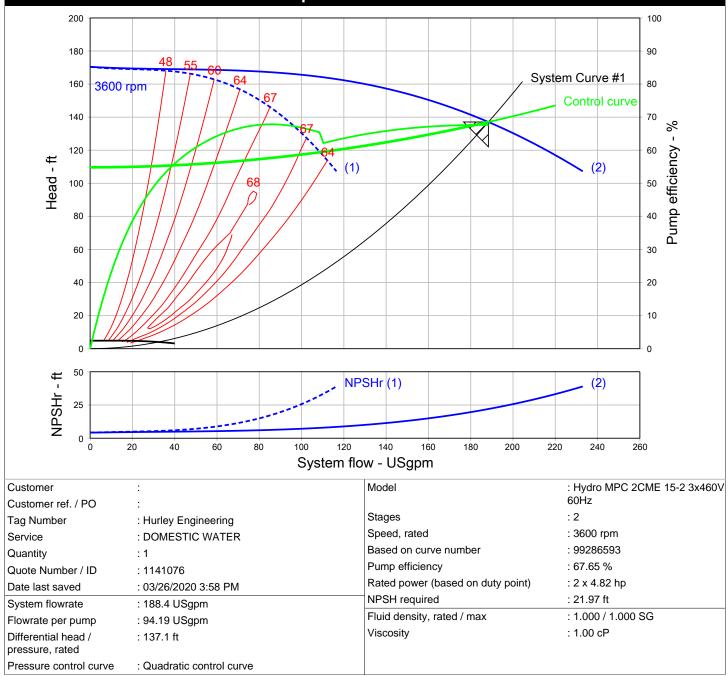
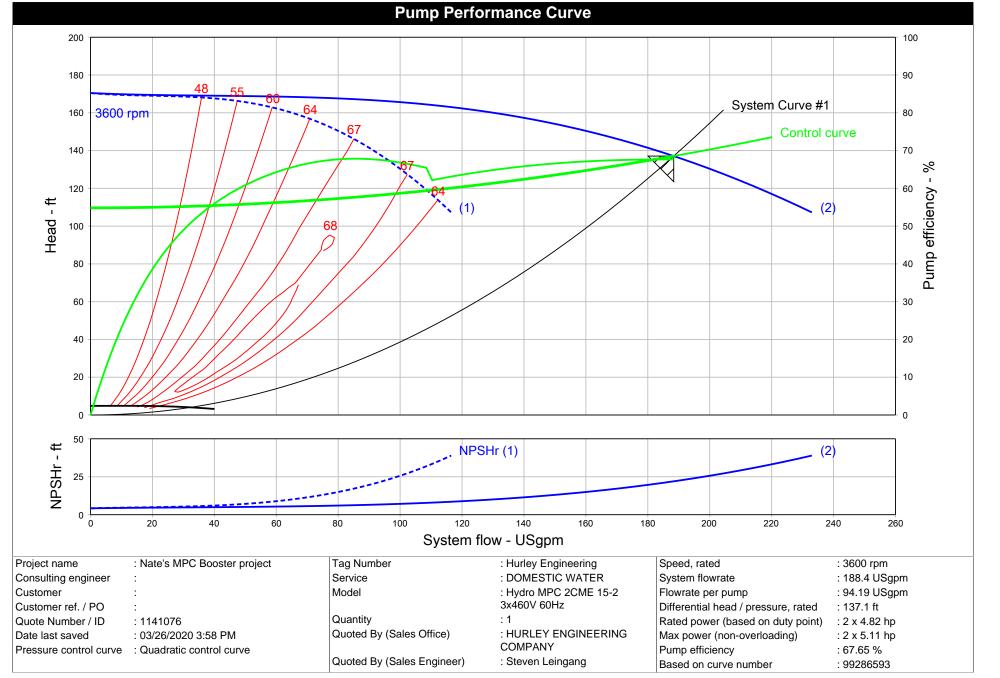


