
1

SuiteCloud
Development
Framework

Version 1.0eBook

2

AUTHORS

PUBLISHED DATE

LAST UPDATED

VERSION HISTORY

Version: V1

Date: 8/12/2019

Description: Initial publication

Bryan Willman

Luke Pirtle

RenHong Zhu

Nick Klug

8/12/2019

8/12/2019

3

Techfino’s SuiteCloud Development Framework	

Audience and Purpose	

Introduction	

Guide to Account Customization with SDF	

Understanding Customization XMLs	

	 Customization Object XML	

	 Manifest XML

SDF Development Environment Setup	

	 IDE Integrations

	 Install Eclipse

	 Install SDF Plugin

	 Enable SDF and Create Custom Role for SDF in NetSuite

Configure Accounts for SDF Project in Eclipse

	 Change Project Settings

Add Customizations to SDF

	 Import by ScriptID

	 Import by Bundle ID

	 Manually Create Customizations

Add Dependency to SDF

Validation and Deploying SDF Project

	 Validate Project Against Account

	 Deploy SDF Project to Account	

Sample: Deploy Mass Delete Script from One Account to Another	

	 Background	

	 Project and Git setup in Eclipse

	 Import Customizations and Validate before Deployment	

	 Deploy to Target Account	

	 Additional Notes for This Example	

SDF Gotchas & Our Experience	

Closing Remarks	

1

4

4

6

7

7

8

8

8

9

10

13

17

17

20

20

22

24

25

26

26

27

28

28

31

41

48

50

51

53

Table of Contents

4

This guide is written for NetSuite developers and technical resources who are look-
ing for documentation and step-by-step process guides for the SuiteCloud Developer
Framework (SDF). After reading this ebook a user should have a good understanding of
the framework, its advantages and shortcomings as a DEVOPS tool. The reader is guided
through the process of setting up and configuring an SDF project for ongoing develop-
ment and support of NetSuite customizations. Techfino has also included a sample SDF
project to walk the user through a real-world deployment for demonstration purposes.

Over the past few years NetSuite has been hard at work adding exciting features to
the NetSuite development process with the introduction of the SuiteCloud Develop-
er Framework or “SDF” as it’s most commonly abbreviated. SDF is in essence a plat-
form-agnostic big brother to the Eclipse SuiteCloud IDE many developers are already
quite familiar with. However, SDF is a much more mature and established tool that can
deploy an entire NetSuite customization project or suiteapp instead of just the source
code. Adoption of SDF has been quite slow to the NetSuite developer community due
to its added complexity and lack of guides and documentation. This document is meant
as a guide to help a developer understand what SDF is, its advantages and how to start
using SDF through the examples below.

The precursor to SDF, SuiteCloud IDE, allows a developer to directly upload their Suite-
Script source code files into the NetSuite File Cabinet. This streamlines ongoing devel-
opment by allowing a developer to quickly push code changes to NetSuite without con-
text / window switching to another app. However, it is far from ideal as a deployment tool
for NetSuite developers and pales in comparison to other platforms’ deployment tools.
NetSuite projects are more than just suitescript source code and require customization
and configuration in the account to be setup and run. SuiteScripts are reliant on cus-
tom records, custom fields, saved searches, workflows etc. which are not supported by
SuiteCloud IDE and require manual creation or another tool working in tandem.

Most NetSuite partners utilize SuiteBundler to fill this deployment gap. While it may
bridge this gap, in practice SuiteBundler can be incredibly obtuse and difficult to use at
times. It often leaves a heavy reliance on documentation and manual process. Suite-
Bundler doesn’t have version control support and components aren’t linked to specific
file versions which can lead to conflicting code and deployment issues.

