need? The answer is 11 – you
need one for every 10 meters plus one more at
the very beginning or else the first section of
fencing will fall down. This is known as the
fence-post problem, which illustrates the “off
by one” error that occurs often in computer
science. This problem illustrates the
importance of detail-minded reasoning in
computer science.

When building a video game, figuring out
when two objects collide, or if when a hero
jumps from one platform to another, if he
successfully lands on the new platform, are
important. Paying attention to elements that
may initially seem trivial and unimportant may
have a significant impact on the outcome of a
program. In this case, the coder must decide
the degree of error he should allow because
visually, players will be upset if it looks like

Learning to think about all details or possible
outcomes when coding ensures a coder creates a
well-functioning successful program. The ability
to do so is also of fundamental importance in
mathematics. When students reason in this way in
coding they transfer this ability to math so that
they:

 understand all the potential complexities of
a math problem before attempting to solve
it;

 ensure they derive solutions that are
accurate and precise rather than arriving at
incomplete or inaccurate
conclusions/solutions prematurely;

 generate a fulsome set of mathematical
ideas to consider when solving a problem;

 learn to persevere.

purpose the program and to make sure it
does so in all situations, including odd-ball
situations where a creative or modified
approach to the solution is required such as
with Edge Cases – cases that are non-
standard like being at the very edge of a
screen, having a price less than zero when
applying a refund, or having a four point
play in basketball (foul plus a three
pointer). It is also needed when dealing
with unusual situations in which there are
many permutations at play.

Often in computer software development a
non-technical person asks for a new feature
in the program, for example, I want all
employees to get a notice when their
paycheck has been deposited. In a typical
case if each employee’s bank information
is correct, everything runs smoothly. The
job of a good software engineer is to think
about all the ways this feature can break
down. Let’s say the bank has locked or
frozen the employee’s account – the bank
information is correct but an odd-ball (edge
case) situation has occurred. What should
the software do? Being detail-minded
means that before the employee gets mad
because the software doesn’t work
properly, the engineers have actually
accounted for all plausible unusual
situations so the employee gets an
appropriate message given the situation. In
essence, thinking about all the details
needed to solve the problem allows a coder
to handle the nuances and complexities of
all possible situations, not just the simple or
obvious standard situations.

they made the jump but the code says they
didn’t.
The same issue exists when a video game is
trying to figure out if a hero and an enemy or a
hero’s bullet and an enemy, have collided. If
the collision does or does not happen leads
ultimately leads to the player being either
rewarded or punished. If it looks like
something happened one way, but the software
records it a different way, a very significant
“off by one” type error occurs. Minimizing or
eliminating the difference between the code
and the visual experience by the user involves
detailed-minded thinking.

Computers are the most ruthless teachers of
detailed-minded thinking. A comma out of
place can cause the entire program to break
down. Even if a program seems to run
smoothly, it may produce useless or
misleading results if the slightest of details is
overlooked in its design. Only when every
single possibility is carefully accounted for in
the code will the machine produce the desired
results.

These are but a few examples that illustrate the
way in which good coders think about all
problems; they consider all the details, nuances
or unusual situations in the problem before
beginning to and while they code.

Thinking Competency:

Problem-Managing Reasoning
Example of coding using

problem-managing reasoning
How problem-managing reasoning in coding

helps with math…
Problem-managing reasoning refers to
the ability to manage problematic situations
in mathematics and coding. It includes
understanding when and how a problem in
any context can be mathematical or
computational in nature and that the very
nature of mathematics and coding is
problematic.

In mathematics, managing problems
involves understanding that solving
problems is itself problematic by nature
requiring the selection of appropriate
background knowledge, strategies, models,
technologies, representations/visuals,
conventions and structures, etc. It promotes
a powerful and useful general way of
thinking. It also involves being able to see
the world as mathematical in nature
(human behavior and functioning, nature,
finances and economics, motion and forces,
etc), understanding the significant role it
plays in understanding and living within it,
asking questions about the world and
posing problem about it in mathematical
terms. For example, considering whether it
is better for a person to cross a field
diagonally to get home or walk around a
square block is a math problem that can
apply the Pythagorean theorem and an
understanding of rates and perhaps even
vectors.