Grundfos Quotation System 20.0.5

Castomer / 1/0 :: 1141076 Castomer / 1/0 :: 1141076 Castomer / 1/0 :: 1141076 Service :: DOMESTIC WATER Guartity of unity of units of				Pump Perform	nance Datasheet	
Customer of r. / PO En Number Service Service Cuantity Cuanti	Customer					: 1141076
Tag Number :: Hulley Engineering Service :: DOMESTIC WATER Quantify of pure :: DOMESTIC WATER Quantify of pure :: DOMESTIC WATER Service :: DOMESTIC		ef. / PO	:			
Service : ::DOMESTIC WATER Quantity of pumps :: 2 active + 0 standby: Operating Conditions System flowrate Forevate propuls Differential head / pressure, rated (equested) Differential head / pressure, rated (equested) Differential head / pressure, rated (equested) State differential head / pressure, rated (equested) State differential head / pressure, rated (equested) Differential head / pressure, rated (equested) Socion pressure, rated, equested) Socion pressure, rated (equested) Socion pressure, rated, equested) Socion pressure, rated, equested Socion pressure, rated, equested) Socion pressure, rated, equested Socion pressure, rated, equested) Socion pressure, rated, equested Socion pressure, rated, rated, pressure, rated, pressure, rated, pressure, rated, pressure, rated, pre			: Hurley Engineering			
Cluantity of pumps : 1 Countity of pumps : 2 active + 0 standby System flowrate per pump Flowrate per per flowrate per per per flowrate per flowrate per flowrate per flowrate per per flowrate per per flowrate per flowrate per per per flowrate per per flowrate per per flowrate per per per flowrate per per flowrate per per per per flowrate per per per per per per per per per pe						
Quantity of pumps 1: 2 active + 0 standby Date last saved 1:0028/2020:3: 38 PM System flowrate Formate per pumps, Differential head / pressure, rated (equested) 1:137.1 ft Liquid type ::::::::::::::::::::::::::::::::::::						
Operating Conditions Liquid System flowrate Flowrate per pump 198.4 USgpm Liquid type sure, rated (requested) 137.1 ft Differential head / pressure, rated (requested) 137.1 ft 137.1 ft 1000 / 0.00 ps (gt) Succion pressure, rated (requested) 137.1 ft 1000 / 0.00 ps (gt) 1000 / 0.00 ps (gt) NPSH available, rated : Ample : Soci / 0.00 ps (gt) 100.01 / 0.00 ps (gt) Power Supply : 3600 rpm : Soci / rated : Standard - Cast fron / 304 Speed, naximum : Soci / rated : Standard - Cast fron / 304 Speed, naximum : Soci / rated : 75.00 ps (gt) Mrepure of Cloor / rate /	,	numns				
System flowrate Flowrate per pump Differential head / pressure, rated (requested) 137.1 ft Sucion pressure, min / max Sucion pressure, min / max Sucion pressure, min / max Sheed, rated Speed, maximum Speed, maximum S	Quantity of	pumpo	,	6	Date last saved	
Flowmate per pump : 94.19 USgpm Additional liquid description : Additional isolated : Additional liquid description : Additional isolated : Additional liquid description : Additional liquid	System flow	rate	operating condition		Liquid type	•
Differential head / pressure, rated (actual) : 137.1 ft Suction pressure, min / max : 100.00 / 1.000 SG Viscosity, rated : 10.00 / 1.000 /						. Oold Water
Differential head / pressure, rated (actual) Suction pressure, min / nax NPSH available, rated Speed, naximum Speed, naxim			ure rated (requested)			: 68.00 deg E
Suction pressure, min / max NPSH available, rated Prequency Power Supply Speed, rated Speed, rated Speed, rated Speed, rated Material selected Speed, rated Speed, rated Sped			,		•	0
NPSH savitable, rated : 0.34 psi.a Prequency : 30h 460V Performance Speed, naximum : 3800 rpm Speed, maximum : 21.97 / 0.00 ft NPSH required / margin required : 21.97 / 0.00 ft 12.197 / 0.00 ft 12.197 / 0.00 ft 12.43.4 % Flow, best eff. point : 24.34 % Head maximum, rated speed : 170.4 ft 100.00 % Speed, maximum : 22.59 KW (Fixed) Speed, maximum : 24.34 % Flow bast eff. point : 94.19 USgpm Flow ratio (rated speed / max speed) : 100.00 % (100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 100.00 % Speed ratio (rated speed / max speed) : 2 x 7.50 hp / 5.59 kW (Fixed) Speed ratio (rate speed / max speed) : 2 x 7.50 hp / 5.59 kW (Fixed) Speed ratio (rate speed / max speed) : 2 x 7.50 hp / 5.59 kW (Fixed) Speed ratio (rate speed / max speed) : 2 x 7.50 hp / 5.59 kW (Fixed) Speed ratio (rate speed / max speed) : 2 x 7.50 hp / 5.59 kW (Fixed) = 2 x 7.50 hp / 5.59 kW (Fixed) = 2 x 7.50 hp / 5.59 kW (Fixed) = 2 x 7.50 hp / 5.59 kW (Fixed) = 2 x 7.50 hp / 5.59 kW (Fixed) = 2 x 7.50 hp / 5.59 kW (Fixed) = 2 x 7.50 hp / 5.59 kW (Fixed) = 2 x 7.50 hp / 5.59 kW (Fixed) = 2 x 7.50 hp / 5.59 kW (Fixed) = 2 x 7.50 hp /		•	, , ,			
