
27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

Architectural Considerations for Open-Source PaaS
and Container Platforms
by Brian Gracely | Saturday, July 2nd, 2016-Wikibon.com

Wikibon.com

Architectural Considerations for Open-
Source PaaS and Container Platforms

by Brian Gracely | Saturday, July 2nd, 2016

http://wikibon.com/architectural-considerations-for-open-source-paas-and-container-platfor
ms/

Wikibon.com 1 / 13

http://wikibon.com/architectural-considerations-for-open-source-paas-and-container-platforms/
http://wikibon.com/architectural-considerations-for-open-source-paas-and-container-platforms/
http://wikibon.com/
http://wikibon.com/architectural-considerations-for-open-source-paas-and-container-platforms/
http://wikibon.com/architectural-considerations-for-open-source-paas-and-container-platforms/
http://wikibon.com/architectural-considerations-for-open-source-paas-and-container-platforms/
http://wikibon.com/architectural-considerations-for-open-source-paas-and-container-platforms/

27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

Architectural Considerations for Open-
Source PaaS and Container Platforms
by Brian Gracely | 2 July 2016 | Analysis, Cloud

Premise: The market for open source PaaS (Platform-as-a-Service) and
Container platforms is rapidly evolving, both in terms of technologies and the
breadth of offerings being brought to market to accelerate application
development. Many IT organizations and developers are now mandating that
any new software usage (on-demand consumption) or purchase must be based
on open source software so that they have greater control over the evaluation
process. In addition, many organizations want the option to choose whether
their deployments are on-premises or use a public cloud service. As the pace
of change accelerates for many open source technologies, IT organizations
and developers are evaluating the architectural trade-offs that will impact
new cloud-native applications as well as integrations with existing
applications and data.

The focus of PaaS and Container platforms has always been to simplify the developer
experience in deploying applications into production. But there has been great debate
over which elements of this simplification were the most important. Over the past 3-4
years, the following topics have been areas of platform differentiation and debate:

Polyglot Language support. Early platforms were built for specific development●

languages (e.g. Java, Ruby, .NET), frameworks or runtimes, but this has evolved to the
point where every platform can now support a wide variety of languages. This support
may be native platform functionality, or be available through an add-on service or via
support through containers.
Multi-Cloud support. By definition, PaaS and Container platforms should be able to●

abstract any underlying cloud platform (e.g. AWS, Azure, Google Cloud, OpenStack,
VMware, etc.). This has evolved to where most platforms will run on any platforms, with
deployment packages, API tools and marketplaces to support seamless migration of
applications between those cloud platforms.
Docker support (for on-boarding applications). Early platforms supported many●

ways to upload applications, packages and dependencies into the system. But as more
developers have adopted Docker containers as their standard for packaging and shipping
applications, support for Docker became standard on all PaaS and Container platforms.
Schedulers. Inside of every PaaS or Container platform is a complex, distributed system●

which is responsible for managing the underlying resources that run applications. These
system are called “orchestrators” or “schedulers” and their job is to coordinate the
creation and availability of the underlying containers or VMs which provide the
infrastructure for applications on the platform. Schedulers are currently an area of much
debate, as various schedulers (e.g. Cloud Foundry Diego, Kubernetes, Apache Mesos,
Docker Swarm) have different scalability characteristics and different levels of

Wikibon.com 2 / 13

http://wikibon.com/architectural-considerations-for-open-source-paas-and-container-platforms/
http://wikibon.com/architectural-considerations-for-open-source-paas-and-container-platforms/
http://wikibon.com/topic/type/analysis/
http://wikibon.com/topic/topics/cloud/
https://docs.cloudfoundry.org/concepts/diego/diego-architecture.html
http://kubernetes.io/
http://mesos.apache.org/
https://docs.docker.com/swarm/

27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

integration with containers and other elements of the platform.
“Serverless” or Functions-as-a-Service support. While PaaS and Container platforms●

deliver a simplified deployment model for developers, an even simpler version is
emerging. This model, called “Serverless” or “Functions-as-a-Service” (FaaS), removes
even more operational concerns from the developer and is beginning to gather some
buzz from developers building single-page web, mobile and IoT applications. This is a
capability that will eventually become an embedded service within any viable PaaS or
Container platform. An excellent introduction to Serverless can be found here and here.

