
A Guide to Your Cloud-Native Stack

02

Table of Contents

A Guide to Your Cloud-Native Stack... 03

Orchestration Systems.. 04

Enhancing the Stack.. 06

 Monitoring... 06

 Logging.. 10

 Distributed Tracing.. 12

 Observability.. 13

Service Mesh... 14

Conclusion... 16

Cloud computing has been with us for
well over a decade now, and although its
adoption has been steadily rising over
that time, there are many reasons why
the rate of adoption hasn’t been swifter.
Chief among them, might be that
organizations don’t necessarily believe
that a ‘lift and shift’ approach to
workload migration provides much
benefit.

Organizations want to transform the
way they operate; to be more agile and
responsive, and simply replicating a data
center in the cloud is not going to bring
about that transformation.

Forward thinking organizations are be-
ginning to make this transformation, by
embracing the cloud-native approach.
This is not just about moving software
applications to run on cloud
infrastructure, but it is also about
building applications using the
microservices architecture. This makes
those applications more resilient and
scalable, and more capable of benefiting
from the on-demand, elastic nature of
the cloud.

The cloud-native paradigm is not all
sweetness and light, however; in
exchange for the considerable benefits it
affords, there is a price to pay in the form
of increased complexity.

Application workloads tend to be highly
distributed and often transient in nature,
which makes them all the harder to
manage in a production setting. This
hasn’t deterred the proponents of the
cloud-native approach though, and a lot
of effort has been put into the creation
of tools, methods, and standards to fa-
cilitate running these workloads, and to
lower the bar to cloud-native adoption.
We call this the ‘cloud-native stack’.

Defining the cloud-native stack is a bit
like trying to nail jelly to the wall! New
companies, projects, tools, and
approaches are appearing almost on a
monthly basis. Trying to keep pace with
the change is both challenging and time
consuming. But, some things are settled,
and have become a fact of life. This guide
discusses the nature of the cloud-native
stack, and the choices that make up its
composition.

This guide discusses the nature of the
cloud-native stack, and the choices that make
up its composition.

03

A Guide to Your Cloud-Native Stack

https://aws.amazon.com/10year/
https://www.infoworld.com/article/3193570/migrating-to-the-cloud-you-want-me-to-lift-and-shift-what.html
https://www.infoworld.com/article/3193570/migrating-to-the-cloud-you-want-me-to-lift-and-shift-what.html

04

Orchestration Systems

As the cloud-native approach has
transitioned from a hype, to a level of
maturity that has encouraged
organizations to trust their business
with, so too has the technology that
characterizes it. Not least, the
orchestration element of the stack that
hosts cloud-native applications.

In the beginning, with the advent of the
Docker container format, there wasn’t an
easy way to run containerized
microservices at scale. The Docker
Engine was perfect for local development
but trying to wrestle with the intricacies
of managing distributed workloads, was
beyond its capabilities. As a basis for
hosting cloud-native applications as
distributed workloads, a system was
required that allowed applications to
scale easily and quickly. It also needed to
provide resilience in the event of
inevitable failures, support advanced
deployment patterns, and facilitate
automation for the delivery of frequent
application updates.

Though there weren’t any open source,
purpose-built orchestration systems to
provide these requirements early on, it
wasn’t long before a number of new
projects materialized to fill the void.

This list is not exhaustive, but does
represent the contenders that have

received the most interest and largest
contributions by the open source
community. They are also the most
widely adopted.

Docker Swarm

The Docker project introduced ‘Swarm
Classic’ toward the end of 2015, but
quickly replaced it with a more func-
tional ‘in-Engine’ version called ‘Swarm
Mode’ in the middle of 2016.

Apache Mesos

A platform for pooling the physical or vir-
tual resources of a datacenter, Apache
Mesos can be used in conjunction with
‘frameworks’ (e.g. Aurora, Marathon) for
providing the mechanisms for running
distributed workloads.

Kubernetes

Borrowing and building on the concepts
inherent in Google’s proprietary Borg
cluster manager, Kubernetes is a very
popular open source project supported
by many influential organizations, such
as Google, Microsoft and IBM.

https://docs.docker.com/swarm/overview/
https://docs.docker.com/swarm/overview/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://mesos.apache.org/
https://aurora.apache.org/
https://mesosphere.github.io/marathon/
https://kubernetes.io/

05

Orchestration Systems

In a relatively short time, Kubernetes
has emerged as the de-facto choice for
running cloud-native applications. There
may be many reasons for this, but prime
among them is as a result of the many
different organizations that have
coalesced around Kubernetes, turning it
into a well respected, open,
community-driven project.

