Advanced Integrated Sensing

Machine listening

Peter Karsmakers

peter.karsmakers@kuleuven.be

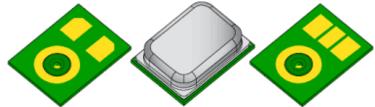
Outline

- Information enclosed in acoustic signals
- Why microphones
- Applications
- Challenges
- Machine learning approach
- Case study: smart homes
- Case study: condition based monitoring
- Future research directions
- Conclusion

Information enclosed in acoustics

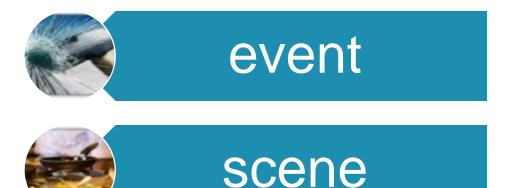
Why use microphones to sense the environment

- Non-destructive & contactless measurement,
- Monitor multiple acoustic sources using a single omni-directional sensor,
- Compared to video, acoustic signals travel through obstacles, and are less affected by environmental conditions such as fog, pollution, rain, and daily changes in light conditions and consume less power,
- Having more than 1 microphone allows for localisation of sources.



analog.com

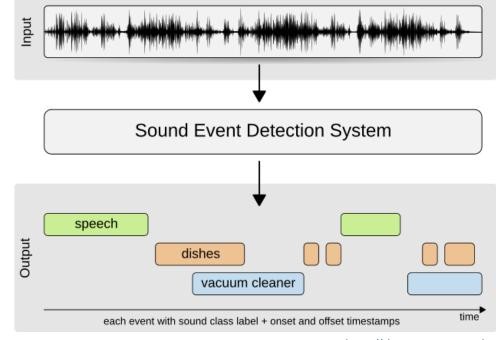
Acoustic events and scenes



- Single source
- Well-defined brief duration in time
- Mixture of acoustics coming from different sources

Tasks in machine listening

- Classification: describe each event or scene using a textual class label
- Event detection: estimate start- and end-time of each event



Applications

Context awareness in devices

Computational acoustic analysis endow devices with context awareness

→ Improved QoL

Smart cities

- Acoustic surveillance
 - \rightarrow Improve city safety
- City noise monitoring
 - \rightarrow Improve urban planning

Precision livestock farming

- Monitor coughs counts in pigs to deliver early warning indicating disease outspread
 - \rightarrow Improve on production yields

Condition monitoring

- Identify modified sounds in assets compared to the normal situation indicating mechanical aging and future failures
 - → reduced cost due to unnecessary preventive maintenance and early detection of unexpected failure of elements

Challenges

• Large variety of different sounds

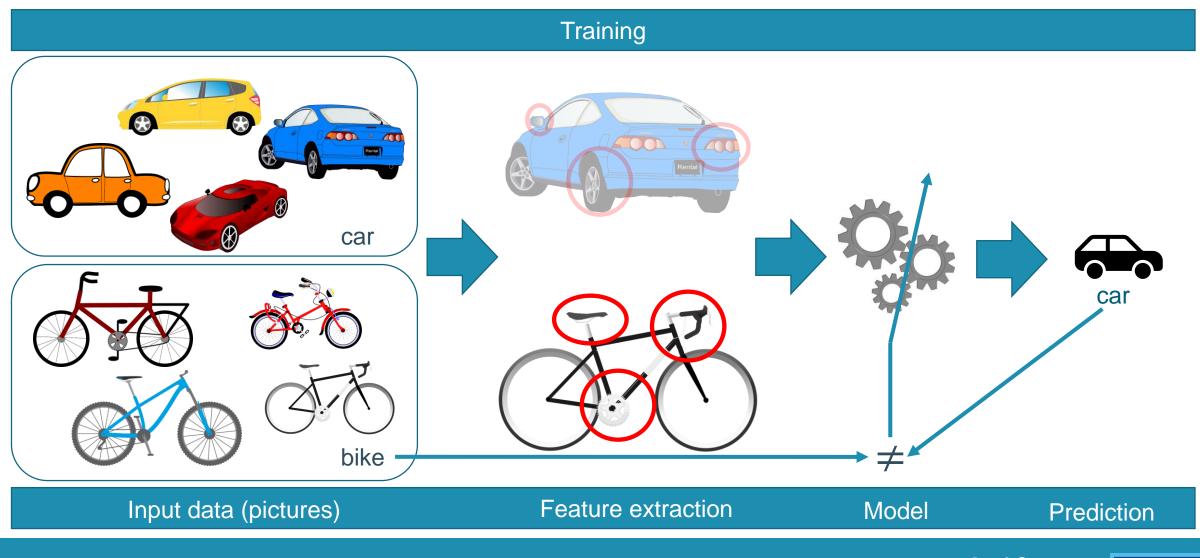
• Large acoustic diversity within each class