Less than a year ago, Wikibon published a series of research focused on Structured
and Unstructured platforms, with a focus on how these platforms were designed to
help developers build cloud-native applications. The evolution of PaaS and Container
platforms has significantly evolved over the past 9-12 months. While some platforms
are still highly Structured, the growing trend has been for the previously Unstructured
platforms to become more “composable” or even Structured. Wikibon defines
“composable” as a packaged offering that leverages a set of modular open source
projects, but is more tightly integrated as a set of services that accelerate developer
productivity and application deployments. Composable platforms are becoming more
“opinionated” in their architectural choices, but they still allow architects, developers
and operators some amount of architectural flexibility that may not be present in
Structured platforms.

NOTE: Some vendors prefer the term “Containers-as-a-Service”. That designation
can to be aligned to the vendor technology being sold, but Wikibon views the overall
platform as being about more than just containers – including continuous
integration/continuous deployment (CI/CD), authentication services, application
services, data services, security services, cloud infrastructure and many other
elements to enable application deployments.

Figure 1: Structured, Composable, Unstructured Platforms (Source: Wikibon
(c) 2016)

Wikibon.com 3 / 13

http://martinfowler.com/articles/serverless.html
http://martinfowler.com/bliki/Serverless.html
http://wikibon.com/cloud-native-application-platforms-structured-and-unstructured/
http://wikibon.com/cloud-native-application-platforms-structured-and-unstructured/
http://wikibon.com/wp-content/uploads/Structured-Composable-Unstructured2.png

27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

These following elements were the criteria for inclusion in this PaaS and Container
platform research:

The core platform must be based on open-source technology (platforms under●

consideration – Cloud Foundry, Docker, Kubernetes, Mesos). This allows end-
customers to have transparency of architectures, the benefit of packaged/supported
commercial offerings, as well as broad communities of developers to provide input into
architectures.
The offerings should include compatible on-premises and public cloud offerings.●

This provides end-customers with the ability to choose the consumption (purchasing) and
operational model that best fits their business needs.
The offerings should have flexible architectures which allow integration with●

3rd-party tools and external integrations (e.g. new open source projects). This
provider end-customers with the ability to determine where they want to integrate tools
that may be limited or not native to the platform (e.g. identity service, logging,
monitoring, functional processing, data analytics services, etc.)

The following offerings were evaluated for this research analysis:

Cloud Foundry: IBM Bluemix (Public, Local) – IBM Bluemix is a broad set of cloud●

application and infrastructure services that can be consumed as a public cloud (“Public”,
via IBM Softlayer data centers) or managed as a (“Local”) local service on a customer’s
premises.
Cloud Foundry: Pivotal Cloud Foundry, Pivotal Web Services – Pivotal Cloud Foundry is●

a cloud-native application platform that can be operated on-premises, operated on a
public cloud, or consumed as a public cloud service (“Pivotal Web Services”).
Docker: Docker Datacenter, Docker Cloud – Docker Datacenter is a Container-as-●

a-Service solution that can be operated on-premises or operated in a public cloud.
Docker Cloud provides a universal control plane to operate Docker containers across
multiple cloud infrastructure.
Kubernetes: Red Hat OpenShift (Dedicated,Online, Container Platform) – Red Hat●

OpenShift is a container application platform that can be operated on-premises
(“Enterprise”) or consumed via the cloud as a (‘Dedicated”) or public (“Online”) service.
Mesos: Mesosphere DCOS – Mesosphere DCOS is a data center operating system for●

running container applications and stateful services. It can be operated on-premises or in
a public cloud.

NOTE: These platforms were selected to provide a cross-section of the marketplace.
This research is not intended to be an exhaustive list of the entire market, or to choose
a “winner”, as different platforms have different characteristics that align to
application and business needs.

NOTE: The features of any given platform are constantly evolving, both in the
commercial and open source versions. Specific (updated) details can be found on
vendor websites, GitHub repositories and tracking sites such as Passifyit.