Similarly, coding is problematic by nature
as it requires that an ongoing set of
decisions to be made including what

Coders are required to make many decisions to
solve real world problems. They need to figure
out what part of the problem needs to be
tackled first and how to manage or arrange all
the different parts of the problem in the most
effective manner. Much like preparing to solve
a jigsaw puzzle, coders must understand which
pieces are the corner pieces, which are the
edge pieces and which ones are the easy
middle pieces and hard middle pieces.

Let’s take for example, a coder who in 2009
thinks he can build a better way for people to
call and pay for taxis using their smart phones.
The coder needs to break this problem down in
manageable pieces. First, she needs to consider
who the drivers are going to be and how to get
these drivers to use the coder’s platform? She
need to figure out who the customers are going
to be and what will encourage them to start
using the app? Other parts of the problem will
involve what the road map will look like and
how it will best represent all the taxis available
and all the people who want a taxi, how to
decide which taxi goes to which person, what
to do when a person cancels their request or
when a driver cancels their availability, and so
on and so on. Once these smaller problems are
identified, the coder has to decide which of
these problems to solve first through the
software and how. The programmer who gets it
right turns out to be Uber, a company worth
10s of billions of dollars. Coding is
problematic by nature and coders requires
effective problem managing to be successful.

Managing problems is what coders do. As students
learn to code, they learn to manage problems in a
way that parallels what they need to do to manage
problems in mathematics. Coding helps students
become more successful in math because it helps
them understand that managing a problem in math
requires that:

 a number of important decisions need to be
made and that they need to be made well
(thoughtfully);

 decisions need to be sequenced and serve
different purposes to allow for larger
complex problems to be broken down into
smaller, related, more manageable
problems that can be more readily solved;
and

 they understand that math, like code, is a
language that can be used to describe a
significant number of real world situations
and to solve problems within it.

language and conventions are best to use;
what appropriate representations to use,
what data structures to use, what
architecture to use for all the moving parts
of an application, etc.

Coding can also be used to describe
elements of the world in computational
terms, and to describe real world situations
and solve real world problems. Consider
for example the weather. Over the past 12
years, forecasts for daily high temperatures
have become more and more accurate.
Forecasts can now correctly estimate
tomorrow’s peak warmth to within 3
degrees of the actual highest temperature
about 80 percent of the time. Twelve years
ago, the margin of error was 4 degrees.
Weather impacts how many fans attend
sports events, how much energy is
generated from wind farms or used in
people’s home and many other events
where the use of company resources will
change based on accurate predictions.
Computer models that have lead to more
accurate weather forecasting impact widely
on how lives are led and how real world
decisions are made.

Thinking Competency:
Reflective Reasoning

Example of coding using
reflective reasoning

How reflective reasoning in coding helps with
math…

Reflective reasoning refers to the ability
to continuously seek clarification and a
richer understanding of ideas by making
on-going iterative connections between

Suppose a coder is tasked with a shopping
website they have been hired to build. They
start with a few items to purchase and simple
ways to search for those items. As more items
and more categories of items are added, they

As students learn to code, they learn to make
coding decisions by reflecting on the quality of
their code, continuously seeking improvement
every step they take. Learning to reason in this

existing and new knowledge and
understanding.

In mathematics, reasoning is reflective
when there are on-going checks for
reasonableness and correctness as new
knowledge and understanding is attained.
Take for example a student who
understanding that two geometric shapes
are congruent if all of their measurable
attributes are the same. After learning
about similarity, the same student can
describe congruent shapes as possessing a
1:1 relationship with respect to their
measureable attributes; a more precise,
richer understanding is attained by
connecting new learning to previous
learning.

Similarly, in coding, students continuous
ask, now that I have learned something
new, how does this affect the stuff I already
know, have already completed, and how
can I make it clearer and more effective?
For example, when coders refactor (revisit
old code and rebuild it in a more effective /
efficient way), they are reasoning
reflectively. Coder continuously revisit
their code upon reflection to make their
programs more effectively and accurately
meet their code’s objective.

