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Abstract
While public awareness of sleep related disorders is growing, sleep apnea 
syndrome (SAS) remains a public health and economic challenge. Over the 
last two decades, extensive controlled epidemiologic research has clarified the 
incidence, risk factors including the obesity epidemic, and global prevalence 
of obstructive sleep apnea (OSA), as well as establishing a growing body 
of literature linking OSA with cardiovascular morbidity, mortality, metabolic 
dysregulation, and neurocognitive impairment. The US Institute of Medicine 
Committee on Sleep Medicine estimates that 50–70 million US adults have 
sleep or wakefulness disorders. Furthermore, the American Academy of 
Sleep Medicine (AASM) estimates that more than 29 million US adults suffer 
from moderate to severe OSA, with an estimated 80% of those individuals 
living unaware and undiagnosed, contributing to more than $149.6 billion in 
healthcare and other costs in 2015. Although various devices have been used 
to measure physiological signals, detect apneic events, and help treat sleep 
apnea, significant opportunities remain to improve the quality, efficiency, 
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and affordability of sleep apnea care. As our understanding of respiratory 
and neurophysiological signals and sleep apnea physiological mechanisms 
continues to grow, and our ability to detect and process biomedical signals 
improves, novel diagnostic and treatment modalities emerge. Objective: 
This article reviews the current engineering approaches for the detection 
and treatment of sleep apnea. Approach: It discusses signal acquisition and 
processing, highlights the current nonsurgical and nonpharmacological 
treatments, and discusses potential new therapeutic approaches. Main results: 
This work has led to an array of validated signal and sensor modalities for 
acquiring, storing and viewing sleep data; a broad class of computational and 
signal processing approaches to detect and classify SAS disease patterns; 
and a set of distinctive therapeutic technologies whose use cases span the 
continuum of disease severity. Significance: This review provides a current 
perspective of the classes of tools at hand, along with a sense of their relative 
strengths and areas for further improvement.

Keywords: sleep apnea, sleep signals analysis, sleep scoring,  
sleep assistive devices, signal processing, sleep oral appliance

(Some figures may appear in colour only in the online journal)

Glossary

AASM American Academy of Sleep Medicine
AHI Apnea hypopnea index
ANN Artificial neural network
APAP Auto-titrating positive airway pressure
APEN Approximate entropy
ASV Adaptive servo ventilation
BiPAP Bi-level positive airway pressure
BP Blood pressure
CIH Chronic intermittent hypoxemia
COPD Chronic obstructive pulmonary disease
CPAP Continuous positive airway pressure
CSA Central sleep apnea
CVD Cardiovascular disease
DFA Detrended fluctuation analysis
DNN-HMM Deep neural network-hidden Markov model
DWT Discrete wavelet transform
EEG Electroencephalogram
ECG Electrocardiogram
EMG Electromyogram
EOG Electrooculogram
EPAP Expiration positive airway pressure
EPR Expiratory pressure relief
FIS Fuzzy inference system
FOT Forced oscillation technique
GG Genioglossus
GH Geniohyoideus
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GMMs Gaussian mixture models
HFIS High-frequency inspiratory sounds
HMM Hidden Markov models
HRV Heart rate variability
IPAP Pressure during inspiration
LLE Largest Lyapunov exponent
MAAs Mandibular advancement appliances
MRA Multiresolution analytical
NAF Nasal airflow
NEPAP Nasal expiratory positive airway pressure
OAs Oral appliances
OPT Oral pressure therapy
OSA Obstructive sleep apnea
PAP Positive airway pressure
PLMs Periodic leg movements
PPG Photoplethymography
PSG Polysomnogram
PVDF Polyvinylidene fluoride
RDI Respiratory disturbance index
REM Rapid eye movement
REM sleep Rapid eye movement sleep
RL REM latency
RIP Respiratory inductance plethysmography
SAHS  Sleep apnea hypopnea syndrome, the terminology that summarizes OSA, 

CSA, and mixed sleep apnea
SAS Sleep apnea syndrome
SE Sleep efficiency
SI Severity index
SL Sleep latency
SNA Sympathetic nerve activity
SPLs Soft palate lifters
SVM Support vector machine
TEO Teager energy operators
TMJ Temporomandibular joint
TRDs Tongue retaining devices
TST Total sleep time
WPF Weighted peak flow