That’s not to say that Swarm doesn’t
continue to play a part in the ecosystem;
Swarm has a very low entry bar into the
orchestration of cloud-native
applications, and is still a foundational
component of Docker Enterprise Edition.
You’ll also find that DC/OS, a distributed
operating system based on Mesos, can
itself host Kubernetes clusters -
Kubernetes on Mesos, if you will.

If Kubernetes has won the battle for the
hearts and minds of engineering teams
as the de facto standard choice for
hosting cloud-native applications, then
we might be excused for thinking that
we’re limited for choice. Whilst it’s true
that adopting and investing in the
Kubernetes platform funnels you into a
particular technology, it doesn’t lock you

into a particular vendor, unless you rely
heavily on the value-add extras that
particular vendors provide.

In some ways, it’s like choosing Linux as
your preferred host operating system
(OS) kernel, and then electing to adopt
Ubuntu as your preferred OS distribution.
In the same way, because Kubernetes is
open source, there is a wide choice
available. Currently, there are over 50
different Kubernetes distributions from
a myriad of vendors, each of which has
been independently certified by the
Cloud-native Computing Foundation
(CNCF) as part of its Certified Kubernetes
Conformance Program.

One other factor to consider when deter-
mining orchestration system choice, is
complexity. There is no doubt that
Kubernetes (and the other competing
platforms) is technically complex, and
requires significant knowledge and skill
to operate. Many organizations prefer to
focus on developing the value that char-
acterizes their business or cause, and to
leave the task of running infrastructure
and operations, to third-parties (at least
in part).

If DIY is your preferred approach, be prepared to make a considerable
investment in terms of engineering skills and know-how.

https://www.bretfisher.com/is-swarm-dead-answered-by-a-docker-captain/
https://www.bretfisher.com/is-swarm-dead-answered-by-a-docker-captain/
https://dcos.io/
https://github.com/mesosphere/dcos-kubernetes-quickstart#kubernetes-on-dcos
https://www.cncf.io/certification/software-conformance/#logos
https://www.cncf.io/certification/software-conformance/
https://www.cncf.io/certification/software-conformance/

06

Enhancing the Stack

Systems like Kubernetes provide a
significant level of automation that
makes orchestrating cloud-native
applications possible. These systems
can’t be everything to everybody though,
and at some point there has to be some
delineation in terms of purpose.
Otherwise, we end up creating a
functional monster and we start to
become more opinionated, with choice
becoming the inevitable casualty.

To successfully operate a cloud-native
stack, it’s necessary to augment the
orchestration system with capabilities
that enable us to gain insight into the
health of the stack. We need to know
when individual services are ailing, or
whether there is unacceptable latency
between services, or a predetermined
threshold of failed requests has been
breached, and so on.

And we need to know about this health
at all levels in the stack; right from the
host machines, up to the application
services themselves. Tools that enable us
to observe what’s going on at every level
of the stack, help us to maintain service
levels, as well as gain valuable insight
into application behavior. The insight we
gain, subsequently informs future

development decisions.

Taking a peek under the hood of our
applications running in production is no
easy task, but there are some techniques
and tools that can enhance our cloud-na-
tive stack. This allows us to begin to
crack this difficult problem.

Monitoring

Monitoring is an operational practice
that has been an essential ingredient for
managing the availability of software
applications for a number of years. It’s a
tried and tested technique for
observing the state of health of a
complete system and has a mature set
of tools that pre-date the cloud-native
era. A lot of these tools are proprietary
but some have been developed using the
open source software model.

Generally, these tools are agent-based
and collect metrics from the host operat-
ing system and the monolithic
applications that run on top of them, us-
ing ‘probes’. Their architecture is based
on a different era in computing, and is
not entirely suited to the elastic,
on-demand nature of cloud computing
environments.

07

Enhancing the Stack

by probing an application to determine
whether it responds as expected. This
provides limited insight regarding the
state of an application, however, and in
cloud-native stacks it’s more common to
see monitoring tools that provide
introspection of applications.

This is often termed ‘white box’
monitoring and is characterized by the
collection of metrics (including those
obtained from instrumented
applications), which are stored in a
time-series database for subsequent
analysis and alerting purposes.

In fact, their inadequacies are exposed
further when we toss cloud-native
applications into the mix, which are
composed of multiple loosely-coupled,
replicated services that have an
ephemeral existence. Pinning down
what to monitor and where, is a
significant problem. Consequently, as
the cloud-native movement has gathered
steam, different approaches have been
sought to reinvent monitoring for the
cloud-native era.

