
Why Does CA Platform Use OpenShift?



2 © 2014 CA. All rights reserved.

The Problem

Let’s consider an application with a back-end web service.

The service could be Tomcat serving HTML, Jetty serving OData, Node.js 
serving plain REST APIs, an instance of Ruby on Rails — doesn’t matter for 
this argument.

How can we deploy this service?

HTTP

Service



3 © 2014 CA. All rights reserved.

The Problem

Let’s say 1 instance of that service can handle 100 users and requires 1 CPU 
core.

And let’s say we have 100 users. We could simply run 1 service on 1 physical 
server (or VM) with 1 core. No problem.

But what if we have 100,000 users?

HTTP

Server (1 core)

OS

100 users



4 © 2014 CA. All rights reserved.

The Problem

With 100,000 users, we need 1,000 service instances, which need at least 
1,000 cores.

How can we deploy an application with 1,000 Tomcats or 1,000 RoR 
instances?

That’s a complex problem, and good solutions must meet many criteria. But 
here are 4 key criteria for CA Platform.

100,000 users 1,000



5 © 2014 CA. All rights reserved.

Four Key Criteria

So what are some approaches to this problem?

Capex We’re going large-scale in the first place because we are delivering SaaS, 

and SaaS profitability calls for the most cost-efficient hardware, software, and operations 

labor that can do the job.Opex

Isolation To achieve sufficient reliability, we need resource isolation between service instances 

— we can’t let one misbehaving instance take down hundreds of others.

Flexibility We need to efficiently add, remove, grow, and shrink services. In real life, that 

hypothetical set of 1,000 service instances isn’t static, isn’t uniform, and isn’t the only set of 

services.



6 © 2014 CA. All rights reserved.

Putting all 1,000 services on a small 
number of very large servers is a non-
starter. Biggest problem in general: Large 
servers are dramatically less cost-
effective than small servers. Large 
servers only make sense for specialized 
workloads that can’t run on small servers.

1000-core server

OS

Bad Approach: Humongous Servers

1,000

Capex Awful

Opex OK but doesn’t matter

Isolatio
n

Awful

Flexibilit
y

Awful



7 © 2014 CA. All rights reserved.

Bad Approach: Horde of Tiny Servers

Putting each service on its own just-big-enough server doesn’t work either. 
Even if that server size happens to be cost-efficient in cores-per-dollar, opex 
and flexibility are unacceptable.

... 1,000 total

Capex Bad. Cost-optimal server size is usually bigger than 1 service, and some of our cost (such 

as OS licensing) scales with the number of servers.

Opex Awful because we have 1,000 independent OS instances to manage. (The data center 

automation business from 10 years ago would love to help you try to fix this.)

Isolation Good (actually, total overkill for web apps).

Flexibility Awful especially if our service outgrows our server!



8 © 2014 CA. All rights reserved.

Common Approach: Virtualization

Let’s say the cost-optimal server has 8 cores — enough raw capacity for 8 
services (ignoring overhead). To isolate those 8 services from each other, we 
need some way to subdivide our physical servers. Enter virtualization.

8-core server

× 125 ...?

Capex Just OK, because those 1,000 OS instances impose significant additional overhead — we actually need way 

more than 125 servers.

Opex Still awful because we still have 1,000 independent OS instances to manage. (Plus an additional ton of 

virtualization software to buy and operate — which is why VMware loves this approach.)

Isolation Good (still overkill).

Flexibilit
y

OK. We can change deployment sizing virtually, though not dynamically.



Aside: Intro to OS Container Technology



10 © 2014 CA. All rights reserved.

OS Container Technology

What if we could keep the flexibility of virtualization but remove the OS 
overhead? Especially for mostly-uniform workloads that don’t need total 
isolation?

This observation led to the development of “lightweight virtualization” where the 
“VMs” are partially isolated partitions of the same underlying OS.

In full virtualization, one partition could be Windows, another Linux. With OS 
containers, both partitions expose the same OS instance. 

Virtualization is external to the guest OS. Containers are features provided by 
an OS.

There is a diverse spectrum of technologies for containerization, including 
Solaris Zones, Parallels Virtuozzo, Linux LXC containers, and BSD jails, 
ranging from low overhead/low isolation to high overhead/high isolation.



11 © 2014 CA. All rights reserved.

OS Container Analogy

Each floor is built out completely 
differently. The cubicles in the 
insurance agency are partially 
isolated — different office chairs, 
same carpet.

Each VM has a completely different 
OS. The containers in the Solaris 
instance are partially isolated — 
different process tables, same kernel.

Office Building

Floor 3: Insurance Agency

Cubicle

Floor 2: Dentist’s Office

Floor 1: Restaurant

Cubicle Cubicle Cubicle

Physical Server

VM 3: Solaris 10 OS instance 

Zone

VM 2: Windows 2008 OS instance

VM 1: Linux OS instance

Zone Zone Zone



Back to the Main Story



13 © 2014 CA. All rights reserved.