Audience and Purpose

Introduction

5

SDF aims to address the gaps and pain points of the alternatives by giving a holistic de-
ployment tool that can be used to create and deploy projects seamlessly. To start off,
SDF is available for a few supported IDE’s (Eclipse, Webstorm) just like its predecessor
but can also be used as a command line interface (CLI). This addition allows SDF to be
adapted for community plugins and deployment pipelines such as Jenkins. This allows
it to be used for small agile projects or full blown application development. SDF also
supports account configuration and customization by serializing definitions into xml. In
practice, this allows entire projects to be updated and installed to new accounts by a
single user without having to leave their IDE. SDF centralizes the code, customization
and configuration which eliminates the tedious documentation necessary to keep ev-
erything in sync. This also allows for entire projects to be version controlled as opposed
to only its source code.

The biggest drawback to SDF is that it is a big upgrade. NetSuite has added a lot recently
to a mostly barren deployment landscape. It’s early stages have been buggy with lacking
support and documentation. However, since SDF’s release, a large number of these is-
sues have been addressed. At Techfino, we are now using SDF for all new development
projects and encourage other NetSuite Partners and Customers to do the same.

NetSuite Customization Deployment Tool Comparison

SuiteCloud IDE SuiteBundle SDF

Supports SuiteScript √ √ √

Supports Configuration √ √

Centralized Project √ √

Can be deployed from
an IDE / External Tool

√ √

Can be paired with
version control

√ √

Typical time spent
validating deployment

Instant (code out of
sync is marked in IDE)

30 min - 5 hours < 5 min

Typical time spent
deploying

< 5 min < 20 min < 5 min

6

As presented in the Techfino Guide to SuiteBundling in NetSuite by Nick Klug, we assist
customers with NetSuite deployments involving the transfer of both configuration and
customizations created in one NetSuite account to another. We have been shifting into
utilizing the SuiteCloud Development Framework (SDF for short) to help with this pro-
cess for a variety of reasons which are outlined below. In the following section, we will
investigate SDF for managing customizations in multiple environments and deployment.
We will also be discussing how SDF differs from SuiteBundling and some of the things
we have learned over the past year.

For those not familiar with SDF, it can best be thought of as a new framework in which
both configurations and customization objects are represented in XML format. Some of
the benefits of this new process include:

•	 Greater Control - the files have a much more precise state with SDF. The XML that is
present in the SDF project is exactly what is imported into the target system.

•	 Version Control - the XML files can also be stored in a version control system, such as
Github or bitbucket. This allows for analysis of changes in the life cycle of a project
and can allow for reverting to a previous customization.

•	 Build-Automation - while this is not fully baked as of now, Techfino has discovered
a technology stack leveraging SDF that allowed us to successfully automate the de-
ployment of versioned changes from one account to another. SDF is an exciting, en-
abling technology that will allow NetSuite to advance into more of a mature develop-
ment and automated build deployment platform allowing for Continuous Integration
and Test Automation to follow.

When starting to utilize the SDF platform, an easy way to start is to simply create a few
basic scripts and fields within NetSuite. Then, import them into SDF and examine the
new entries in the SDF project. This gives a good starting point for your customization
project. See the Sample Mass Delete Script Deployment section for a “Hello World” ex-
ample of deploying a simple development package via SDF.

Guide to Account Customization with SDF

https://www.techfino.com/blog/guide-to-suitebundling-in-netsuite

7

SDF works by representing a customization record in NetSuite with an XML file. This
works both ways - extracting an existing customization from an account and creating an
XML, and pushing the XML into a target account, creating the customization there. The
below example shows the XML object for a User Event script. It contains references to
all the fields on that customization record within NetSuite. This includes the scriptID,
description, what functions it executes on, and whether or not it is active.

Additionally, it also details script deployments at the parameters it uses and what their
values are set to.

Customization Object XML

Understanding Customization XMLs

8

The manifest for the project contains the requirements for the manifest to be deployed
in an environment. For example, if you want to use SDF to deploy SuiteScripts to the tar-
get account, then the target account is required to have Server Side Scripting enabled.