A lot of the legacy monitoring tools rely
on a ‘black box’ approach to monitoring

Input Output

Black Box

Input Output

White Box

Comparison among Black-Box and White-Box Tests

Fig 1. Black Box Monitoring vs. White Box Monitoring

08

Enhancing the Stack

Rather than a point-in-time assessment
like that provided by a probe, this ap-
proach to monitoring provides a rich,
multi-faceted, continuous insight into
the state of the application’s health.
Tools that provide white box monitoring
usually provide a visualization feature, or
the means for exporting data to be
visualized in other tools.

So, what’s on offer to us? There are some
very capable commercial products that
provide comprehensive monitoring for
infrastructure as well as applications
such as New Relic, AppDynamics,
Instana, and Datadog. These
commercial solutions tend to be SaaS-
based and come at a price. The price,
however, may well be worth the
investment for the value that can be
gained from a comprehensive, hosted
monitoring solution.

We should also mention that the major
public cloud providers also provide
monitoring solutions for applications
that run on their infrastructure; Google
Stackdriver, AWS CloudWatch and Azure
Monitor. Using a tool native to the
platform in question, may make a lot of
sense if your stack is based entirely on a
specific cloud platform. But bear in mind
that these tools are not as feature rich as
they could be at the present time.

By far the most popular monitoring tool
that is used for cloud-native applications,
is the open source Prometheus.
Prometheus is a graduated project
under the stewardship of the CNCF, and
has followed closely behind Kubernetes
in its journey to maturity. It’s incredibly
well-respected in the cloud-native
community, and is frequently used to
monitor production cloud-native stacks.

With a multi-dimensional data model,
Prometheus applies key-value pairs to
metrics in order to generate time series
data that can be queried in a fine-grained
manner. It also provides a set of client
libraries for instrumenting application
services, with most popular
programming languages supported. And
if there’s a need to translate metrics from
other systems that don’t support the
Prometheus format, there are a large
number of ‘exporters’ available that
enable you to gather metrics from these
systems. The Prometheus metrics format
forms the basis of an open standard for
metrics exposition, called OpenMetrics.

Perhaps one of its biggest selling points
for the cloud-native stack, is its ability to
interact with service discovery
mechanisms. This enables it to
automatically discover what to collect
metrics from. Additionally, when

https://www.newrelic.com/platform/kubernetes/monitoring-guide#MonitoringenduserexperiencewhenrunningKubernetes
https://www.appdynamics.com/cloud-monitoring/kubernetes-monitoring/
https://www.instana.com/
https://www.datadoghq.com/blog/monitor-kubernetes-docker/
https://cloud.google.com/kubernetes-monitoring/
https://cloud.google.com/kubernetes-monitoring/
https://aws.amazon.com/cloudwatch/
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://prometheus.io/
https://www.cncf.io/projects/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/exporters/
https://github.com/OpenObservability/OpenMetrics

09

Enhancing the Stack

cloud-native applications are deployed to
a Kubernetes cluster, because Kubernetes
itself exposes metrics in the Prometheus
format, it’s possible to start to construct a
complete picture of the health of the
entire stack.

Whilst Prometheus has an in-built
visualization capability, it’s fairly limited
in nature, and most organizations that

use Prometheus seriously, make use of
Grafana instead. Grafana can use
Prometheus as a data source, and pro-
vides a comprehensive, general-purpose
graphing and dashboard capability.
Prometheus also has an alerting
mechanism for issuing notifications to a
number of different supported backends
(e.g. Slack, OpsGenie, PagerDvuty, etc.) or
via a webhook receiver.

Fig 2. Screenshot of the Grafana Dashboard

https://grafana.com/
https://prometheus.io/docs/operating/integrations/#alertmanager-webhook-receiver

10

Enhancing the Stack

Logging

Monitoring is an essential ingredient in
the determination of the state of health
of cloud-native applications, but it relies
on us knowing which metrics to collect.
This isn’t always known for every
application from the outset, and there is
a degree of learning about the
behavior of the applications we develop
over time. Once we’re entirely intimate
with how our application behaves, then
we can fine tune our metrics to monitor
for known problem circumstances in
production.