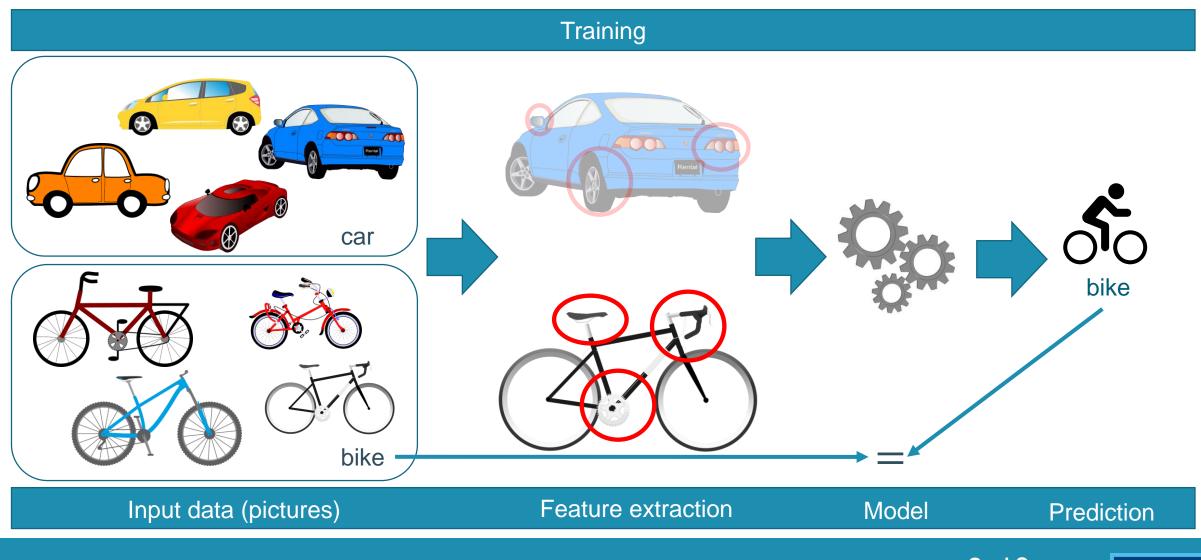
• Overlapping sounds, reverberation

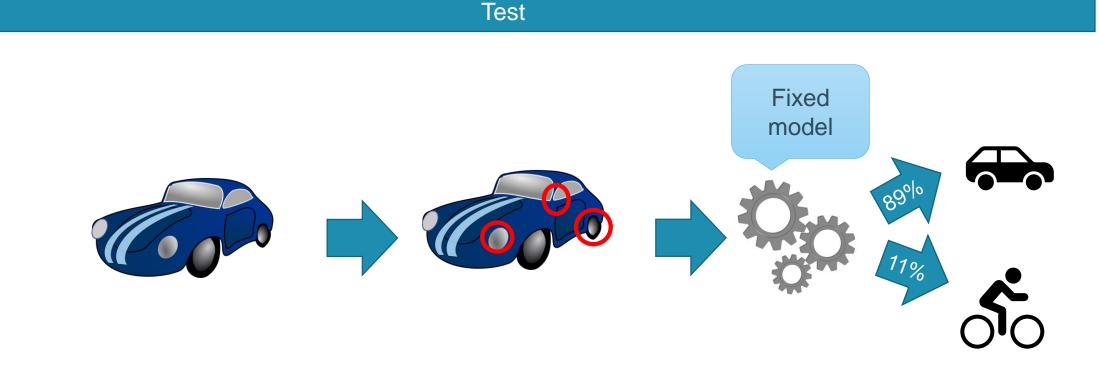
MACHINE LEARNING

How to let a machine interpret sounds?

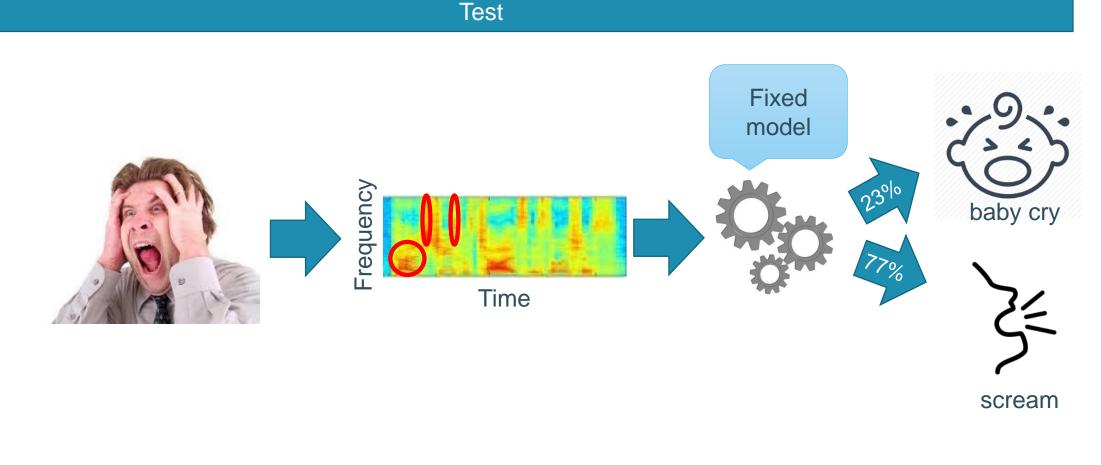
- Define the task by defining the event/scene labels (classes) in advance
- Practical challenges
 - large amounts of annotated data are required
 - computing power (complex models)











Machine learning subfield: deep learning