One of the greatest strengths of SDF compared to SuiteBundling is allowing for the de-
ployment of objects with dependencies without having to include those dependencies.
This is assuming they may have already been deployed via another SuiteBundle. In prac-
tice, workflows are some of the most difficult objects to move with a SuiteBundle. This
is because workflows often reference multiple customizations and with a SuiteBundle,
each related customization will be included automatically. With each migration to an en-
vironment, there is a possibility of unintentionally changing the customizations in the
target environment with the bundled customizations.

Manifest XML

SDF officially integrates with Eclipse and WebStorm, with Eclipse being the more mature
of the two options. In the following sections, we will be using Eclipse for demonstration
purposes. Below you will find the detailed instructions to setup Eclipse with SDF. You
can also follow NetSuite provided instructions (See SuiteAnswers ID #10315 for Setting
Up SuiteCloud IDE Plug-in for Eclipse).

IDE Integrations

SDF Development Environment Setup

9

To get started with SDF, you will have to download Eclipse first. NetSuite recommends
using Eclipse Mars. (02/26/2016 package. Link: https://www.eclipse.org/downloads/
packages/release/mars/2/eclipse-ide-java-ee-developers.) Although, we haven’t ex-
perienced any issues with the latest version of Eclipse IDE. J2EE or Javascript/Web
Developer version both works. Link: https://www.eclipse.org/downloads/packages/.
Once installed, you can change the workspace to a different path. This will make access
to the folder easier.

Install Eclipse

https://www.eclipse.org/downloads/packages/release/mars/2/eclipse-ide-java-ee-developers
https://www.eclipse.org/downloads/packages/release/mars/2/eclipse-ide-java-ee-developers
https://www.eclipse.org/downloads/packages/

10

Install SDF Plugin

1.

2.

Run Eclipse, Under Window tab, find Preferences

In the opened window go to Install/Update > Available Software Site

11

•	 Name: SuiteCloud IDE
•	 Location: https://system.NetSuite.com/download/suitecloud-sdk/ideplugin/

eclipse/19.1 (This address changes with releases, so if you are using a builder
later than 2019.1 you might need to lookup the address)

4.

3.

5.
Apply and Close

Click Add and enter the following information

Go to Help tab, click Install New Software

https://system.NetSuite.com/download/suitecloud-sdk/ideplugin/eclipse/19.1
https://system.NetSuite.com/download/suitecloud-sdk/ideplugin/eclipse/19.1

12

6. In the opened window, select SuiteCloud under Work with field and verify the
address. Check the SuiteCloud IDE checkbox in the list and follow the Eclipse
wizard to complete installation.

7.
8.

When prompted, restart Eclipse
If installation is successful, user will see the following dialog after restart

13

9. Setup master password for SuiteCloud IDE. Once the password is set up, user
will have to use the master password to enable SuiteCloud plugin functions for all
SuiteCloud projects

Enable SDF and Create Custom Role for SDF in NetSuite

1. Login to NetSuite using Administrator role and go to Setup > Company > Enable
Features

Because NetSuite doesn’t come with the SDF feature enabled by default, an Adminis-
trator will have to manually enable the feature. A new custom role should be created for
SDF since the Administrator role and Developer role will encounter an issue with 2FA
when using SDF. The new SDF role should be created from the Developer role for SDF
purposes.

14

2.

3.

4.

In the new page, click on SuiteCloud tab

Scroll all the way to the bottom and check SDF option, agree to the terms and save
the change

Once the change is saved, go to Setup > Users/Roles > Manage Roles

15

5.

6.

7.

User should now see the Developer role. (This role won’t be available until user en-
ables SDF feature.) Click Customize

In the role creation page, update the name to SDF Role. Set Access Subsidiaries
to All.

Add Find Transaction under Permissions > Transactions

16

8.

9.

10.

Add Publish Search under Permissions > Lists (If there is a custom search needs
to be set as public for custom objects to use, this permission is required.)