As a complement to monitoring, we can
and should log events during the
execution of our applications. Logs are
often described as a ‘set of time-ordered
events’ that are emitted by an
application or system, which are stored
for subsequent analysis. Event logging
has long been a staple component that
supports deep introspection of
application behavior, and the wider
system within which the application
resides. When things go wrong with
applications or systems, logging onto
a host server and poring over copious
amounts of logged events, is an
obligatory problem solving technique.

But, just as cloud-native applications
cause problems for traditional

monitoring practices, they also pose a
challenge for the collection and analysis
of event logs. Once again, it’s the
ephemeral, distributed nature of these
applications that are the crux of the
problem. How can we examine the logs
of an application service instance, if it’s
been and gone before we’ve even found
out where it’s running? What happens
to the logs when a host node fails and is
replaced by a healthy alternative? How
do we make sense of the myriad of logs
generated by multiple sources across the
application environment?

To answer that question, it’s worth first
looking at what the ‘12-factor app’
methodology has to say about
application logs. In short, it states logs
should be treated as unbuffered event
streams, and that their management
shouldn’t be the concern of the
developer, but that of the environment in
which the application runs.
In other words, developers insert code to
output events at key points in their ap-
plication, but this is simply written to the
stdout and stderr streams. For cloud-na-
tive environments, this means
extending the stack to ensure this
valuable information is collected, stored,
and made availablefor subsequent
analysis.

https://12factor.net/

11

Enhancing the Stack

The tools that you choose to use for
managing event logs will depend on
many different factors.

The gorilla of the logging world is
Splunk, which has served large
enterprises for well over a decade. As an
enterprise-grade solution, it’s scope
extends beyond traditional logging, and
can be used for eliciting business
insights, too. If you’re a large
organization with deep pockets, looking
for a comprehensive solution that goes
beyond standard logging for
operational purposes, it might be the
right choice for you. But if your
requirements are less expansive, then
there are plenty of other choices to be
had.

Just like the monitoring domain,
SaaS-based solutions exist for logging
too. Sumo Logic’s capabilities and
market proposition is very similar to that
of Splunk, whilst Loggly was a pioneer
in the SaaS market for logging, and was
acquired by Solarwinds in 2018. Bear
in mind that if you elect to go the SaaS
route for log management, you may end
up shifting gigabytes of data over the
wire on a daily basis.

The ELK (Elasticsearch, Logstash,
Kibana) stack has dominated the open
source approach to log management for a

number of years. Elasticsearch provides
the indexing and query capabilities,
Logstash performs the log collection and
parsing function, and Kibana enables
visualization of the information
collected. In more recent times, an
increasingly popular alternative to the
Logstash component of the logging
stack, is a CNCF-hosted project called
Fluentd, which is a little more efficient
on memory consumption. Just as the
different Beats can be configured to ship
logs to Logstash, Fluentd can be the
forwarding target for Fluent Bit, a
lightweight collector of logs with input
plugins for a number of different data
sources. Fluent Bit can be deployed to
ship logs without Fluentd running
alongside it. In either case the logging
stack is referred to as EFK then.

Standing up and managing the
infrastructure to host an ELK or EFK
stack, however, is not a trivial exercise,
and it quickly becomes an end in itself. If
you can’t or don’t want to make the
investment in skills and infrastructure,
then there are managed service
providers who will take care of running
the stack on your behalf.

Before we leave the topic of logging, it’s
worth pointing out that variations of the
ELK stack don’t have a monopoly when it
comes to open source solutions, and

https://www.splunk.com/
https://www.sumologic.com/
https://www.loggly.com/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana
https://www.fluentd.org/
https://fluentbit.io/
https://docs.fluentbit.io/manual/input
https://docs.fluentbit.io/manual/input
https://blog.giantswarm.io/logging-best-practices-for-kubernetes-using-elasticsearch-and-fluent-bit/
https://blog.giantswarm.io/logging-best-practices-for-kubernetes-using-elasticsearch-and-fluent-bit/

12

Enhancing the Stack

there are other reputable tools available,
such as Graylog and Grafana Loki. Loki,
whilst very new, is particularly
interesting as it is inspired by
Prometheus, and can use the very same
Kubernetes labels that Prometheus uses,
to analyze the collected logs in Grafana.
Switching between metrics and logs
using the exact same labels in one
visualization tool, is incredibly powerful.