1. Introduction

Over the last two decades, extensive controlled epidemiologic research has clarified the inci-
dence, risk factors, and global prevalence of OSA, as well as establishing a growing body 
of literature linking OSA with cardiovascular morbidity, mortality, metabolic dysregulation, 
and neurocognitive impairment. The US Center for Disease Control (CDC) and Institute of 
Medicine Committee on Sleep Medicine estimates that 50–70 million US adults have sleep or 
wakefulness disorders (Colten and Altevogt 2006). Furthermore, the American Academy of 
Sleep Medicine (AASM) estimates that more than 29 million US adults suffer from moderate 
to severe obstructive sleep apnea (OSA), with an estimated 80% of those individuals living 
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unaware and undiagnosed, contributing to more than $149.6 billion in healthcare and other 
costs in 2015 (Watson 2016).

An escalating 10% of the general United States population has clinically significant sleep 
apnea (Peppard et al 2013). It is estimated that between 24–26% of men and 9–28% of women 
in the United States and Europe suffer from the disease, which is characterized by repeated 
periods of reduced or absent airflow that interrupt sleep (Young et al 2002). Sleep apnea is cat-
egorized into three forms: OSA, central sleep apnea (CSA), and the combination of OSA and 
CSA, constituting 84%, 0.4%, 15% of cases, respectively (Morgenthaler et al 2006). These 
disturbances have been shown to have significant effects on health and behavior such as car-
diovascular morbidities, insulin resistance, neural injury, accelerated mortality, reduced cog-
nitive function and poor work efficiency (Young et al 2002, Gottlieb et al 2010). In fact, OSA 
is believed to be a contributing factor to multiple devastating events such as the Three Mile 
Island accident, the Challenger explosion (Durning et al 2014), and Chernobyl (Hossain and 
Shapiro 2002). In addition, it can often amplify other medical conditions such as  depression 
and schizophrenia (Cho et al 2008, Wulff et al 2012).

The gold standard diagnostic procedure for sleep apnea is polysomnography (PSG), more 
commonly known as a ‘sleep study’. During this test, the patient stays overnight at a sleep lab-
oratory where their respiratory and neurophysiological signals are recorded while they sleep. 
The Standards of Practice Committee of the AASM develops and reviews indications for 
polysomnography (PSG) in the diagnosis of commonly encountered sleep disorders, includ-
ing sleep apnea. The resulting data are then analyzed by a specialist. Overall, it is a very time-
consuming and expensive process as it can cost up to several thousand dollars (Bruyneel et al 
2011, Masa et al 2011, Leger et al 2012). Some systems are available for home-use, but it is 
still unclear if these machines are appropriate, or efficient diagnostic tools (Behar et al 2013). 
There is still a need for automatic systems that reliably detect apneic events, so many ongoing 
research efforts are concentrated on this task. There are more than 2500 AASM Accredited 
Sleep Testing Facilities in the US that perform routine PSG diagnostic testing as well as the 
analytic scoring and interpretation of PSG results.

For over 25 years, the primary treatment intervention for sleep apnea has been continu-
ous positive airway pressure (CPAP) (Sassani et al 2004), but nearly half of patients cannot 
tolerate CPAP and thus adherence is poor (Wohlgemuth et al 2015). Due to the limited effec-
tiveness of current CPAP systems, more acceptable designs for CPAP treatment and other 
innovations have been developed to prevent sleep apnea.

In this article, we provide a comprehensive overview of: (1) diagnostic signal modalities 
for respiratory events (section 2.1); (2) algorithms and computational approaches for their 
detection and classification (section 2.2); (3) current nonsurgical and nonpharmacological 
treatments, and therapeutic approaches (section 3). Finally, we present some concluding 
remarks (section 4).