Frequency Power Supply : 39h 460V Speed, nated : 3600 rpm Speed, maimum : 3600 rpm Speed, maimum : 600 rpm (Some runn) : 73.76 psi.g Material selected : 73.70 psi.g Motor sizing specification : 0.00 % Service factor Rated power (based on duty point) : 2 x 4.82 hp Max density) Motor sizing specification : 0.00 % Service factor Rated power (based on duty point) : 2 x 4.81 hp Max power (non-overloading) Nameplate motor rating : 2 x 7.50 hp / 5.59 KW (Fixed) Nameplate motor rating : 2 x 7.50 hp / 5.59 KW (Fixed) 100.00 % (Some runn) : 2 x 4.83 hp Max power (non-overloading) : 2 x 7.50 hp / 5.59 KW (Fixed) 100.00 % Service factor Rated power (Dased on duty point) : 2 x 4.82 hp Max power (non-overloading) : 2 x 7.50 hp / 5.59 KW (Fixed) Nameplate motor rating : 2 x 7.50 hp / 5.59 KW (Fixed) 100 00 % 100			шах			
Power Supply isph 460V Performance Speed, rated is 3600 rpm Speed, maximum 3000 rpm Speed, maximum 600 rpm Speed, maximum 600 rpm Speed, maximum 600 rpm Speed, maximum 600 rpm Speed, maximum 1000 rpm Speed, maxim		abic, fateu				
Speed, nakinum Speed, makinum Speed, makinum Head frae to shutoff Flow 16, 57 e9 flow Head ratio (rated / BEP Flow ratio, rated / BEP Flow ratio, rated / BEP Flow ratio, rated / BEP Speed ratio (rated / BEP Speed ratio (r		N			Material colocted	
Speed, maximum : 3800 rpm Speed, maximum : 3800 rpm Pump efficiency margin required : 2197 / 0.00 ft 1958 H equired / margin required : 21.97 / 0.00 ft 121.97 / 0.00 ft 121.97 / 0.00 ft 124.34 % Speed ratio (rated / max) : 34.19 USgpm Flow ratio, rated / BEP : 100.00 % Speed ratio (rated / max) : 100.00 % Speed ratio (rated / max) : 100.00 % Speed ratio (rated / max) : 100.00 % Speed ratio (rated speed / max) : 100.00 % Speed ratio (rated speed / max) : 24.35 ft by 100.00 % Selection status speed 100.00 % Selection status speed (rated / max) : 22.8.510 hp / 5.59 kW (Fixed) 100.00 % Selection status speed 100.00 % Selection status speed 100.00 % Selection status : New speed ratio (rated / max) : 22.8.510 hp / 5.59 kW (Fixed) 100.00 % Selection status : New speed ratio (rated / max) : 22.8.510 hp / 5.59 kW (Fixed) 100.00 % Selection status : New speed ratio (rated / max) : 22.8.510 hp / 5.59 kW (Fixed) 100.00 % Selection status : New speed ratio (rated speed / max) : 22.8.510 hp / 5.59 kW (Fixed) 100.00 % Selection status : New speed ratio (rated speed / max) : 22.8.510 hp / 5.59 kW (Fixed) 100.00 % Selection status : New speed ratio (rate / max) : 22.8.510 hp / 5.59 kW (Fixed) / 100 ft / 00 ft	i ower oupp	Jiy	Performance	. opi1 400 V	Material Selected	
Speed, maximum Speed, minimum Pump efficiency MRSH required / margin required maximum, rated speed Head rise to shutoff Flow ratio, rated / BEP Speed ratio (rated / max) Head rate to shutoff Flow ratio, rated / BEP Speed ratio (rated / max) Head rate to shutoff Speed ratio (rated / max) Setter (for shutoff) Speed ratio (rated / max) Setter (for shutoff) Speed ratio (rated / max) Speed ratio (rated / max) Setter (for shutoff) Speed ratio (rated / max) Setter (for shutoff) Setter (for shutoff) Setter (for shutoff) Setter (for shutoff) Speed ratio (rated / max) Setter (for shutoff) Setter (for shutoff) Set	Speed rate	d	Fenomance	: 3600 rpm	-	