Two Critical Questions to Ask about PaaS and Container Platforms

At the core of every PaaS or Container platform, the underlying system elements were

Wikibon.com 4 / 13

https://console.ng.bluemix.net/docs/
http://docs.pivotal.io/pivotalcf/1-7/installing/pcf-docs.html
http://run.pivotal.io
https://www.docker.com/products/docker-datacenter#/resources
https://www.docker.com/products/docker-cloud#/resources
https://www.openshift.com/enterprise/
https://www.openshift.com/features/index.html
https://www.openshift.com/container-platform/
https://docs.mesosphere.com/
https://www.paasify.it/

27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

primarily designed for newer, distributed applications and patterns (e.g.
microservices, 12-factor apps, etc.). While this is fine for startups, it limits a platform’s
viability for customers with existing (legacy) applications . For any CIO, Enterprise
Architect or DevOps team looking into PaaS or Container platforms, there are two
initial questions to ask any vendor or open community:

New Applications – How can new applications be on-boarded to the platform? How are1.
they supported in the platform?
Existing Applications – How can they be on-boarded to the platform, supported in the2.
platform, and how much change is needed to run the application on the platform?

Figure 2: Deploying New and Existing Applications onto PaaS and Container
Platforms (Source: Wikibon (c) 2016)

For new applications, the paths to on-boarding are fairly well defined. Applications (or
code) can either be natively pushed to the platform, or the platform can accept
containers or functions. In either case, the input can either come directly from a
developer, or come as part of an automated system input (e.g. CI/CD artifacts,
applications bundle with a container scheduler, etc.)

For existing applications, there is still much debate about the right way to on-board
applications onto the PaaS or Container platform. Some platforms recommend that
existing applications can be placed into containers (without any modification), and
then run within the platform. Other platforms recommend that existing applications
remain outside the platform and only be accessed through service brokers, edge
gateways or API gateways.

Wikibon.com 5 / 13

http://wikibon.com/wp-content/uploads/Application-Platform-Containers.png

27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

Figure 3: On-Boarding Existing and New Applications (Source: Wikibon, (c)
2016)

On the application side of the equation, developers would prefer to have as many
options as possible to allow them to solve business challenges. But once applications,
new or existing, get on-boarded into the platform, the operations teams are striving to
create stability and consistency. The ability to create that stability and consistency will
significantly reduce costs for all applications, which is why many companies are eager
to on-board as much of their application portfolio as possible. With the increased
efficiency that can be created through automated systems, Wikibon research shows
that as much as $300B worth of IT operational costs will be removed from overall IT
spending by 2026 (Source: Wikibon “True Private Cloud” research, Feb.2016).

Figure 4: Understanding how New and Existing Applications interact with
PaaS and Container Platforms (Source, Wikibon, (c) 2016)

There are several aspects to consider when on-boarding an existing application onto
the PaaS or Container platform:

Wikibon.com 6 / 13

http://wikibon.com/wp-content/uploads/Onboarding-Apps.png
http://wikibon.com/wp-content/uploads/TPC-raw1.png
http://wikibon.com/wp-content/uploads/TPC-raw1.png
http://wikibon.com/wp-content/uploads/TPC-raw1.png
http://wikibon.com/wp-content/uploads/Application-Platform.png

27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

Can the existing application be on-boarded without any modifications? This is an1.
approach that is possible for both Linux and Windows applications, when natively
placed into Docker containers. The containers would then be run natively within the
PaaS or Container platform, using the native scheduler within the platform. (e.g.
Kubernetes or Swarm).
Can the existing application be on-boarded with minor modifications? This is an2.
approach that is language or framework specific (e.g. Spring or Microprofile for Java,
.NET Core or ASP.NET for .NET applications) and can leverage additional services
within the framework to improve how the application runs within the platform.
Can the existing application be accessed through a service-broker, edge3.
gateway or API service? Some existing applications, such as legacy databases or
services running on a mainframe, should typically remain unchanged and only be
accessed through a service-broker within the platform.

Criteria for Evaluating PaaS and Container Platforms

When evaluating any PaaS or Container platform, it is important to look at four key
characteristics, which are focused on finding the proper balance between improving
developer’s ability to create and deliver software, and the operations teams ability to
ensure that the applications run properly in expected and unexpected situations.
These characteristics deliver a mix of Speed, Agility, Technical Flexibility and
Business Flexibility.

Figure 4: Core Elements of PaaS or Container Platforms (Source: Wikibon, (c)
2016)

Developer Inputs – How is an application on-boarded (and updated) into the platform?1.
Simplifying Application Development – What services within the platform make it2.
easier for developers to build, scale and manage applications?
Operations Scalability – As more applications are added to the system, which3.
elements of the platform will help it scale and be operationally efficient?
Areas of Integration – Platforms can not natively provide every possible service to an4.
applications, so how can the platform integrate 3rd-party services to assist
applications?