2. Methods to diagnose and detect apneic events

Today, digital and computerized systems for monitoring and analyzing sleep data have replaced 
paper-based systems. According to the AASM digital task force, systems used to diagnose and 
detect respiratory events encompass five basic and distinct processes (Penzel and Conradt 
2000). First, the system must provide data acquisition and recording mechanisms. Second, the 
system must provide data viewing capabilities. Third, the system must enable the manipula-
tion of data, in terms of visual scoring and editing of events. Fourth, the system must allow 
for data reduction, where epoch and event resolution data can be parametrized into useful 
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diagnostic summary statistics for reporting. Finally, the system must enable storage and archi-
val of relevant data and results. Despite the necessity of these systems in the clinical arena, to 
date, no uniform standard exists for any of these defined data processes.

According to the classification proposed by the AASM, sleep diagnostic devices could 
be categorized into four types. Type-1, standard PSG system which includes conventional 
biosignals, allowing acquisition of physiologic data from different organs, such as brain activ-
ity (EEG), muscle activity (EMG), eye movement (EOG), cardiac function (ECG, heart rate 
variability), as well as respiratory parameters such as airflow, respiratory movement/effort, 
and oxygen saturation. Type-2, Type-3, and Type-4 devices include a minimum of seven, four, 
and one signal channel of respiratory/neurophysiological biosignals, respectively (Ferber 
et al 1994, Collop et al 2011). Several clinically useful sensor modalities and techniques for 
observing relevant biosignals have been developed for the detection of respiratory events, 
which is described in the following section 2.1 and summarized in table 1.

Collop et al (2011) have also proposed a different classification system to help clinicians 
decide which testing devices are appropriate for diagnosing sleep apnea. The system catego-
rizes the devices based on the sleep, cardiovascular, oximetry, position, effort, and respiratory 
(SCOPER) parameters. The SCOPER system also specifies criteria on which to evaluate sleep 
apnea devices.

2.1. Signal and sensors for detecting and diagnosing apneic events

2.1.1. Direct and indirect measurement of airflow. Pneumotachography is the gold standard 
for monitoring ventilation during sleep. A flow meter is attached to a facemask which is placed 
on the nose and mouth (Webster 2014). The patient’s airflow passes through a flow-resistive 
element with channels that laminarize the flow. With a laminar flow, the energy loss of the air 
going through the resistive element is due to viscosity. The pressure difference is measured 
across the resistive element to quantify the energy loss, and the flow F is directly proportional 
to the pressure difference: F = πr4(Pi−Po)

8ηL . Under laminar flow, the pneumotachometer obeys 
the Hagen–Poiseuille law, where r is the radius of the channel, Pi and Po are the pressures of 
the inlet and outlet ports, η is the viscosity, and L is the length of the channel (Ehrenwerth 
et al 2013) (figure 1). Miscalculations of the viscosity can cause erroneous measurements of 
the flow.

In addition to the pneumotachometer, sensors commonly used in spirometry and ventila-
tion monitoring include differential pressure sensors and hotwire anemometers. Differential 
pressure sensors operate by having a fixed orifice in the line of flow. The flow is laminar 
upstream from the orifice and turbulent downstream from the orifice, causing a pressure dif-
ference. Using Bernoulli’s principle and a known cross-sectional area of the channel, the flow 
is calculated from the pressure drop across the orifice.

Although differential pressure sensors are widely used in anesthesia systems, ventilators, 
and spirometers, they result in a high pressure drop across the orifice at high flows, which 
is not ideal, and are insensitive to low flows (Ehrenwerth et al 2013). Additionally, differ-
ential pressure sensors are pressure dependent, and an unsealed respiratory circuit could cause  
erroneous measurements.

Hotwire anemometers are also used widely in spirometry and ventilation monitoring. Hot 
wire anemometers use a very fine wire electrically heated to some temperature above ambi-
ent. Air flowing past the wire cools the wire. Hotwire anemometers show great potential for 
medical airflow monitoring because they have a fast frequency response, high accuracy, a low 
pressure drop, and the ability to measure low flows and a wide dynamic range (Ardekani and 
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Motlagh 2010). However, hotwire anemometry is susceptible to turbulent flows and debris. 
If placed proximally to the patient, notice should be taken to laminarize the flow and ensure 
debris does not affect the sensor or patient. When used in a mask for respiratory monitoring, 
a tight seal between the mask and the patient should be ensured to prevent leaks and cause 
erroneous flow measurement.