Speed ratio (rated speed / max speed) Flow, best eff. for int Flow rate of speed / max speed) CqChCrQCCn (ANSJHH 9.5.72010) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJHH 9.5.72010) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJHH 9.5.72010) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJHH 9.5.72010) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJHH 9.5.72010) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJHH 9.5.72010) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJHH 9.5.72010) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJHH 9.5.72010) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJHH 9.5.72010) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJHH 9.5.72010) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJHH 9.5.72010) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJHH 9.5.72010) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJH 9.5.750 kW (Fixed)) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJH 9.5.750 kW (Fixed)) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJH 9.5.750 kW (Fixed)) Election status Flow rate of speed / max speed) CqChCrQCCn (ANSJH 9.5.750 kW (Fixed)) Flow rate of speed / max speed) CqChCrQCCn (ANSJH 9.5.750 kW (Fixed)) Flow rate of speed / max speed) Flow rate of speed / max speed / max speed) Flow rate of speed / max spee						
Pump Efficiency NPSH required margin required nargin every flow/ /S (imp. eye flow) Head maximum, rated speed Head ratio stutoff Flow ratio, rated /BEP Speed ratio (rated / max) Sector factor 1000 % 100.00 %	1 1 1					
NPSH required / margin required ng (mp. eye flow) / S (mp. eye flow) Head maximum, rated speed Flow, best eff. point Flow ratio (rated / BEP Speed ratio (rated / max) Election status Selection status Se						
ng (imp. eye flow) / S (imp. eye flow) Head maximum, rated speed Head rates to fund Flow tables rated / BEP Speed ratio (rated / max) Head rate (rated / max) Speed ratio (rated / max) Section status Cq/Ch/Ce/Cn [ANSI/H19.6.7-2010] Selection status			required			
Head maximum, rated speed Head rise to shutoff Head rise to shutoff Flow, best eff. point Flow ratio, rated / BEP Speed ratio (rated y max) Edd/chie/Grom Ca/Chi/Ge/Cn [ANSI/H] 9.6.7-2010] Selection states						
Head risk to shutof Flow, tast of , point Flow, rated / BEP Speed ratio (rated / max) Head ratio (rated / max) Ead r		, (,			
Flow, best eff. point Flow ratio, rated / BEP Speed ratio (rated / max speed) Cq/Ch/Ca/Cn [ANSI/H19.6.7-2010] Selection status 20 100.00 % 21 00.00 % 22 x 7.50 hp / 5.59 kW (Fixed) 22 x 7.50 hp / 5.59 kW (Fixed) 20 10 10 10 10 10 10 10 10 10 1			pood			
Flow ratio, rated / BEP Speed ratio (rated / max) Head ratio (rated / max) El 100.00 % 1000 / 100 / 1.00 /						<i>,</i>
Speed ratio (rated / max) Head ratio (rated speed / max speed) Selection status : 100.00 % : 100.0	· · ·					•
CyChCorCon [ANSI/H] 9.6.7-2010] : 1.00 / 1.			()	: 100.00 %		. 2 x 7.30 hp 7 3.35 kW (1 ked)
CyChCorCon [ANSI/H] 9.6.7-2010] : 1.00 / 1.	Head ratio (rated speed	/ max speed)	: 100.00 %		
Selection status : Acceptable				: 1.00 / 1.00 / 1.00 / 1.00		
U + U + U + U + U + U + U + U + U + U +				: Acceptable		
10^{-4} 10^{-6} 10^{-				· · · · · · · · · · · · · · · · · · ·		
$ + \frac{48}{55} + \frac{55}{60} + \frac{64}{67} + \frac{57}{61} + \frac$		200				100
$ + \frac{48}{55} + \frac{55}{60} + \frac{64}{67} + \frac{57}{61} + \frac$		190				
+ + + + + + + + + + + + + + + + + + +		100	48 55 00			90
$H_{1}^{(0)}$ $H_{2}^{(0)}$		160	7	64		, System Curve #1
h_{i}^{0} h_{i		3600) rpm / / / 🍡			80
H_{-} H_{-		110				
H_{-}^{0} H_{-		140		67		
\mathbf{y}		100				
\mathbf{y}		120		64		60 OC
\mathbf{y}		100) / /	
$H_{\text{H}}^{\text{H}} = \frac{1}{20} + $	ac la	100				
$H_{\text{H}}^{\text{H}} = \frac{1}{20} + $	ШЩ			P / I		Ū.
$H_{\text{r}}^{\text{r}} = \frac{1}{20} + $		80				40 Q
$H_{\text{r}}^{\text{r}} = \frac{1}{20} + $			/ / / //			
$\begin{array}{c} 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		60				30 D
$\begin{array}{c} 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $						
$ \begin{array}{c} & & & \\ & $		40	11//////			20
$ \begin{array}{c} & & & \\ & $						
$\begin{array}{c} 50\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		20				10
$\begin{array}{c} 50\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$						
⁺ H ²⁵ ⁰ ⁰ ²⁰ ⁴⁰ ⁶⁰ ⁸⁰ ¹⁰⁰ ¹²⁰ ¹⁴⁰ ¹⁶⁰ ¹⁸⁰ ²⁰		0				0
⁺ H ²⁵ ⁰ ⁰ ²⁰ ⁴⁰ ⁶⁰ ⁸⁰ ¹⁰⁰ ¹²⁰ ¹⁴⁰ ¹⁶⁰ ¹⁸⁰ ²⁰	ببر ا	50				
0 20 40 60 80 100 120 140 160 180 200 220 240 260	ک	50		NI	PSHr (1)	(2)
0 20 40 60 80 100 120 140 160 180 200 220 240 260	누	25				
0 20 40 60 80 100 120 140 160 180 200 220 240 260	ن ک	25				
0 20 40 60 80 100 120 140 160 180 200 220 240 260						
			20 40 60	80 100 120	140 160 180 20	0 220 240 260
				System fl	ow - USapm	
				- ,	01	