Remove Integration Applications from Permissions > Lists (Not needed for 2019.2)

Remove Access Token Management from Permissions > Setup (This option is only
available when the Token-Based Authentication feature is enabled) (Not needed
for 2019.2)

17

11.

12.

Remove Integration Applications from Permissions > Setup (Not needed for 2019.2)

Save the Customized role.

The ‘Change Project Settings’ menu option shown in the figure below is accessible from
the SDF Project in Eclipse and allows the user to select which account and role combi-
nations SDF will point to by default.

Right-click the parent project folder and navigate to NetSuite > Change Project Settings.

Change Project Settings

Configure Accounts for SDF Project in Eclipse

18

To add environments at roles to a project, click on the ellipsis in the top-right.

Select “Add” at the top right.

Now, select which environments you wish to add account logins for. With the reconfig-
uration of NetSuite’s account specific logins, these will all be under “Production” or “Re-
lease Preview.” Enter your credentials and click “Next.”

19

You will then see a ‘Manage Accounts’ window allowing you to check all the accounts you
wish to use your SDF project with.

Press “Select and Close” to select one of the environments as a default or “Close” to leave
the dialog window.

20

The ‘Change Project Settings’ window shown in the figure above allows the user to select
which account and role combination SDF will default to for its operations. This process
can be repeated at any point and it is recommended to start with it set to your Source
environment as you develop, then switching to your target environment as you validate
and deploy.

In this section, the flexibility to pull pre-existing customizations into your SDF project
from a target NetSuite Account is on full display.

Import by ScriptID

Add Customizations to SDF

21

Right-click on the Objects folder in Eclipse and select “Import Custom Objects from
Account.”

Select the account and role needed to access the object, then click “Next”

22

Enter the script ID in the above pane and then click “search.” After the search finds
all matches for the Script ID, check the checkboxes to select the objects you want to
import into the project. Take careful note of the “Select All” and “Deselect All” buttons.
Click “Finish” to begin importing the selected objects.

The objects will begin the import process. If there are any errors during the import
process, the console will display error messages detailing why the import failed. The
majority of the issues that occur during the import process are due to permissions.
Ensure the role you are using to import has the proper permissions for the objects
being imported.

Another nice feature is the ability to import objects into your project by SuiteBundle
ID. This can be accomplished by right-clicking on the parent project name in Eclipse
and select “Import Bundle Components.”

Import by Bundle ID

23

Another nice feature is the ability to import objects into your project by SuiteBundle
ID. This can be accomplished by right-clicking on the parent project name in Eclipse
and select “Import Bundle Components.”

Next, select “List Bundles”, select the bundle you wish to import into SDF, then click
OK. SDF will automatically import the objects in the bundle into your SDF project.

24

Right-click on the Objects folder in the SDF project. Navigate to NetSuite > New Object
In Account, then select the customization object you want to add.

Manually Create Customizations

25

With SuiteBundler, you often times run into deployment issues using SuiteBundles to
deploy Customizations especially when they automatically include referenced objects
from other SuiteBundles. This leads to some SuiteBundles including fields or records
from other SuiteApps or SuiteBundles unintentionally because they were referenced in
a Workflow for example. But this is one of the areas where SDF provides greater control
and flexibility to either automatically include referenced objects or not in your Project.

Updating the manifest can be done two ways. The simplest method is to right-click any-
where in the project, navigate to NetSuite > Add Dependency References to Manifest.
This will add all required dependencies for the objects currently in the project and add
them to the project.

Alternatively, you can manually add dependencies to the project for the objects you know
you will be working with as you go.

For the first few SDF projects, we highly recommend using the automatic addition of
dependencies and paring back as you discover objects that you need to be included for
the project to deploy.

Adding Dependencies in SDF

26

Before deploying your SDF Project to a target account you can first validate the Project
has all the prerequisites for installation. To do so, right-click anywhere in the project,
navigate to NetSuite > Validate Project Against Account.