8-core server

OS with 8 containers

Common Approach: OS Containers
(E.g., Joyent)

× 125

Capex Good. Cost-optimal hardware. OS (and virtualization) overhead is at a minimum.

Opex OK. Reasonable number of OS instances to manage, but we haven’t addressed how to manage thousands of 

services or how to route application traffic. Typically that’s a ton of custom automation.

Isolation Good enough for web services.

Flexibility OK. Containers are easier to manage than full VMs, but they are still individually-configurable 

objects that must be externally automated or manually maintained.

ContainerContainer

ServiceService



14 © 2014 CA. All rights reserved.

Toward a Solution

 With OS containers, capex and isolation are good.

 How can we extend that solution to fully-automated 
container management with sufficient flexibility for 
complex large-scale SaaS applications?



15 © 2014 CA. All rights reserved.

Introducing OpenShift

OpenShift is an open-source technology stack from Red Hat with several major 
features. For this discussion, we care about two big aspects of OpenShift:

 Ultra-lightweight containers — OpenShift combines two standard Linux 
features (cgroups and SELinux) to define lightly-isolated containers, called 
gears, that impose essentially zero overhead versus running on the bare 
OS. Gears provide just enough isolation for web services.

 Distributed application model — OpenShift allocates gears to 
applications from a pool of gears (running on a pool of OS instances). The 
number of gears assigned to an application can change dynamically in 
response to manual commands or automatic load-driven scaling decisions. 
And OpenShift automates a network of HTTP proxies so apps don’t have to 
worry about which gears are running which services.



16 © 2014 CA. All rights reserved.

OpenShift-Based Approach to the Core Problem

Capex Good. Cost-optimal hardware. OS (and virtualization) overhead is at a minimum.

Opex Good. Reasonable number of uniform OS instances to manage, and OpenShift fully automates the 

containers, service deployment, and service traffic routing.

Isolation Good enough for web services.

Flexibilit
y

Good. All the dynamic large-scale complexity is software-defined and fully automated.

Why does CA Platform use OpenShift? Because it is the only 
scalable application framework that fully delivers on all 4 key 
criteria.



17 © 2014 CA. All rights reserved.

Platform Application Model

How CA Platform Uses OpenShift

Browser Mobile API Client

Platform
Database-as-a-Service

OpenShift

Platform Security & Multitenancy
(Authentication/SSO, tenancy model, firewall, reverse proxy)

Platform app 1 (CA SaaS product)

Engine 1 (Java 
OData API)

Engine 2 (Node.js 
REST API)

Platform app 2

Engine 1 (Java 
OData API)

MySQLMySQL Cassandr
a

Cassandr
a

CA Platform provides a highly standardized model for its 
applications (CA SaaS products). Applications model 
business logic as platform engines (separately-scalable 
tiers) built on a small number of platform-provided 
application frameworks. CA Platform is a PaaS that 
leverages OpenShift internally.

CA Platform provides a highly standardized model for its 
applications (CA SaaS products). Applications model 
business logic as platform engines (separately-scalable 
tiers) built on a small number of platform-provided 
application frameworks. CA Platform is a PaaS that 
leverages OpenShift internally.

OpenShift maintains a pool of gears on standardized 
RHEL OS instances (running on cost-efficient underlying 
IaaS or virtualized hardware — making CA Platform 
highly portable).

OpenShift maintains a pool of gears on standardized 
RHEL OS instances (running on cost-efficient underlying 
IaaS or virtualized hardware — making CA Platform 
highly portable).

RHEL OS

OpenShift gear

Application business logic

Platform-standard 

framework

VM

CA Platform automation uses the OpenShift API to run 
an OpenShift application for each engine. OpenShift 
allocates gears and dynamically manages a network of 
HTTP proxies.

CA Platform automation uses the OpenShift API to run 
an OpenShift application for each engine. OpenShift 
allocates gears and dynamically manages a network of 
HTTP proxies.

CA Platform leverages market-leading CA security 
products, such as Layer 7 and CloudMinder, for 
enterprise-grade authentication, security, and 
multitenancy. 

CA Platform leverages market-leading CA security 
products, such as Layer 7 and CloudMinder, for 
enterprise-grade authentication, security, and 
multitenancy. 



Q&A


	Slide 1
	The Problem
	The Problem
	The Problem
	Four Key Criteria
	Bad Approach: Humongous Servers
	Bad Approach: Horde of Tiny Servers
	Common Approach: Virtualization
	Slide 9
	OS Container Technology
	OS Container Analogy
	Slide 12
	Common Approach: OS Containers (E.g., Joyent)
	Toward a Solution
	Introducing OpenShift
	OpenShift-Based Approach to the Core Problem
	How CA Platform Uses OpenShift
	Slide 18