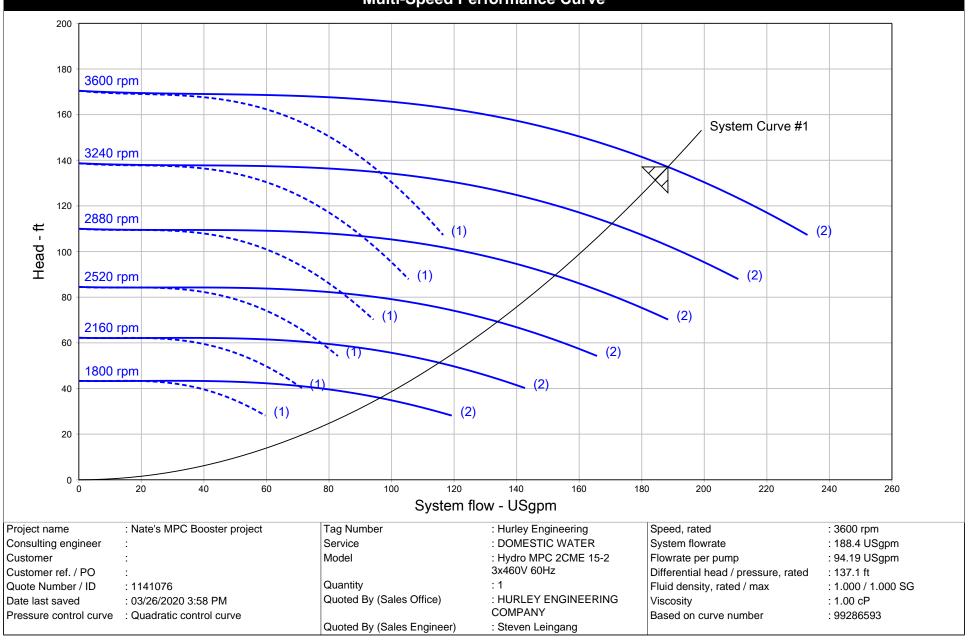

SUBMITTAL

QUOTE NUMBER / ID 1141076 REPRESENTATIVE ENGINEER CONTRACTOR		Hydro MPC E with CME pumps UNIT TAG Hurley Engineering SERVICE DOMESTIC WATER SUBMITTED BY APPROVED BY ORDER #		QUANTITY 1 DATE DATE DATE	
		Hydro MPC 15-2 3x460\ 3480 rp	/ 60Hz	Part Number	99659086
	nditions of Service	Pump D			Motor Data
Flow Head Liquid Temperature NPSHr Viscosity Specific Gravit	94.19 USgpm 137.1 ft Cold Water 68.00 deg F 21.97 ft 1.00 cP y 1.000 SG	Material Max Operating Pressure Max Allowable Suction Pressure Efficiency	Standard - Cast Iron / 304 Stainless Steel 73.76 psi.g 75.00 psi.g 67.65 %	Motor HP BHP Enclosure Voltage Phase	7.5 HP 4.82 TEFC 440-480 V 3 Phase
²⁰⁰ T					100
180 160 140 120 120 100 80 60 40 20 0	48 55 60 3600 rpm			Syste	90 em Curve #1 Control curve 70 60 50 10 30 20 10 0
H - HSAN	20 40 60	80 100 120	Ir (1) 140 160 180	200 22	(2) 0 240 260


Grundfos Quotation System 20.0.5

GRUNDFOS

Pump Performance Curve



Multi-Speed Performance Curve

GRUNDFOS SUBMITTAL DATA SHEET

Grundfos CU 352 Pump Controller

Advanced pump system controller for parallel connected pumps for HVAC and Pressure Boosting Applications

Compatibility

The CU 352 pump controller can control up to six (6) parallel connected pumps in the following manner:

- Direct BUS control: CRE, CME, VLSE or LCSE pumps
- Direct BUS control: Pumps with Grundfos CUE drives
 Digital/Analog control: Pumps with external drives
- (requires **IO 351B** Input/Output module)

HVAC Control Modes

- o Constant Differential Pressure control via remote sensor
- Multi-zone Differential Pressure control up to 6 zones
 Priority, Minimum or Energy Saving Mode
- o Quadratic, proportional or constant differential pressure control via local sensor
 - Adjustable control curve (Max flow and control head)
 - Efficiency based sequencing automatically updated
- o Constant Flow
- o Constant Temperature
- o Constant Differential Temperature

Pressure Boosting Control Modes

- o Constant Pressure (pump discharge)
- o Quadratic or Proportional discharge pressure
 - Adjustable control curve (Max flow and min. static head)
- o Constant Pressure (remote sensor)