Use of a facemask with a pneumotachometer, differential pressure sensor, and hotwire ane-
mometer sensor is often considered bulky or uncomfortable for a patient to wear during an entire 
sleep study. In order to prevent disturbance of sleep and circumvent the need for patient par-
ticipation for flow measurement, flow sensors have been placed in nasal cannulas or above the 
mouth and below the nose. When measured from a nose cannula, parameters such as humidity, 
end-tidal CO2, temperature, and pressure can assess changes in flow and be used to detect apneas 
and hypopneas. Although thermistors placed in a nose cannula have been widely used to assess 
cessation of flow, they have a slow response time and cannot reliably detect the full range of 
flows that occur during respiratory events (Montserrat et al 1997, Norman et al 1997, Teichtahl 
et al 2003). Positioning of thermoelements on the face, body positioning, and variation in sensi-
tivity and frequency response between different sensors can cause variability which contributes 
to a poor relationship between air temperature and airflow (Berg et al 1997, Berry et al 2005).

Figure 1. Pneumotachometer ((a) and (c)) fine mesh or ((b) and (d)) closely-packed 
channels help to laminarize flow, so that energy loss of the flow is due to the viscosity. 
The pressure drops ΔP measured with sampling lines corresponds to the energy loss 
due to gas viscosity.

Physiol. Meas. 38 (2017) R204
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Alternatively, the pressure measured from a nasal cannula has shown to correlate well with 
patient breathing. When measuring the pressure of the nasal cannula, the measurement is lin-
earized by computing the square root of the nasal prong pressure (Farre et al 2001). Several 
studies have compared the Apnea hypopnea indexes (AHI) that resulted from nasal cannula 
pressure measurements to scores that resulted from thermistors or chest wall movements with 
reported bias of the AHI ranging from  −9.6 h−1 to  +4.6 h−1 (Bradley et al 1995, Fleury et al 
1996, Kiely et al 1996, Mayer et al 1998, Rees et al 1998, Hernández et al 2001). When com-
pared with face mask pneumotachometers, the AHI score of the nasal pressure cannula had a 
fair correlation to that derived from pneumotachometer. However, when measured over sev-
eral hours, proportionality coefficients shifted, and therefore the nasal pressure recordings did 
not quantitatively reflect airflow (Thurnheer et al 2001). Although not quantitatively reflecting 
patient airflow, the nasal pressure cannula monitoring can be used to detect inspiratory flow 
limitation or hypopneas because these events are detected based on relative comparison to 
normal breathing of the patient (Farré et al 2001). When compared with pneumotachography, 
the golden standard for ventilation measurement in sleep studies, nasal pressure monitor-
ing and subsequent linearization by a square root transform provided an AHI and detected 
apneas and hypopneas without a significant bias (Thurnheer et al 2001). Comparing nasal 
pressure monitoring to pneumotachography on an event-by-event basis rather than complete 
AHI scores, breathing event classification agreed well with an average Cohen’s κ statistic of 
0.76, where 1.0 represents complete agreement and 0.0 represents agreement no better than 
chance (Heitman et al 2002).

Polyvinylidene fluoride (PVDF) sensors have been recently introduced for sleep respira-
tory monitoring. PVDF consists of a thin plastic film, that when polarized, is sensitive to 
both temperature and pressure changes, and produces a linear voltage output based on those 
changes. When compared with the traditional methods of a thermistor and nasal pressure 
cannula in one study, PVDF had a near unity correlation coefficient for the four indices cal-
culated, including apnea–hypopnea index (0.990), obstructive apnea index (0.992), hypopnea 
index (0.958), and central apnea index (1.0) (Kryger et al 2013). PVDF sensors eliminate the 
need to have multiple sensors placed at the same location, as they respond to both heat and 
pressure. However, they have similar limitations to those of thermistors and pressure sensors.