Reflective reasoning is encouraged in both
coding and mathematics when students are
given a larger more complex task or
problem to complete—one they are not
fully equipped to handle yet—to which
they build a respond or solution over time
as they continuously connect new learning

go back to their previous search method and
refactor it to account for the new complexities.
For example, before the coder had only one
brand of item for which to create a search code
but then more items and therefore brands need
to be added. The code now has to be modified
to search for 5 different brands, not just one,
requiring the software to do more. In order to
make sure the software works properly with
the additional functionality, strong reflective
reasoning skills are needed to figure out what
is working in the existing version, what needs
to be added, and how it can be added without
breaking the existing functionality.

Consider another example. A student coder
builds a checkerboard by drawing 64 squares
using 64 lines of code. She then learns what a
loop is, and refactors the code to draw 8 sets of
8 squares, one for each column. Next, she
learns what a nested loop is (one loop inside
another loop) and refactors the code to draw 8
sets of 8 sets of a single squares, the first part
for each row and the 2nd part for each column.
Now the finished code goes left to right in a
loop and top to bottom in a loop. When coders
see patterns like this one and use the patterns
to simplify their code they are reasoning
reflectively. They are continuously checking
on the quality of their work and iteratively
connecting new learning or ideas to the
problem at hand in order to make it most
effective.

way helps students experience greater success in
math as it teachers them how to:

1. ensure all of their mathematical decisions
are reasoned and make sense;

2. be aware of their learning gaps and how to
close these gaps as they continue to learn;

3. ensure they are accurate and precise in their
thinking;

4. develop clarity and depth of understanding
of the math they are learning over time;

5. develop a growth mind set (continued
effort, perseverance, flexibility) and to
understand why it is important;

6. become confident, independent, on-going
self-regulators and assessors.

7. focus on understanding the essential
components of a problem and weeding out
unnecessary distractors.

Reflective reasoning ultimately helps students
develop a “thinking toolkit” to be used in the
solving of future problems.

back to their previous responses based on
old learning to develop richer, more
detailed and at times innovative responses.

Thinking Competency:

Communicative Reasoning
Example of coding using
communicative reasoning

How communicative reasoning in coding helps
with math…

Communicative Reasoning: The ability to
effectively use mathematics or code as a
language to understand and express ideas.

In mathematics, this refers to the capacity
to communicate effectively in a way that is
appropriate to the purpose and audience of
the communication. For example, to reason
communicatively means making effective
decisions about what form of
representation to use (visual, graphical,
algebraic, geometric), how to structure
these forms correctly (nature and position
of title for example), how to best interpret
and read these forms and how to infer
meaning when necessary (by making
assumptions). Representational and
structural reasoning are component parts of
this broader competency.

In coding, this refers to the capacity to
communicate effectively with code and
with commenting code in a way that is
appropriate to the audience reviewing the
code being written. This audience includes:
the person coding today, the same person
reviewing the code in the future, and any
team members present or future who will
also be looking at the code to review,
refactor or improve it.

Every computer language has generally agreed
upon coding conventions – when to use spaces,
when to use indentations, how to arrange the
code so that it is easiest to read and understand.

For example, a coder who uses the language of
code effectively makes sure a code is indented
properly and separates functionality inside the
program into discrete smaller functions that
work with each other rather than as one large
function which does the same thing but is more
difficult for a reader to follow and understand.
Also, communicative reasoning ensures that
coder knows how to recognize and fix code
that breaks down at any particular point.

Often a coder is communicating with
herself/himself. Properly organizing and
commenting in the code will help the
programmer to quickly understand for the
future what the program does precisely, and
enable it to be re-used or modified according to
present needs.

In code, each line of code is executed in order.
A coder could technically write all the
software for a complex website like Facebook
all in one row without any structure, empty
lines, or organization as long as the lines of
codes all fit together and are presented in the
right order. These millions of lines of code all

Learning to communicate effectively using code is
especially useful in learning how to communicate
effectively in math. Coding helps students learning
mathematics to:

1. understand (for themselves and others) the
value and purpose of mathematics as a
universal language that can be read and
written (accessible and useful) by all
people;

2. sustain the continuous development of new
mathematical thought;

3. develop the skill of effective argumentation
as they are able to justify their ideas to
others;

4. work well and collaborate with others.