Pump Cascade Control

- o Efficiency based pump sequencing
 - * Updated automatically when setpoint and/or control head are changed
- o Automatic Pump alternation (run hour based)
- o Standby Pumps (single or multiple)
- o Adjustable minimum time between starts / stops
- o Adjustable maximum starts per hour
- o Pump test run (exercise idle pumps)
- o Clock program
- o Proportional Gain and Integral Time adjustment

Application optimized functions:

- o Secondary (Fallback) Sensor
- Pump curve data (5th or 2nd order polynomial)
 * Pre-programmed from factory
- Flow estimation via pump curve data and pressure measurement across pump(s)
- o Reduced operation (generator backup power) Max. kW limit or max. number of pumps
- Specific energy calculation (kWh per unit volume)
 *requires flow sensor input
- Low Flow Stop (Pressure Boosting)
 Adjustable low flow setting: Energy saver mode, medium flow or high comfort level

Protection and Monitoring

- o Check valve failure detection (MLE motors)
- Pump outside duty range protection
 *keeps all operating pumps on their curve
- o Low suction pressure warning and alarm
- o Primary sensor failure reaction setting
- o Soft pressure build-up (Pipe fill mode)
- o Low system pressure warning and alarm
- o High system pressure shutdown
- o Alarm log, last 24, time stamped
- o Data log graph (20 3600 samples/hour)(Flow, speed, setpoint, sensor feedback, kW)
- o BMS/EMS communication (see page 4)

be think innovate

GRUNDFOS X

Page 2

Grundfos CU 352 Pump Controller

CU 352 Control user interface

Status of inputs and outputs

Electrical overview

Shows status of inputs along with wiring landing points [in brackets]

Status Operation Alarm	n Settings
1.11.1 - Analog inputs	品
Analog inputs and measured valu	Je
Al1 (CU 352), [51]	35PSI
(Diff. pressure, pump, high)	7.9mA
Al2 (CU 352), [54]	35PSI
(Diff. pressure, pump, low)	7.9mA
AI3 (CU 352), [57]	OPSI
(Diff. pressure, external)	0.0mA
DI1 (CU 352), [10]	Active
(External start/stop)	HCTIVE
DI2 (CU 352), [12]	Not active
(Reduced operation)	NOT ACTIVE
DI3 (CU 352), [14]	
(Alternative setpoint 2) DI1 (IO 351-41), [10]	1
(Not used)	-**+
(NOT USED)	

ļ	Alarm	ns an	d wa	rnings

Alarm log - Stores last 24 alarms and warnings.

- > Time event occurred
- > Time event cleared
- > Alarm code for more detailed description.

Startup Wizard

Startup Wizard

Step by Step installation guide

- > Set time and date format
- > Remove air/Prime pumps
- > Check pump rotation
- > Set primary sensor

Page 2

Grundfos CU 352 Pump Controller

Sequence of operation

Hydronic Circulation

The system controller shall operate equal capacity variable speed pumps to maintain a variable (quadratic or linear) or constant differential pressure. The system controller shall receive an analog signal [4-20mA] from a remote or pump system mounted differential pressure sensor. The controller shall be able to receive a system suction pressure and system discharge pressure to determine the system differential pressure (two independent analog signals). The controller shall have the means to protect pumps against dry running via a user defined low suction pressure setting.

Pressure Boosting

The system controller shall operate equal capacity variable speed pumps to maintain a constant or variable (quadratic or linear) pressure. The system controller shall receive an analog signal [4-20mA] from a remote or pump system mounted pressure sensor. The controller shall be capable of simulating the effect of a remote mounted pressure sensor by quadratically reducing the system discharge pressure setpoint as a function of reduced flow (friction loss compensation).

Cascade Control

Standard Cascade Control (Pumping Efficiency Based):

The pump system controller shall adjust pump speed as necessary to maintain system set-point pressure as flow demand changes. The pump system controller shall start additional pumps upon determination of an increase in efficiency utilizing factory programmed (5th order polynomial) curve data. When the system pressure is equal to the system set-point, all pumps in operation shall reach equal operating speeds. The pump system controller shall have field adjustable Proportional gain and Integral time (PI) settings for system optimization.

Optional Cascade Control (Pump Start Speed Based):

As flow demand increases the pump speed shall be increased to maintain the system set-point pressure. When the operating pump(s) reach the programable start speed, an additional pump will be started and will increase speed until the system set-point is achieved. When the system pressure is equal to the system set-point, all pumps in operation shall reach equal operating speeds. The pump system controller shall have field adjustable Proportional gain and Integral time (PI) settings for system optimization.

Pumps outside duty range (End of curve protection):

When the pumps are outside their allowable operating range, the controller shall switch on an additional pump, distributing a reduced flow through all pumps in operation moving each pump back into its allowable operating region.