Wikibon.com 7 / 13

http://spring.io/
http://microprofile.io/
https://blogs.msdn.microsoft.com/dotnet/2016/06/27/announcing-net-core-1-0/
http://wikibon.com/wp-content/uploads/Core-Elements-Platform.png

27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

Inputs for Developers (Languages, Frameworks, Pipelines)

At the core of any PaaS or Container platform is the goal to provide application
developers with functionality that will simplify their ability to build application faster
and in ways that will scale as demand grows.

The platform should support a wide variety of development languages, as well as
popular frameworks which enable additional services (databases, queuing, caching,
notifications, proxies, etc.) to assist those languages. While languages such as Java
and node.js and frameworks such as .NET are popular in many enterprises, PaaS and
Container platforms should also provide support for emerging languages such as
Ruby, Python, Go, Rust, Scala, etc.

Figure 5: Languages, Frameworks and Pipelines (Source: Wikibon, (c) 2016)

While language support is critical to provide developers with flexibility in how they
create application services, the business goal is not just to develop software but to
deploy software in ways that will solve business challenges. This goal mandates that
flexible workflows and build/test/deployment pipelines can be integrated into the
platform. In the past, Continuous Integration and Continuous Deployment (CI/CD)
systems were often external elements to PaaS and Container platforms. But as more
companies evolve their internal organizational model to support DevOps culture and
best-practices, the CI/CD frameworks are becoming more tightly integrated elements
of the platforms. While some PaaS and Container platforms have an integrated CI/CD
service, they should also be able to integrate with popular CI/CD services (e.g.
Jenkins, CloudBees, CircleCI, Gitlab, TravisCI, XebiaLabs, Shippable, etc.). The
Container or PaaS platform should not only be able to integrate with CI/CD pipelines,
but popular tools and repositories for code inspection (e.g. Sonar) and code
repositories (e.g. Artifactory, Git, etc.).

Wikibon.com 8 / 13

http://wikibon.com/wp-content/uploads/Languages-Frameworks-Pipelines1.png
http://wikibon.com/the-new-erp-and-crm-platforms-for-digital-business/
http://wikibon.com/wp-content/uploads/Cloud-Digital.png

27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

Figure 6: Digital Business Platforms – CI/CD, Cloud, and Cloud Native
Platform (Source: (c) Wikibon, 2015)

Simplifying Application Development

As more companies move towards building cloud-native applications, or re-platforming
existing applications, one of the critical areas of focus is how to simplify the
application development process for developers. Container and PaaS platforms should
deliver a set of “platform native” services and frameworks to help developers offload
important capabilities from the application to the platform. Functionality such as
Service Discovery, Messaging, Queueing, Routing and advanced middleware services
should be embedded within the platform. These services not only allow the developer
to increase their development velocity by reducing the need to build common
functionality, but it also allows groups of developers to engage common application
patterns.

Figure 7: Application Inputs into the Platform (Source: Wikibon, (c) 2016)

Figure 8: Application Functions, Code, Containers, and Services (Wikibon, (c)
2016)

Wikibon.com 9 / 13

http://wikibon.com/wp-content/uploads/Application-Platform-Input.png
http://wikibon.com/wp-content/uploads/Simplify-Applications.png

27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

While any framework could be run on a PaaS or Container platform as a local set of
services within containers that are deployed by the development team, some services
are natively enabled by the PaaS or Container platform. These services allow the
developer to focus less on the operational aspects of the application and more on the
patterns, user-context, user-experience, and data models.

Figure 9: Platform – Application Frameworks (Source: Wikibon, (c) 2016)

Operations and Scalability of the System (# of Containers, Networking, Staged
Deployments, Load-Balancing, Multiple Clouds, Managed Versions)

While the development and deployment of applications is critical to any business, the
ability for the PaaS or Container platform to also simplify operations is equally as
important as factor to consider for any business. They must be able to scale to current
and future workloads without having to make massive changes to the underlying
architecture, and they should be able to run on top of a broad variety of cloud
infrastructures (public and private).

One area of recent discussion in the PaaS and Container platform space is the
underlying container schedulers. While schedulers are an infrastructure element of
the platform, the scalability and ease of operations are critical factors to consider for
customer’s making architectural evaluations.

Figure 10: Platform Container Schedulers (Source: Wikibon, (c) 2016)

Any interesting aspect of this discussion is around scalability and the rate of adoption
of containers by customers. Below is some published scaling data by the various
schedulers. NOTE: These numbers will change over time.