Next, select the account and role that you wish to use in order to validate the SDF proj-
ect. Click validate and the process will begin.

Validate Project Against Account

Validation and Deploying SDF Project

27

The validation process will check against the account to see if the project contains the
settings and objects necessary to support the deployment - for example, if your SDF
project requires Server Side Scripting in the manifest, and the target account does not
have it, it will throw the related error. If the SDF project contains a reference in the man-
ifest to customrecord_product_review, then customrecord_product_review needs to
already be present in the target account. If it is not present, you will receive a warning
similar to the above.

After successfully validating your project against the target account, you are then set to
perform the deployment. To initiate the deployment start by right-clicking anywhere in
the project and navigate to NetSuite > Deploy to Account.

Deploy SDF Project to Account

28

Next, select the account and role for project deployment. Click Deploy, and the process
will begin. If the target Account is a Production environment, then there will be an addi-
tional confirmation window as shown below:

If the project deployment is not successful, you will see error messages similar to what
was contained in the validation section. Sometimes, there are additional issues in an
environment that cannot be caught during the validation stage. This typically relates
to data conflicts in the target Account.or example, duplicate script IDs, values used in
things such as a script parameter or workflows that are not contained in the target Ac-
count.

Previously,we posted NetSuite Mass Delete Tool, developed and documented by Luke.
Today, we are going to use this solution for a quick example for using SDF as a deploy-
ment tool. Below are the steps for what’s involved in the customization.

•	 Mass Delete Search - A saved search created to identify the records to be deleted.

•	 In this case, we don’t actually want to delete any transactions. As a result, we
added Date Created after today as a criteria for this search

•	 Search columns doesn’t really matter. We kept as is and didn’t change anything
•	 The search must be set to public to be allowed to be selected under script

deployment

Background

Sample: Mass Delete Script Deployment

https://www.techfino.com/blog/netsuite-mass-delete-tool

29

30

•	 Utility | Mass Delete (MR) - The Map/Reduce script record

•	 Script parameter: Saved Search for Delete - this parameter is passed to the
script to identify what is going to be deleted

31

•	 Script Deployment

•	 Set Parameter value to Mass Delete Search

We are going to use Eclipse for this example to pull above customization from our
CleanSweep Archives & Purge Dev and deploy to QA account. We will show you each step,
hope this will be useful to you. We are assuming you already have Eclipse and NetSuite
setup according to our SDF Development Environment Setup section which includes
custom role setup, assigned to user and SDF plugin for Eclipse. This example is using
Eclipse IDE 2019-03 R for Javascript and Web Developers edition.

For demonstration purposes, we are using Eclipse git plugin for all repository interaction
because it doesn’t require any other installations. You can use your choice of repository
and tool (SVN, GitKraken,etc.). An empty git repository sdf-demo has also been created
via bitbucket for this example.

Project and Git setup in Eclipse

32

Add Git Perspective and Add Repository

1.

2.

3.

Click on Open Perspective located at the top right corner

Select Git from the list and Click Open. Now the Git Perspective is opened, you
should be able to see Git Repository section (Shown below)

Click on Clone a Git repository, enter the URI and required information and click
next

33

4.

5.

Setup path and click Finish. Please be aware sdf-demo here is the name of the
repository instead of SDF-Demo which is the name of the project.

Now the bitbucket repository is added to your repository list

34

Create New SuiteCloud Customization Project

1.

2.

3.

Click on SuiteCloud perspective at the top right corner

Go to File > New > SuiteCloud Project…

Select Account Customization and click Next

35

5. You will see your new SuiteCloud project in NS Explorer

4. Enter Project Name: SDF-Demo and Click Finish

36

Link SuiteCloud Project to Repository

1.

2.