Pump Alternation

All pumps in the system shall alternate automatically based on demand, time and fault. If flow demand is continuous with only one pump in operation, the system controller shall have the capability to alternate the pumps every 24 hours, every 48 hours or once per week. The interval and actual time of the pump change-over shall be field adjustable.

Low Flow Stop (Pressure Boosting)

The system controller shall be capable of detecting low flow allowing for pumps to be switched off in an energy saving mode. Upon detection of low flow, the controller shall increase the system setpoint by 5% (adjustable) to store water in a diaphragm or bladder tank and switch off. The pump shall remain off until the system pressure falls 5% below the system setpoint (adjustable). If system flow is still low when the pump switches back on, the pump shall refill the diaphragm tank to 5% above setpoint and switch off again. If system flow increases above the low flow setting, the pump shall return to normal constant pressure mode maintaining the system setpoint.

Page 3

GRUNDFOS

Grundfos CU 352 Pump Controller

Technical data

Altitude above sea level

Maximum 6,560 feet (2000 m.)

Ambient Temperature

During operation: -4°F to +140°F (-20°C to +60°C) During transportation: -4°F to +140°F (-20°C to +60°C)

- * At temperatures below 32°F (0°C) the display may react slowly.
- * The display should not be exposed to direct sunlight

Relative air humidity

5 to 95%

Enclosure class

UL type 3R when mounted in the front of a panel with UL type rating 1, 2, 3, 3R, 5, 12, 12K or 13. Overall control panel rating of Type 4/4X available on request.

Supply voltage

1 x 100-240 VAC +/- 10% 50/60Hz, PE (Class 1 equipment)

Power consumption

Maximum 22 W

Backup battery

The optional backup battery can keep the CU352 powered during intermittent power outages. The CU 352 will monitor the following:

- short circuit
- wrong polarity
- defective battery
- battery missing
- low battery voltage

Digital inputs (3)

Open-circuit voltage	24 VDC
Closed-circuit current	5 mA, DC
Frequency range	0-4 Hz

Analog inputs (3)

	0-20 mA
Input current and voltage	4-20 mA
	0-10 V
Tolerance	± 3.3 % of full scale
Repetitive accuracy	±1% of full scale
Input resistance, current	< 250 Ω
Input resistance, voltage	> 50 kΩ ± 10%
	24 V, 30 mA
Supply to sensor	short-circuit
	protected

Relay outputs (2)

Normally open contacts	C, NO
Maximum contact load	240 VAC, 2 A
Minimum contact load	5 VDC, 10 mA

Communication protocols

For connection to building management systems, Communication Interface Modules (CIM) can be supplied with the CU 352 controller.

Protocol	СІМ Туре
LONworks	110
PROFIBUS DP	150
PROFINET IO	500
Modbus RTU	200
Modbus TCP	500
BACnet MS/TP	300
BACnet IP	500
Ethernet IP	500

MLE

Product compatibility

- Multi-stage: CRE, CRIE, CRNE, MTRE, MTSE, SPKE, CME
- Single-stage: TPE2, TPE3, VLSE, LCSE
- **Systems**: Hydro MPC-E, Hydro Multi-E, Hydro Multi-B, Hydro Solo-E, CMBE home booster.

TM06 5684 2219

MLE is a dedicated motor-drive system for pumps and other applications. Pumps equipped with MLE motors overcome application challenges and save energy in a variety of pump installations in order to reach the lowest Life Cycle Cost (LCC) possible.

Integrated drives

Integrated drives are beneficial because they are installed on non-controlled pumps at no additional installation cost. Once the power supply is connected and the pump is fitted into the pipe system, they are ready to operate at the desired setpoint.

Operating pumps with MLE also reduces CAPEX (capital expense) of additional cabinets, components and facility space by having the entire pump system in line with the pipe system.

MLE is the result of Grundfos' efficient motor technology and it is an efficient IE5 motor, with an efficiency much higher than NEMA Premium, which minimizes OPEX (operating expense).

Robustness throughout the system

The Grundfos full line supply of components, from the power supply to pipe fittings, provides the most robust solutions:

- Built-in protection against power supply disturbances, environment and motor load.
- MLE is designed to mitigate bearing currents.
- No cooling fans in drive (wear part).

MLE product range

1 x 200-240 V	0.33 - 2.0 HP
3 x 200-240 V	1.5 - 7.5 HP
3 x 440-480 V	0.33 - 15 HP*

Up to 30 HP available with different specifications.