Distributed Tracing

The recent innovations in monitoring
and logging get us a long way in
observing what’s happening in our
cloud-native applications; but only so far.
Cloud-native applications are comprised
of a set of distributed microservices.
As a client request hits one of those
services, it might spark a complex
transaction pattern across numerous

other services. If we suffer performance
or latency issues during the course of the
request transaction, it’s going to be very
hard to stitch the metrics and logs
together to build a picture of what’s
going on. To help build that picture, and
to give us a fighting chance of
pinpointing the cause of what has
manifested as a performance issue, there
needs to be a way of tracing the request
or transaction as it traverses the mesh
of services that make up the application.
The techniques which provide this kind
of insight, belong in the domain of
 distributed tracing.

Distributed tracing is not a new concept,
and has been used by the likes of Google
and Twitter for a number of years. But it’s
been the lack of a standard that has
prevented its widespread adoption in
cloud-native environments.

Fig 3. Screenshot of Tracing with Jaeger

https://www.graylog.org/products/open-source
https://grafana.com/loki
https://blog.giantswarm.io/grafana-logging-using-loki/
https://blog.giantswarm.io/grafana-logging-using-loki/
https://ai.google/research/pubs/pub36356
https://blog.twitter.com/engineering/en_us/a/2012/distributed-systems-tracing-with-zipkin.html

13

Enhancing the Stack

 If your services rely on libraries, frame-
works or services, which don’t all provide
the means to instrument in the same
manner, then there will be breaks in the
trace which will degrade the insights
that can be learned.

Open Tracing is an incubating project of
the CNCF that aims to derive a vendor
neutral API specification for
instrumenting cloud-native applications.
A trace refers to the picture that we want
to build of the transaction as it winds
its way through the distributed services,
with each step in the journey referred to
as a span. A context is passed along from
span to span, and contains the ID of the
trace and span, as well as any other data
that could be useful for carrying across
each span boundary. Developers use
the same instrumentation in their code,
irrespective of the tracing system they
adopt, provided that system supports the
Open Tracing API specification. In
theory, this means it’s possible to
instrument once, but swap the tracing
system that provides the visualization
and insights, without having to
re-instrument your code.

In terms of tracing systems, there is a
growing list available to choose from.
The most mature is Zipkin, which has a
number of libraries for different
programming languages (e.g. C#, Java,

Go, JavaScript), which are supported by
its open source project. Additionally, it
has a large number of community s
upported libraries. Jaeger is a more
recent and very popular alternative, and
is an open source project hosted by the
CNCF. It makes use of the language
support provided by the Open Tracing
project, which includes Go, JavaScript,
Java, Python and so on. When
researching which tracing system you
intend to adopt, it will pay to observe
(no pun intended) the languages and
frameworks that are supported.

There are, of course, commercial
solutions available, including SaaS
offerings like LightStep, Instana, and
Datadog.

Observability

Before we leave this topic, it’s worth
pointing out that monitoring, logging,
and tracing enable us to detect
anomalies in our applications and
systems. Though, in isolation they don’t
really help us understand the behavior of
the application itself. Combined,
however, they provide us with a rich
 context, which enables us to gain
insights that we would otherwise not
be able to glean from our applications.
There is a trend to refer to this imbued
competence, as ‘observability’.

https://opentracing.io/
https://github.com/opentracing/specification/blob/master/specification.md
https://zipkin.io/
https://www.jaegertracing.io/
https://lightstep.com/
https://www.instana.com/
https://www.datadoghq.com/apm/

14

Service Mesh

Earlier on we suggested that systems
like Kubernetes do a particular job and
do it well. We also mentioned that they
need to be augmented with additional
tooling to be the rounded solution
required for cloud-native applications.
In that sense, Kubernetes has been
likened to a kernel, that manages and
schedules its guest workloads. To make
the job of running cloud-native
workloads more seamless in a
Kubernetes environment, the
community produces helpful in-cluster
operators, such as the TLS certificate
management operator, cert-manager.

They also build abstractions on top of
Kubernetes, and one of the more
important of these is the ‘service mesh’.

The term service mesh comes from the
notion that cloud-native applications
implemented as microservices, don’t
necessarily conform to the tiered nature
of previous generations of application
architectures; instead they present a
loosely-connected mesh of interacting
services. Suddenly, client traffic
traverses east-west, as well as
north-south. Managing and controlling
the traffic between these ephemeral
services is non-trivial. The need to do
this has spawned a new management
layer on top of the orchestration system,
called service mesh technology.

The goal of service mesh technology or
tooling is to provide the means for clus-
ter administrators to apply traffic
management policy to service meshes,
whilst securing the communication, and
enabling introspection of traffic behavior.
Policy and configuration is defined using
a control plane component, and it’s
enforced in the service mesh courtesy
of sidecar proxies that constitute a data
plane. Using service mesh technology,
we can define client request routing,
configure ingress and egress and deal
with timeouts and retries. We do this,
while relying on the data plane to handle
service discovery and load balance traffic
to service instances.