Right Click on SDF-Demo project and find Team > Share Project

Select sdf-demo under Repository field and click Finish

37

3. Now the Project is linked to our sdf-demo repository. If you go to Git perspective
and expand sdf-memo repository. You will be able to find all the folders and files
there.

Commit Empty SuiteCloud Project

1. Right click on the SDF-Demo project and go to Team > Commit, the move all files to
Staged Changes

At this point, we can commit and push the empty project to Git. It would help us to
identify what are changed in later stage.

38

2.

3.

Enter Commit Message and click Commit and Push

Now the empty SuiteCloud project has been committed and pushed to our bit-
bucket hosted git repository

Setup SuiteCloud Project Access

1.

2.

Right click SDF-Demo project and go to NetSuite > Authenticate Master Password
and enter your master password. This password is the one you entered when you
installed the SDF plugin for the first time.

Once entered, all NetSuite related functions are enabled.

Now we need to set up the project access.

39

3.

4.

Right Click on the project and find NetSuite > Change Project Settings

Click Add, enter your NetSuite username and password, then click Next

40

5.

6.

7.

If the credential you entered is correct, you will see a list of account your have
access to in the next page. In this case, we are moving customization from Clean-
Sweep Archives & Purge Dev to QA. We are selecting those 2 accounts and Click
finish.

Now we need to setup Token access using SDF Role. Otherwise, NetSuite will kick
you out of your UI session every time you import a customization object. Click on
the first account in the list and click Manage Authentication on the right side. Then
click Issue Token. You should see Token Issued messaged after a couple seconds.
Do the same for the other account.

Next, select Dev account and Click Select and Close. In the future, when we need
to import data, the Dev account will be the default account.

41

8. On the next page, change role to SDF Role

At this Point, access has been captured in Eclipse. For the next project, if you are using
the same accounts, you don’t have to do this again.

Import Customizations and Validate before Deployment

1. Right click the AccountConfiguration and find NetSuite > Import Configuration

Finally it’s time to import customization from Dev to Eclipse. Keep in mind, the script
contains two parts. The script record under Objects folder and the actual script file
under File Cabinet > SuiteScripts folder alone with all the libraries.

42

2.

3.

Click Get Configuration List, select Enable Features then OK

Right click the FileCabinet and find NetSuite > Import Files from Account

43

4.

5.

Click Get File List and select the target folder. In this case, we only need files from
the Utility folder. Click OK. Then NetSuite will start importing the script files from
File Cabinet. Once done, you should see the script files under FileCabinet folder.
Also, it’s important to pay attention to the logs in the console. Should an error
occur, you will see details highlighted in red. You will want to pay attention to logs
whenever you import or deploy anything.

Import the Saved Search object by right clicking Objects folder and go to NetSuite
> Import Custom Objects from Account

44

6.

7.

Click Next, put the NetSuite id for saved search in Script ID Contains field and
click search. Find the check the correct search in the list and click Finish. Once
imported, you should see the search object under Objects folder

Now we need to import the script object by right clicking Objects folder and go to
NetSuite > Import Custom Objects from Account again

45

8.

9.

Enter and Select the correct object in the window and click finish.

Now everything is imported. Your NS Explorer should look like the below image.

46

10.

11.

Last step for import, we need to update the dependency list. To do this, right
click on the manifest.xml file and go to NetSuite > Add Dependency References to
Manifest. This will automatically update your manifest.xml to eliminate some of
the dependency issue. (In this example, there are not really any dependencies. In a
different scenario, you might have to manually update manifest.xml.)

Before we deploy the customization to targeted QA account, we want to make
sure the deployment would be successful and is not going to cause any errors. To
do this, right click on the SDF-Demo project and go to NetSuite > Validate Project
against Account

47

12. In the pop up dialog, select QA account and SDF Role. Since we will deploy this
customization to QA, we need to ensure it passes validation. Again, you should
check the validation message in console.

48

Deploy to Target Account

1.

2.