The commonly used respiratory inductance plethysmography (RIP) indirectly measures 
ventilation by recording changes in thoracic and abdomen cross-section. RIP measures abdo-
men chest movements through coiled wires wrapped around a patient’s chest that carry a low-
amplitude sine wave. Changes in chest and abdomen circumference alter the self-inductance 
of the wires, and therefore the frequency of the sine wave, which can be demodulated and pro-
cessed to track changes in chest and abdomen size (Watson et al 1988). RIP is widely studied 
and regarded highly by the AASM due to its great accuracy, sensitivity, and high patient safety 
(Zhang et al 2012). The wires were initially integrated into two elastic bands, one around the 
abdomen and one around the chest, but RIP has also been used with wires sewn into shirts, 
comfortably worn by patients.

With proper calibration, RIP can achieve a tidal volume measurement accuracy of 96% 
when compared with pneumotachography or spirometry (Gonzalez et al 1984). The posture 
of the patient greatly affects the measurement of tidal volume; if the RIP is calibrated with 
the patient in the upright position, sleeping and breathing in the supine position can lead to 
greater sources of error. However, Gonzalez et al (1984) found that using a two-body posture 
calibration method can improve the error due to changing body position, with measured tidal 
volumes falling within 4–10% of those measured by spirometry.

RIP is noted for its added benefit of helping to distinguish between OSA and CSA, as 
illustrated in figure 2. During OSA, cessation of breathing occurs despite an ongoing effort to 

Physiol. Meas. 38 (2017) R204



R212

Topical Review

breathe, while CSA occurs when the brain does not properly send signals to the muscles con-
trolling respiration. During CSA, the lack of effort by the muscles in the abdomen and chest 
can be noted with the use of RIP, aiding distinguishing CSA from OSA.

RIP accuracy and precision is limited in obese patients. The accuracy in estimating minute 
ventilation is considered acceptable, with a relative difference of 5.2%. The precision of RIP 
in obese patients can limit the accuracy of detecting hypopneas. The SD of the difference 
between RIP and measurements from a pneumotachograph was 10.5% during wakefulness 
and 33% during sleep (Cantineau et al 1992). However, RIP scoring has been shown to have 
increased sensitivity and specificity in overweight or obese patients when compared to the 
recommended and acceptable criteria for sleep scoring by the AASM (Kogan et al 2016). 
Although RIP accuracy and precision is significantly decreased during sleep in obese patients, 
RIP is still clinically useful (Cantineau et al 1992).

Figure 2. Polysomnography with central sleep apnea (A) and obstructive sleep apnea 
(B). Chest effort indicated by the arrows is absent in CSA. Reprinted with permission 
from Grimm and Koehler (2014). CC BY 4.0
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Impedance plethysmography (IP) measures respiratory cycles by changes in electrical 
resistance. When volume changes within an induced electrical field, a high frequency (about 
100 kHz), low level current (about 1 mA or more) is injected through electrodes placed on the 
chest wall. As the thoracic cross-sectional area changes during breathing, it changes the elec-
trical resistance, which can be recorded as a change in voltage (Webster 2014). Like RIP, IP is 
prone to error and inconsistency due to changes in patients’ posture during recording signal.

Esophageal manometry, or measuring the esophageal pressure, can be useful in assess-
ing patients with upper airway resistance syndrome. Esophageal manometry can indicate 
increased respiratory effort during respiratory events. However, esophageal manometry is 
relatively invasive, not tolerated well by most patients, and therefore is not used for routine 
testing (McNicholas 2008). Additionally, it has been shown that the use of nasal cannula pres-
sure monitoring can be used to identify non-invasively the same events as esophageal manom-
etry including Respiratory Effort-Related Arousals, apneas, and hypopneas (Rapoport 2000).

Electromyographic (EMG) activity can also be recorded during sleep apnea studies. 
The sternocleidomastoid (SCM), genioglossal (GG) and abdominal wall (ABD) muscle 
activity can be observed to represent inspiratory pressure generating, inspiratory airway- 
maintaining, and expiratory muscles respectively. The phasic activity of the GG muscles is 
normally reduced in REM sleep compared to wakefulness, but children with OSA were found 
to have phasic GG EMG activity during sleep. The SCM and GG muscles EMG indexes indi-
cate that they increase activity with worsening hypoxemia and hypercarbia (Jeffries et al 1984, 
Dempsey et al 2010).