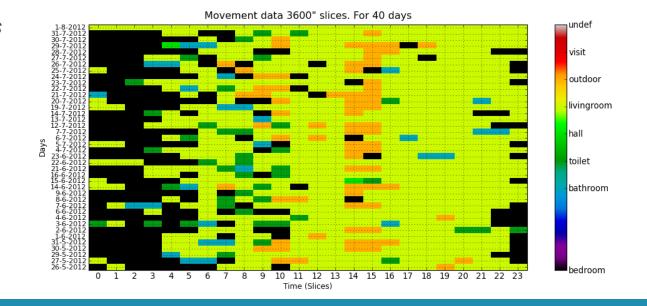
Geel Campus Faculty of Engineering Technology

Case study: smart homes

Geel Campus
Faculty of Engineering Technology

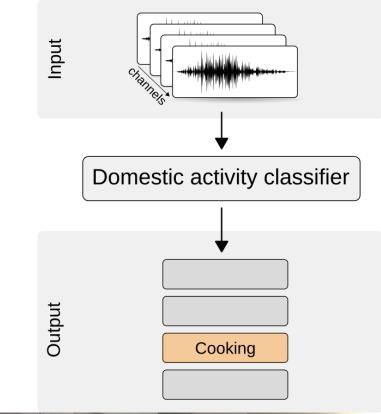
Case study: smart homes

- Aim: monitor activities of daily living
 - cognitive house:
 - lower heating when all persons are active e.g. are cooking
 - change lighting conditions when all person's are watching tv
 - health care:
 - assess self-reliance of elders