Right click on SDF-Demo project and go to NetSuite > Deploy to Account

Change Account to QA and Role to SDF Role and Click Deploy.

We are finally at the point to deploy this change to our QA account now that the
validation is complete.

49

3.

4.

Validate customization has been successfully deployed to target account from
console logs.

Log into NetSuite and verify all changes has been deployed

50

That concludes this example for deploying Mass Delete Customization from our Dev
account to QA account. We hope that you found this example helpful.

Additional Notes for This Example

1.	 Some of the steps only apply to Account Customization. The process for SuiteApp
will be slightly different for the initial project setup, and you will need to supply your
Publisher ID.

2.	 Import AccountConfiguration may not be necessary if the settings are the same
between accounts. Using SDF role may cause error due to permission issues. If
that’s the case, switch to Administrator role for AccountConfiguration for import and
export.

3.	 Validate against Account action is more for dependency check. It does not
guarantee deployment will be successful.

4.	 Always log into NetSuite and check deployment result after SDF deployment.
5.	 This demo does not follow git best practices and uses only the master branch for

demo simplicity
6.	 There are other ways to import/export project to Git. This is just the writer’s way of

setting things up.
7.	 We recommend committing the .project since the recent release of Eclipse requires

this file for a project. If this particular file is missing, you will run into errors while
initializing the SuiteCloud project in Eclipse.

8.	 To create a new project out of existing Git repository, you can first clone the
repository from Git perspective. Then go to File > Open Projects from File System
and select the correct root. If the correct root is selected, you will see a SuiteCloud
project added to your Explorer. (You must have the .project file in the root folder.)

5. Don’t forget Commit and push all the changes to Git

51

NetSuite has worked to address many of the issues that we discovered on different
projects. They continue to improve upon SDF and we are thankful that many of these
challenges have been addressed. Below are some of the remaining issues that you may
experience :

NOT RECOMMENDED - The workaround for role center types that are incompatible is
to create the role in the target environment with the same ID and make sure the role
center type is the intended type. Next, use the console to set the role center type to
“BASIC”, then save the role. Edit the XML of the imported role and set the role type in
the XML to “BASIC”. After deployment, set the role center type back to the intended
value. We still encountered difficulties with this process, but it was the most consis-
tent solution available.

SDF Gotchas & Our Experience

•	 Workflows

•	 Roles - All roles centers are not supported and not all sublists are supported. Most
notably, employee and custom center are not supported and the following sublists
are not supported:

•	 Permissions - Importing Workflows from an environment or deploying to a target
environment requires permissions for your deployment role for all transaction
types that are involved in the workflow.

•	 Workflow Action Script return types - Issue deploying workflows with workflow
actions with “List/Record” return types when the value is a List. Netsuite
expects a record type and rejects the list. The workaround for this is to remove
any return type, deploy, then manually reconfigure the return type.

•	 Account Specific Values - Be aware that Account Specific Values could result
in unintended behavior for workflows. For example, in an Expense Approval
workflow, if the chart of accounts does not match between environments, it
may use a seemingly random account for approved expenses.

•	 Subsidiaries field
•	 Forms sublist
•	 Searches sublist
•	 Dashboard sublist

52

•	 Deployment Roles - When deploying with SDF the user deploying will need a role with
permissions to various records and objects and their dependencies as well as the
ability to authenticate and make web service calls to NetSuite preferably using Token
Based Authentication. When deploying this creates a Chicken and Egg paradox as
you can’t deploy the role needed to deploy to the account without deploying. A native
or pre-existing role must be created for an SDF deployment to solve this issue. Previ-
ously the Administrator role could be used for convenience or as a last resort but with
Two Factor Authentication mandatory for any highly privileged roles now this disal-
lows the role from being used. There are a few options and none are very streamlined

•	 Error Messages - When an SDF operation fails, it can and will be vague, confusing,
unintuitive, or a combination of all three. Focus on resolving any and all small issues
with the project being deployed and work through each issue.