This type of reasoning is often neglected by
mathematically oriented thinkers. However, any
mathematical ideas, conclusions or results, even
brilliant ones, that are not properly communicated
are destined to be deemed not valuable and
ultimately ignored. In addition, research grants, or
any employment requiring mathematical reporting,
accountability, or any form of (persuasive)
communication (finance, sales, business deals,
banking, etc.) must be able to communicate the
intricacies, strengths, and potential benefits of a
proposed mathematical idea in a manner that is
both accessible and eloquent.

Code is not instantly readable like language
is – it is a collection of symbols and a very
limited number of full words. Instead,
programmers with high levels of
communicative reasoning will ensure that
every piece of code they write will be
readable in the future by choosing good
variable names and by writing comments
inside the code which explain what every
chunk of code does, where a chunk can be
anywhere from a single line to an entire
function worth of code. This being said, a
high level of communicative reasoning will
be displayed when there are helpful
comments every few lines.

written in one row would be called Spaghetti
code – something that delivers the correct end
result but isn’t functional in terms future
improvements or modification. It would be
difficult to fix problems, make improvements,
getting rid of parts that aren’t needed, etc. with
code communicated in this way.

Overall, a coder who spends extra time to
properly format their code displays higher
levels of communicative reasoning.

Thinking Competency:
Connective Reasoning

Example of coding using
connective reasoning

How connective reasoning in coding helps with
math…

Connective reasoning refers to the ability
to understand the nature of how, and degree
to which, ideas are related.

Connective reasoning in mathematics
refers to the ability to seek out useful
relationships between mathematical
concepts or ideas. For example, it is useful
to understand the degree to which concepts
such as addition and subtraction; addition
and multiplication; multiplication and
exponents; functions and relations; average
and instantaneous rates of change are
similar and different. Understanding
relationships like this helps to make
decisions on how to solve problems with

Consider the design of a website that sells
many items; books with a specific number of
pages, clothing items in various sizes, TVs of
various screen sizes, toys made of a certain
amount of pieces.

To effectively keep an inventory of all the
items being purchased and their price, the
coder must sort the items based on their
various degrees of similarities and differences.
For example, all the items have a quantity,
some share similar identifiable characteristics
such a size or number to pieces, and have a
price. All the items also have elements that are
unique to them, e.g. no other item has a
number of pages other than books.

Learning how to reason to connect elements, ideas,
concepts in code in a useful manner helps students
be successful in math because:

1. helps to improve and strengthen their
mathematical understanding of important
ideas and concepts;

2. helps to ensure they are considering all the
mathematical details to decide which and
to what degree they are important;

3. helps them to see mathematical
relationships and seek meaningful patterns
(for example, multiplication can be
described as a loop of additions and
exponents as loops of multiplication);

greater effectiveness (in the simplest,
clearest, more convincing) way.

Connective reasoning in coding is all about
being able to take the real-world elements
that you are creating code for and properly
translating them into a code structure that
makes it easiest for the code base and for
the user using the application to interact
with, use, retrieve and manipulate the real-
world elements and their digital
equivalents.
In essence, connective reasoning in coding
is about understanding how certain types of
applications are best solved with certain
algorithms and design choices. For
example, an e-commerce website which
accesses small amounts of data at a time
needs one type of database while a data
analytics application that accesses the data
very often and accesses lots of data at a
time needs a different type of database.
Understanding the relationship between
different types of databases and how easy it
is to access the data helps to make
decisions on how to solve problems and
build software with greater effectiveness
(in the simplest, fastest, most easy-to-use
way).

Being able to figure out what are the common
and unique elements helps the coder to create
an appropriate data structure and database to
properly store, access and manipulate the
stored items to keep an ongoing inventory
from a coding perspective.