Case study: smart homes

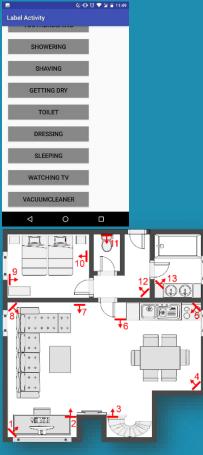
- Task: detect activities of daily living based on acoustics
- First step: collect data



Classification of ADLs

Data set

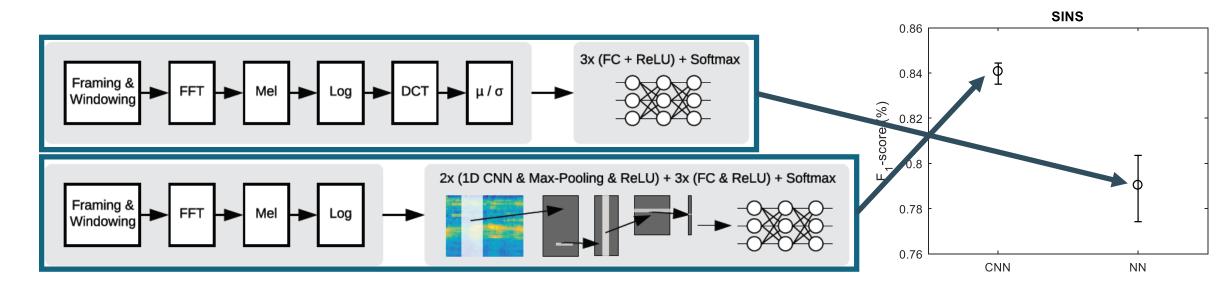
Room	Activity	Nr. ex.	duration (min.)	■ © €
Living room	Phone call	22	8.17	SHOWERING
	Cooking	19	16.62	
	Dishwashing	15	6.37	SHAVING
	Eating	19	7.78	GETTING DRY
	Visit	9	13.3	TOILET
	Watching TV	13	155.38	DRESSING
	Working	49	31.24	DRESSING
	Vacuum cleaning	13	4.79	SLEEPING
	Other	200	0.75	WATCHING TV
	Absence	72	66.37	VACUUMCLEANER
Bathroom	Drying with towel	10	1.67	4 0
	Shaving	13	1.91	
	Showering	10	6.11	프르
	Toothbrushing	19	1.41	10
	Vacuum cleaning	9	0.87	
	Other	75	0.42	
	Absence	35	248.56	8
	Vacuum cleaning	9	3.31	
Hall	Other	164	0.36	
Ŧ	Absence	175	50.17	+ →
Toilet	Toilet visit	21	4.74	* *
	Vacuum cleaning	7	0.53	
	Absence	31	282.75	
Bedroom	Dressing	28	1.53	
	Sleeping	7	348.43	
	Vacuum cleaning	7	1.04	
	Other	22	0.27	
	Absence	22	122.28	



Dekkers et al. (2017). "The SINS database for detection of daily activities in a home environment using an Acoustic Sensor Network" Detection and Classification of Acoustic Scenes and Events 2017, München, Germany, 16-17 November 2017.