The capabilities you find in service mesh
technology are not new concepts, and it’s
possible to trace early implementations
of service meshes back to libraries like
Google’s Stubby, Netflix’s Hystrix, and
Twitter’s Finagle. But libraries have
limited appeal, particularly as updates
require a complete update and rollout of
the entire service mesh. The sidecar
proxy approach removes the need for
this disruptive course of action.

The first proxy-based service mesh
technology was Linkerd, a CNCF hosted
open source project initiated by Buoyant.
It found its way into production at a
number of early adopters, including

https://github.com/operator-framework/awesome-operators
https://docs.cert-manager.io/en/latest/
https://github.com/netflix/Hystrix
https://github.com/twitter/finagle
https://github.com/linkerd/linkerd
https://buoyant.io/

15

Service Mesh

Monzo Bank. Its first incarnation
(version 1), was based on Finagle. It was
daemon-based, and was followed by a
lighter, sidecar proxy version originally
called Conduit.

Conduit, with a control plane written in
Golang and a data plane provided by a
proxy technology written in Rust, was
targeted specifically at Kubernetes. It has
subsequently been subsumed into
Linkerd as version 2, and the heavier
JVM-based version 1 is likely to be
retired in favor of version 2 at some point
in the future.

Hot on the heels of Linkerd, a series of
companies announced an open source
collaboration around another service
mesh technology called Istio. The project
started with Google, IBM and Lyft but it
has subsequently gained rapid support
from a variety of other companies.

It is generally accepted as the leading
technology in service mesh technology.

It uses Lyft’s popular open source Envoy
project as its sidecar proxy, and has a
number of supported adapters for
interfacing with third-party
infrastructure backends. For example,
there are adapters for Fluentd,
Prometheus, and Jaeger, amongst a host
of others.

With Linkerd 2 playing catch up with
Istio in terms of features and popularity,
Istio certainly gets the most attention in
the community. This may be as a result
of the corporate weight behind the
project, but it’s too early to say which
technology will win as the de-facto
standard for service mesh technology.
Istio is certainly complex, whilst
Linkerd and the recent Connect feature
of Hashicorp’s Consul, provide a simpler
approach to the management of service
meshes. There’s plenty of road left to run
in the service mesh race, so it would be
wise to take a carefully considered
decision, when it comes to defining your
approach.

“Kubernetes is the new kernel. We can refer to it
as a “cluster kernel” versus the typical operating
system kernel.” -- Jessie Frazelle

https://buoyant.io/resources/when-failure-isnt-an-option-processing-real-money-at-monzo-with-kubernetes-linkerd/
https://blog.linkerd.io/2017/12/05/introducing-conduit/
https://linkerd.io/2/overview/
https://istio.io/
https://www.envoyproxy.io/
https://learn.hashicorp.com/consul/
https://twitter.com/jessfraz

16

Conclusion

Embarking on the journey to cloud
native adoption may seem daunting,
especially when you consider that the
cloud-native paradigm is still relatively
new, and that it seems like there is so
much to learn and to assimilate. And, for
sure we haven’t even touched on other
aspects of the cloud-native stack, such
as continuous integration/deployment,
application registries and distribution,
networking and so on.

If we are realistic and pragmatic in our
approach, we can look forward to
realizing significant benefits for the
organizations we serve, by taking
advantage of the availability of excellent
open source platforms, tools, and
methods that make cloud-native stacks
viable, and the body of knowledge and
experience that is willingly and
collaboratively shared within the
community.

About Giant Swarm

Giant Swarm provides an API Driven Open Source Platform that enables businesses to
easily provision and scale Kubernetes clusters together with a wide set of managed ser-
vices. Giant Swarm continuously updates the platform with all its tenant clusters and
takes full responsibility that the cloud-native infrastructure is operational at all times.
Giant Swarm provides its customers hands-on expert support via a private Slack channel
to further accelerate their cloud-native success.

Get in touch with us now

Let’s have a first call where we can discuss your goals, solutions, setup and timeline to
come up with the perfect plan for scaling and delivering your solutions with ease.

hello@giantswarm.io

www.giantswarm.io

twitter.com/giantswarm

mailto:hello@giantswarm.io
http://www.giantswarm.io
http://twitter.com/giantswarm