In addition to more traditional thermal and pressure sensors, acoustic monitoring has 
also been researched as a possible means to detect apneas and hypopneas. An acoustic 
sensor is used to record the signals generated from the expired air flow. These signals can 
be acquired in the natural sleep environment without any contact to the subject and can 
be used to detect breathing events, obstruction and snoring (Vegfors et  al 1993, Gordh 
et  al 1995, Roebuck et  al 2013). Children with suspected obstructive Sleep Disordered 
Breathing were found to produce louder high-frequency inspiratory sounds (HFIS) dur-
ing sleep as well as have narrower airways (Rembold and Suratt 2004). The HFIS were 
observed using a microphone placed above the observed patient. Although the occurrence 
of HFIS correlated with the patient’s rate of obstructive respiratory events, the HFIS inten-
sity did not correlate well with respiratory effort as measured by an esophageal cathe-
ter (Rembold and Suratt 2014). This could be explained by the fact that HFIS intensity 
increases with high-velocity, high-turbulent flows, and some obstructive events do not have 
any patient airflow. While acoustic monitoring has not yet been used to accurately assess 
AHI indexes, acoustic monitoring has been used in the commercially available Masimo 
RRa® to determine respiratory rate and apneas through an acoustic sensor that adheres 
to patients’ necks. The RRa® was found to be 3% more accurate than a capnograph when 
assessing respiratory rate, and had a higher sensitivity (P  =  0.0461) when detecting cessa-
tion of breathing (⩾30 s) (Ramsay et al 2013).

In another effort to diagnose and monitor respiratory events without patient contact, fiber 
grating vision sensing and laser sensing has been researched. With this technology, the posi-
tions or movements of the chest and abdomen are monitored with respect to the patient’s 
center of gravity. Using over 100 sampling locations, respiratory events could be determined 
and distinction between OSA and CSA could be made (Takemura et al 2005). However, this 
method requires much calibration between patients, and is highly dependent upon patient 
movement, which can occur during sleep. With refinement, fiber-grating vision sensing could 
be used to detect sleep apnea without patient contact.
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Researchers have also explored the use of off-the-shelf smart phones and applications to 
diagnose sleep apnea using a sonar system with frequency modulated continuous waves. The 
system uses the phone’s speakers to emit sound waves and analyzes the reflections. The reflec-
tions from the body arrive back to the phone at different times depending on the distance from 
the phone, and amplitude changes due to changes in breathing are extracted. The system can 
even analyze breathing from two patients lying in the same bed. When placed within 1 m of 
the patient, the phone application can estimate respiratory rate with 99.2% accuracy. When 
compared with a traditional PSG, the application identified CSAs with a 0.9957 correlation 
coefficient, OSAs with a 0.9860 correlation coefficient, and hypopneas with a 0.9533 correla-
tion coefficient. The system accurately predicted apneic events without patient contact, but 
does not provide other information provided in a traditional PSG, including patient position, 
visual information, and electroencephalogram (EEG) signals used to determine sleep stages 
(REM, non-REM, and awake) (Nandakumar et al 2015).

2.1.2. Measurement of the concentration or partial pressure of respiratory gases.
2.1.2.1. CO2 concentration.  The concentration of respiratory gases in the blood can reflect 
the condition of patients’ breathing patterns. While the arterial CO2 concentration is a param-
eter of interest, it is expensive and invasive to monitor during polysomnography. Alternatively, 
capnometry is the measurement of the CO2 concentration of exhaled air, and end-tidal PCO2 
(etPCO2), is marked as an important parameter with significant correlation for apneic event 
detection (Magnan et al 1993). Transcutaneous carbon dioxide (tcPCO2) can also be moni-
tored. For both etPCO2 and tcPCO2 the accuracy and potential sources of error of estimating the 
arterial CO2 concentration must be considered.