Build model: deep learning

Shift from regular machine learning in 2013 into deep learning in 2018



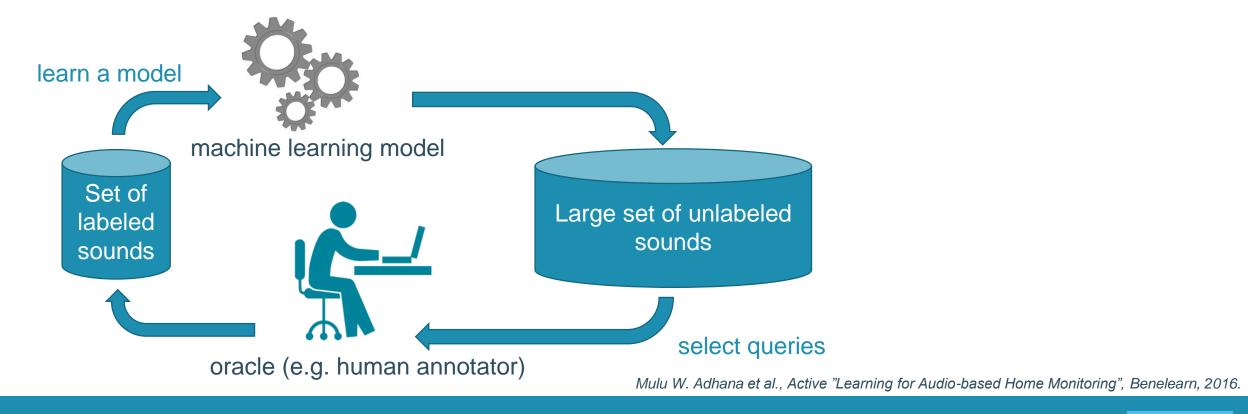
- Gert Dekkers, Steven Lauwereins, Bart Thoen, Mulu Weldegebreal Adhana, Henk Brouckxon, Toon van Waterschoot, Bart Vanrumste, Marian Verhelst, and Peter Karsmakers. The SINS database for detection of daily activities in a home environment using an acoustic sensor network. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2017 Workshop (DCASE2017), 32–36. November 2017.
- Gert Dekkers, Lode Vuegen, Toon van Waterschoot, Bart Vanrumste, and Peter Karsmakers.DCASE 2018 Challenge Task 5: Monitoring of domestic activities based on multi-channel acoustics. Technical Report, KU Leuven, 2018. URL: <u>https://arxiv.org/abs/1807.11246</u>, <u>arXiv:1807.11246</u>.

The pursuit for data

- Supervised deep learning gives very powerful models
- But large amounts of annotated data are required
 - Relax the need on annotated data using
 - semi-supervised learning
 - unsupervised learning

Semi-supervised learning Active learning

Maximize the value obtained for the expense of human labeling by ensuring they are shown the most important examples.



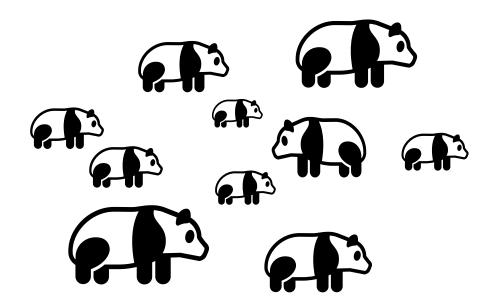
Semi-supervised learning Opportunistic data collection

Use existing data sources such as YouTube

Viralsezer	Greatest Door Slam Ever ViralSpace • 29K vi ws • 6 years ago Greatest Door Slam Ever - Grandfather is happy grandson is back home from rehab and gets a bit upset when his grandson s	
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	maybe) somewhere it contains a door slam	
	Weak labels Weak labels Matrix Deconvolution", Journal of the Audio Engineering Society, 2017	oel Non-negative