Features and benefits

Feature	Benefit		
Ann	lication control		
Control modes	Easy commissioning to match system design criteria.		
Multipump function including alternating, back- up, or cascade	Neglects the need for external controllers and continuous operation by redundant pump and sensor if either component fails.		
Differential pressure or temperature with 2 sensors	Lower CAPEX by common inexpensive sensor types.		
Pump curve adjustments and run at power limit	Stabilizes unstable pump curves and extends operating range.		
Setpoint influence	Adapts QH to internal or measured values.		
Energy sa	iving for lower OPEX		
AUTOADAPT or FLOWLIMIT	Continuously adapts to the most efficient curve and reduces pressure loss in the system.		
Low-flow stop function	Improved energy optimization and comfort.		
ECM motor that exceeds the NEMA Premium efficiency levels	ECM motors have significantly lower motor loss than NEMA Premium motors. This alone reduces energy consumption by 10 % with a typical pump load profile.		
Cond	lition monitoring		
Limit Exceed function	Any value can be supervised to protect the system.		
Loss of prime and dry run	Protects the shaft seal.		
Cavitation protection	Protects the impellers.		
Flow estimate and heat energy monitor	Monitoring of the heating system's performance.		
Overload and temperature	Protects the frequency converter and motor.		
Stop at minimum speed	Protects the pump and saves energy.		
Motor bearings monitors	Ensures uptime by preventive maintenance.		
Robustness			
Operating temperature between -4 and +140 °F	Allows installation almost anywhere and high margins in control rooms, resulting in longer product service life.		
Impulse transient resistance (VDE0160 compliant)	Resistance against lightning, ESD, switching impulses and utility fault clearing.		
Interruptions and voltage sags (SEMIF47 compliant)	Keeps process running and derates the pump to the available power.		
Line harmonics resistance (EN 61000-4-13, class 3)	Built-in compensation of disturbance to avoid overheating of motor windings and maintaining a steady pump operation.		
Built-in RFI filters	Neglects the need for external components.		
NEMA3 / NEMA4 enclosures	Installed in-line to pipe systems at no added cost.		

be think innovate

Grundfos iSOLUTIONS

Grundfos iSOLUTIONS delivers the optimal combination of pumps, drives and auxiliary components for the specific application, incorporating special features and functions, and building on application knowledge and experience.

Grundfos iSOLUTIONS allows easy integration of pumps, drives, measurements, controls, protections, and communication, saving you valuable engineering, installation and commissioning time.

To learn more, visit: www.grundfos.com/isolutions

Sensors

MLE is sensor-independent and controls the pump to any measured feedback.

Grundfos offers several sensors to be used in pump solutions:

- . pressure sensors
- temperature sensors
- differential pressure sensors
- differential temperature sensors
- flow meters.

Grundfos GO Remote

Grundfos GO Remote for iOS and Android ensures easy and quick commissioning, monitoring and servicing of pumps with MLE motors.

Motor data Operating range Constant power Constant torque (rpm) (rpm) (rpm) 900-1740 180-2000 1740-2000 Speed range 360-4000 3480-4000 1750-3480 2000-3400 360-4000 3400-4000 500-5900 4000-5900 Voltage tolerances ± 10 % Frequency 50-60 Hz ± 5 % Network TN/TT (optional: IT) according to IEC 60364 **Environmental limits** Degree of NEMA3 / NEMA4 protection Operating temp -4 to +140 °F derating above 122 Storage tem -4 to +140 °F 0-3280 ft without derating / 0-11480 ft with derating Altitude Humidity 0-95 %, non-condensing FM100 FM200 FM300 Inputs/outputs Digital inputs 1 Digital inputs 2 1 1 outputs Relay outputs 2 2 Analog inputs 1 (only V) Pt100/Pt1000 2 inputs +5 V supply Y Y +24 V supply Y Y Grundfos Digita Y Υ Sensor input LiqTec sensor Y -input Digital inputs 0-5 V (dedicated) Digital inputs/ 0-24 V, resistive or inductive outputs 0-20 mA / 4-20 mA, 0.5 - 3.5 V / 0-5 V / 0-10 V Analog input Relay output 250 V AC/30 V DC, max. continuous current 2 A rms Connectivity Wireless (radio) Yes, GENlair RS-485 Yes, GENlair LONWorks (CIM 100) PROFIBUS DP (CIM 150) Modbus RTU (CIM 200) GSM/GPRS (CIM 250) Communication 3G/4G cellular (CIM 260) GiC/GRM 3G/4G (CIM 280) BACnet MS/TP (CIM 300) PROFINET IO (CIM 500) options Modbus TCP (CIM 500) BACnet IP (CIM 500) Ethernet IP (CIM 500) Compliance Conformity to CE, EAC, RCM, CCC, and cURus (UL) standards Harmonics IEC/EN 61000-3-12 Up to 10.0 HP (7.5 HP low speed): Category C1 according to EN 61800-3, corresponding to CISPR 11, class B (residential area) EMC Above 10.0 HP (7.5 HP low speed): Category C3 according to EN 61800-3, corresponding to CISPR 11, class A, group 2 (industrial area)

99689406 0719

ECM: 1264915

Technical specifications

GRUNE	ofos X