If coders do not consider the degree to which
elements in the database are related, they will
build a database with an architecture that
makes the use of the software slow, clunky and
replaceable. Optimizing database response
time means optimizing the length that a user
has to wait before a page loads. Waiting 10
seconds or more for a page to load means users
will disengage and stop using the software.
Connective reasoning in code can ultimately
lead to creating code that is deemed valuable
and desirable rather than creating one an end
that no one wants to use and another coder can
do better.

4. supports creative and innovative thinking
in mathematics by allowing students to
make new and valuable connections;

5. helps to contextualize and decontextualize
problems making them easier to solve in
more mathematically sound ways.

In essence, mathematics is the science of
connecting ideas that are precisely defined, and
absolute in their truth. Students that come to
understand this by making on-going mathematical
connections and seeing relationships between
various concepts are able to develop a sense of the
“oneness” of mathematics.

Thinking Competency:

Strategic Reasoning
Example of coding using

strategic reasoning
How strategic reasoning in coding helps with

math…
Strategic reasoning refers to the ability to
select appropriate strategies, methods or
approaches, and supporting tools, to
effectively aid in completing mathematical
or coding tasks or problems.

When sorting a large amount of different
numbers, e.g. prices, all of which are different
from each other, a different sorting algorithm
would be more appropriate than the one used
to sort a large amount of similar number, e.g.

Reasoning strategically in code helps student be
more successful in math as it:

1. supports all mathematical thinking (sense-
making, representing, organization,
mathematizing, problematizing…),

In mathematics, completing a task or
solving a problem requires the selection of
the most appropriate strategy, method,
model and tools from a wide range of
alternatives. For example, a mathematician
chooses to use a computer or a calculator
instead of using mental math or other
devices because it will lead to the
completion of a task or helps to solve a
problem more effectively (more precise,
accurate, efficient, fitting to the nature of
the task or problem). This is also true of
strategies, models or approaches they
decide to use. For example, multiplication
is more appropriate when multiplying a
large number of equivalent sets of values
than addition.

This is also true in coding. When building
software, there are multiple approaches to
complete the work. A “quick and dirty” fix
may solve a problem quickly but may not
allow for solving other problems that come
up in advance; building a simple function
which might be re-used a few times; or
importing or creating a library for use not
only for the current problem, but for a
long-term set of software challenges. For
example, when building software to quiz
users on mathematics, you might build a
“graphie” library containing multiple
functions, classes and models to handle all
variations of software needed for
coordinate plane math, e.g. functions,
derivatives, trigonometry, etc. Once built,
this library could be imported whenever
content is being developed that involves the
coordinate plane.

sorting heights of a large number of people.
The latter will only come from a small set of
values (from 48 inches to 96 inches as people
are generally between 4 feet and 8 feet tall)
while the prices in a store might vary from 5
cents to $99,999.99, i.e. a larger set of numbers
with tens of thousands of different values. A
sorting algorithm must be strategically selected
that best fits the nature and quantity of the
information being sorted.

Another example is picking a computer
language to work in for a specific project.
Some languages work really fast but are
difficult to use. These might be appropriate for
building operating systems like Windows or
the Apple operating system. Some languages
are very useful for mathematical and statistical
manipulation, so if you are building an
application whose primary purpose is do this
kind of work, you might use a language
specifically built for this task. Some languages
are built so that the code written is easy to read
(good for large teams) while other languages
are written to be easy to write (many shortcuts
and abbreviations are included within the
language).

Understanding the objective of the code to be
created helps to select the best strategies and
tools to use to meet the objective. Strategic
reasoning in code helps to better create and
implement more effective solutions.

ensuring that best mathematical decisions
are made strategically;

2. supports the development of fluency;
3. helps to deepen understanding; and
4. helps to improve efficiency, accuracy, and

precision as the most fitting selections are
made to solve a problem.

Note both mathematical thinking and computational thinking are defined by a set of thought processes needed to

formulate and solve problematic situations and task in an effective manner; both are iterative processes that move
through, sometimes back and forth, 3 well-defined stages: problem formulation; problem solution expression or
representation; and solution execution and analysis. All of these stages executed well ensure that the language of

mathematics or coding are used effectively to communicate solutions.