Wikibon.com 10 / 13

http://wikibon.com/wp-content/uploads/Platform-Application-Frameworks5.png
http://wikibon.com/wp-content/uploads/Platform-Container-Scheduler.png

27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

Cloud Foundry Diego scaling – https://youtu.be/7APZD0me1nU?t=5m30s●

Docker Swarm scaling – https://blog.docker.com/2015/11/scale-testing-docker-sw-●

rm-30000-containers/
Kubernetes scaling –●

http://blog.kubernetes.io/2016/07/kubernetes-updates-to-performance-and-scalability-in-1
.3.html
Mesosphere scaling●

– https://docs.mesosphere.com/1.7/usage/tutorials/autoscaling/requests-second/

What is interesting about the scaling numbers is to look at them in the context of
early-adopters and data from live customers. This study from New Relic highlights an
interesting trend about the rapid increase in container usage by customers as they
become more comfortable with using containers for their applications. While these
numbers are based on a small sample size, they do highlight the importance of looking
at the scalability characteristics of the PaaS or Container platform, as the low-friction
environments that containers create will lead to very high rates of adoption and usage
by developers.

Figure 11: Container Usage by Customers (Source: New Relic “The Life and
Times of a Docker Container [Infographic“)

Another aspect that has evolved over the past 12-18 months is where various PaaS

Wikibon.com 11 / 13

https://youtu.be/7APZD0me1nU?t=5m30s
https://blog.docker.com/2015/11/scale-testing-docker-swarm-30000-containers/
https://blog.docker.com/2015/11/scale-testing-docker-swarm-30000-containers/
http://blog.kubernetes.io/2016/07/kubernetes-updates-to-performance-and-scalability-in-1.3.html
http://blog.kubernetes.io/2016/07/kubernetes-updates-to-performance-and-scalability-in-1.3.html
https://docs.mesosphere.com/1.7/usage/tutorials/autoscaling/requests-second/
https://blog.newrelic.com/2016/06/16/docker-container-infographic/
http://wikibon.com/wp-content/uploads/Screen-Shot-2016-06-29-at-8.53.41-AM.png
https://blog.newrelic.com/2016/06/16/docker-container-infographic/
https://blog.newrelic.com/2016/06/16/docker-container-infographic/

27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

and Container platforms can be deployed. Not only are the platforms now supporting
both private and public cloud consumption models, but their communities have
created installers to allow them to run in any cloud environment. In some cases these
installers are available in the public cloud marketplaces, and in other cases the
platforms are run as SaaS services that can be directly consumed by businesses.

Figure 12: Cloud Infrastructure support for Platforms (Source: Wikibon, (c)
2016)

Areas of Integration (for Applications, Data Services, 3rd-party Services, etc.)

While PaaS and Container platforms are capable of running both new and existing
applications, many of those applications will need to be augmented with additional
services in order to meet critical business needs. These augmenting services could be
native to the PaaS or Container platform, or accessible via APIs, API Gateways,
Routing services or Service Brokers.

Figure 13: Internal and External Application Services (Source: Wikibon, (c)
2016)

Architects, Developers and Operations teams should consider the flexibility of PaaS
and Container platforms to natively deliver those services today, as well as add
external services in the future. As new usage models are being driven by IoT, Machine
Learning and Serverless applications, the need for platform flexibility will be critical

Wikibon.com 12 / 13

http://wikibon.com/wp-content/uploads/Platform-Cloud-Infrastructure.png
http://wikibon.com/wp-content/uploads/Application-Services.png

27/07/2016 Architectural Considerations for Open-Source PaaS and Container Platforms

over the next 3-5 years.

Conclusion

Over the past 2-3 years, there has been an enormous level of maturity delivered by the
various PaaS and Container platforms in the market. While the underlying technology
will still force architects, developers and operators to make choices which align to
their business requirements, the breadth of choices for technology and deployment
has rapidly accelerated. IT organizations and digital product groups should be
considering how new and existing applications can be on-boarded into these cloud-
native platforms, as they will assist them in not only delivering applications faster, but
also reduce their overall IT costs by automating many areas of IT operations.

Wikibon.com 13 / 13

	Wikibon.com
	Architectural Considerations for Open-Source PaaS and Container Platforms
	Architectural Considerations for Open-Source PaaS and Container Platforms
	Architectural Considerations for Open-Source PaaS and Container Platforms