•	 Ensure Uniqueness of script IDs - One issue encountered was a nebulous error
message while trying to deploy a script - “Invalid recordtype reference key CUSTOMER”.
However, we found that the underlying issue was that there was a script deployment
with the ID “customdeploy1” that would not be unique in the target environment,
resolving the issue. In general, validate that the IDs used for your customizations are
not default IDs, such as “custbody1”.

•	 Forms - The difficulty of migrating forms scales with the level of customization in
the source account. As they are currently implemented, an SDF Form XML contains
a reference to every customization available to be associated with the form in the
account, regardless of whether the form uses the field or not. In more complex
accounts, this can lead to an extremely large and dependency heavy XML.

•	 Access Token Management
•	 Integration Application

This role will likely need to be altered with additional permissions but works for
simple projects and as a good starting point

1.	 Manually create a role in the target account. While the most tedious option it is
also the most straightforward

2.	 Install an SDF developer role from a suitebundle. There are many pre-existing
bundles for an SDF friendly role. Installing one of these or creating your own SDF
developer role bundle can save you a lot of time and headache in the future

3.	 Create a custom role based on the Native Developer role. The native developer
role contains highly privileged permissions and has the same issues as the
Administrator role. However you can strip out a few permissions and create a
custom role pretty easily that doesn’t have mandatory two-factor authentication

53

•	 Saved Searches - Saved Searches deployed without a “Publish Search” permission
defined in the deployment role will be automatically switched from “Public” to “Private”
during deployment. This can break a lot of functionality so it is highly recommended
that this permission always be included for a deployment role.

Validate Against Account: As we mentioned, you should always use Validate against
Account before deployment. However, this feature does not guarantee successful
deployment even if it returned a positive result since it only checks against dependencies
within project. For example, if there is an issue with permissions, the feature will be
unlikely to return an error. We hope that NetSuite could improve the Validate against
Account feature so that it can give users warnings as if the change/customization were
deployed - especially considering this is the last line of defense before actual deployment.

Be sure to check back from time-to-time as we continue to update this guide with new
content and information. NetSuite is continuing to build upon this SuiteCloud Development
Framework and adding new exciting features you will want to take advantage of. As of
this writing, NetSuite is continuing to add more capabilities to round out some of the
gaps we have discovered and pain-points we have raised. We at Techfino eagerly look
forward to the day where all changes in an account can be managed in version control,
deployed via SDF, and automatically validated unit tests and end-to-end integration and
functional test cases ensuring quality from end-to-end.

If you are considering using SDF and would like our assistance, we would be more than
happy to assist you. Or, if you have any questions, corrections or comments, please
send us a note at contact@techfino.com We love hearing from NetSuite customers,
practitioners and partners alike!

Closing Remarks

mailto:contact%40techfino.com?subject=

54

Who is Techfino?

Techfino LLC is a passionate group of techno-functional NetSuite
experts with an innate desire to help companies of all sizes scale
and grow. Headquartered in Philadelphia, this national consultancy
specializes in designing, implementing, and managing best-in-
class cloud solutions. From NetSuite licensing, to training, to
support, to integrations and optimizations, Techfino is hyper-
focused on solving the demanding challenges of ever-changing
business models, bringing specialized expertise in retail, wholesale,
manufacturing, professional services, non-profit, commerce and
beyond. Techfino is also proud to have developed several proprietary
data management products for NetSuite including Cleansweep File
Manager and Archive tools.

For more information about Techfino, their products and service
offerings, visit www.techfino.com

55

“Each of our employees has an innate curiosity to
dissect challenges and discover their solutions.

That’s what keeps our team up at night and keeps
us innovating every single day.”

Bryan Willman
Managing Partner

© 2019 Techfino LLC, All Rights Reserved

www.techfino.com

contact@techfino.com

(877) 563-1405

www.linkedin.com/company/techfino