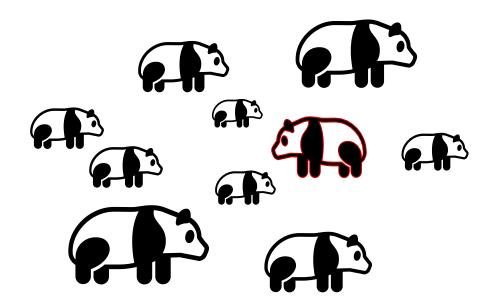
Unsupervised learning Anomaly detection

Acute anomalous events

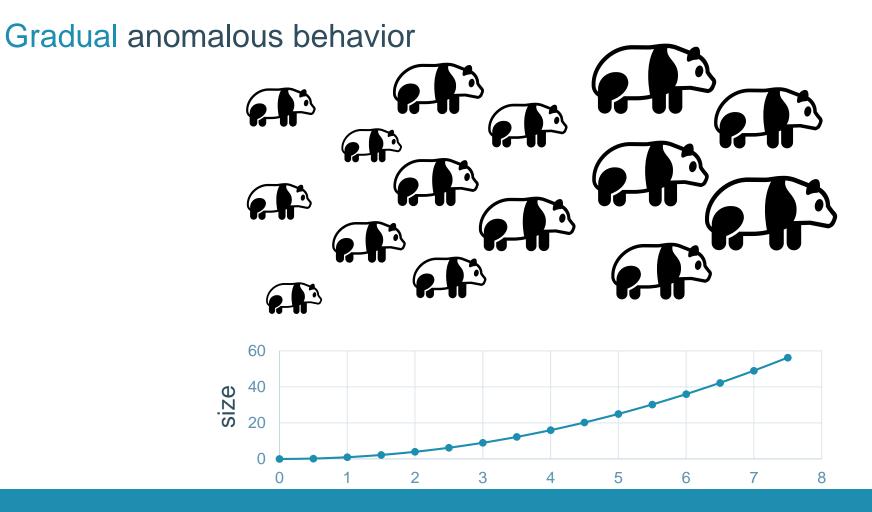


Unsupervised learning Anomaly detection

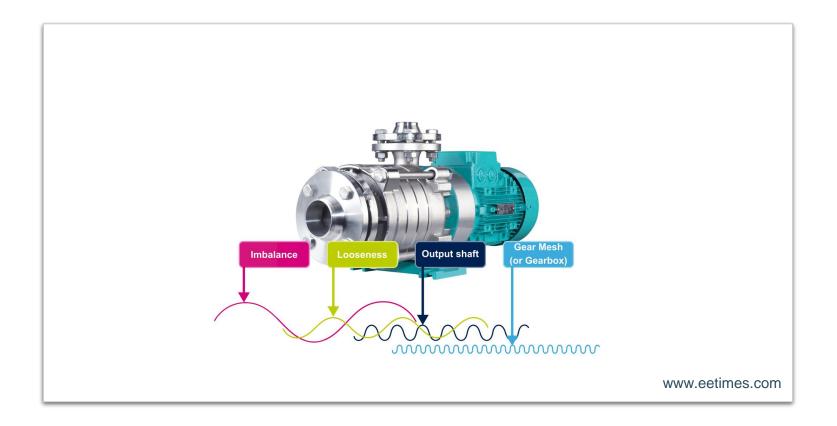
Acute anomalous events



Unsupervised learning



Geel Campus Faculty of Engineering Technology

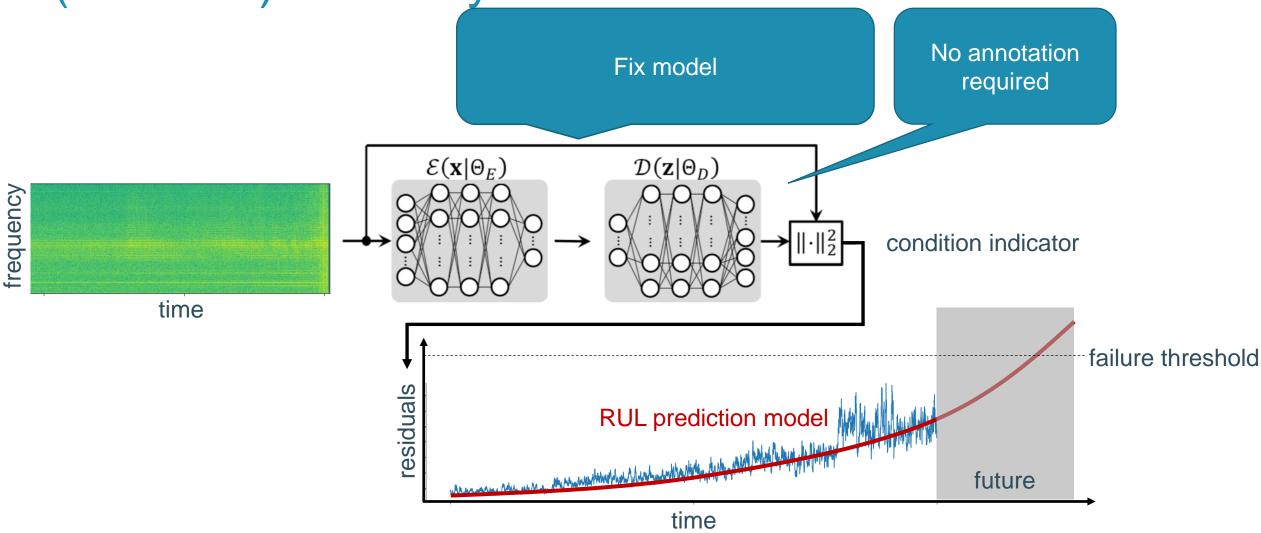


Case study: condition based monitoring

Geel Campus Faculty of Engineering Technology

3CU LEUVEN

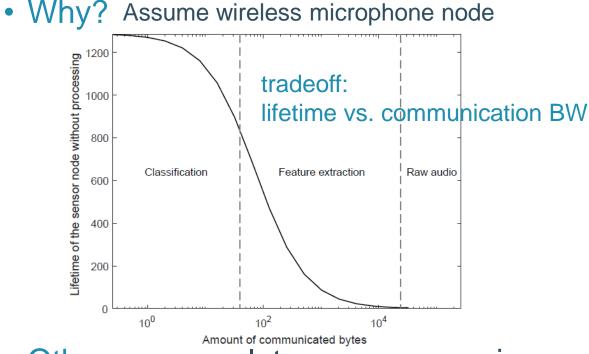
(Gradual) anomaly detection



Include spatial information

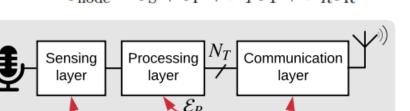
Bert Van Den Broeck et al. (2016), "Noise robust footstep location estimation using a wireless acoustic sensor network", Journal of Ambient Intelligence and Smart Environments (JAISE)

Other trend: move intelligence up to the (extreme) edge



Energy model

 $\bar{\mathcal{E}}_{\text{node}} = \mathcal{E}_{\text{S}} + \mathcal{E}_{\text{P}} + N_T \bar{\mathcal{E}}_{\text{T}} + N_R \bar{\mathcal{E}}_{\text{R}}$



- Other reasons: latency, power, privacy, scalability
- Limited resources \rightarrow need for easy-to-compute models

G. Dekkers, F. Rosas, et al. "A multi-layered energy consumption model for smart wireless acoustic sensor networks," KU Leuven, Tech. Rep., December 2018.

 $N_T \bar{\mathcal{E}}_T + N_R \bar{\mathcal{E}}_R$

Future research directions

- Transfer learning
- Real-time energy efficient (adaptive) classifier models to be deployed on embedded (IoT) systems
- Data fusion: acoustics combined with other sensing modalities

To conclude

Acoustic event detection: emerging research field

Several potential applications

Scientific challenges: robust classification, dealing with overlapping sounds, reverberation

Practical challenges: acquisition of annotated data, computing power

Deep learning enables to search for suitable representations and give state of the art performance

We can safely assume high-accuracy automatic sound scene and event recognition in the near future

Thanks to

Mulu Weldegebrael Adhana Active learning of probabilistic classifier models

Gert Dekkers Robust and energy efficient audio-based classification systems

Yonas Yehualashet Tefera Anomaly detection in (accelerometer- and audio-based) time-series data

Maarten Meire Acoustically based rotational machine breakdown prediction using deep learning strategies

Lode Vuegen Acoustical classification and descriptive models for human monitoring