Monitoring of etPCO2 is commonly used in pediatric patients and can be used to score 
apneic events. An apnea could be observed by the absence of an etPCO2 peak or wave from 
the capnography monitor. The etPCO2 is typically sampled via a sampling line connecting the 
nasal cannula to an external sensor, so mouth breathing or occlusion of the nasal cannula can 
affect the ability to monitor breathing events. Additionally, because etPCO2 corresponds to 
the highest concentration of CO2 within a breath rather than the flow or volume of the breath, 
etPCO2 signals could be misleading during an inspiratory apnea if small breaths with a high 
CO2 concentration continue (Berry et al 2012a).

tcPCO2 measurement is a warm sensor placed on the surface of the skin and an electro-
chemical cell that determines the pH change due to CO2 concentration. The elevated temper-
ature of the sensor causes local hyperemia and an increased arterial blood supply below the 
sensor. The tcPCO2 at the sensor is higher than the actual arterial value due to increased local 
blood and tissue PCO2 and epidermal cells producing CO2, so a correction factor is often used 
to determine the arterial PCO2 from the tcPCO2. A highly permeable membrane separates the 
electrochemical cell from the skin, and an Ag/AgCl reference electrode is used to measure the 
pH. With sensor temperatures of 42 °C, or even as low as 37 °C, a good correlation between 
PaCO2

 and tcPCO2 has been reported (Eberhard 2007). However, it is not recommended to use 
transcutaneous monitoring if the patient has thick skin edema or thick subcutaneous tissue 
where the sensor is applied. Also, the sensor location used for transcutaneous monitoring 
should be changed often to avoid thermal injury from the local heating (Restrepo et al 2012).

2.1.2.2. O2 concentration. Oxygen concentration is also of great interest during sleep studies, 
because the arterial oxygen concentration may fall dramatically during an apneic event. Pulse 
oximetry monitors the peripheral oxygen saturation (SpO2) by shining red and infrared light 
through a fingertip, ear or toe. The amount of red or infrared light that is absorbed corresponds to 
the concentration of oxygenated hemoglobin and deoxyhemoglobin in the blood, and therefore 

Physiol. Meas. 38 (2017) R204



R215

Topical Review

the oxygen concentration in the blood can be determined (Webster 2014). The SpO2 changes 
during respiratory events such as apneas and hypopneas, and hypopneas are even classified as 
reduced airflow accompanied generally by a SpO2 drop of at least 4%. Normal SpO2 levels vary 
between patients, with normal ranges falling between 85–95% (Roebuck et al 2013).

Pulse oximetry monitors are prone to error and false desaturation measurements due to 
motion artifact, noise, or missed readings. To reduce errors, pulse oximeters average read-
ings and report oxygen levels every 3–12 s, which may cause a delay in alarms or monitoring. 
Notwithstanding, whether incorporated into at home monitors or used as a part of a polysom-
nography suite, pulse oximetry has proven to be a valuable tool in detecting and diagnosing 
sleep apnea. The channel typically provides summary statistics (means, minimum levels), 
quantifies the total time the patient experiences oxygen saturation under various thresholds 
and tallies the number of events where the patient experiences desaturation between 2–5% 
(Flemons et al 2003).

Additionally, near-infrared spectroscopy (NIRS) is a method used to continuously and non-
invasively monitor cerebral oxygen concentration. NIRS uses light with wavelengths from 
700 to 1300 nm to penetrate the skull to the cerebral tissue. Changes in the relative amounts 
of oxygenated hemoglobin and deoxygenated hemoglobin can be monitored through changes 
in the absorption of the light (Hayakawa et al 1996). NIRS may provide an earlier warning 
of decreased blood oxygenation. In a study of ten children who required episodes of apnea 
during laser airway surgery, cerebral oximetry indicated a 5% decrease in cerebral oxime-
try (rSO2) in all patients before pulse oximeter measurements decreased by 5%. Also, in all 
patients, the rSO2 decreased by 10% before the pulse oximeter measurements decreased by 
10% (Tobias 2008). Cerebral oximetry with NIRS provides a non-invasive measurement of 
oxygenation with a possibly faster response time than pulse oximetry.

Photoplethymography (PPG) is an uncomplicated and relatively inexpensive optical meas-
urement technique that has been used to detect variations of blood volume in the microvascular 
bed of tissue. Using simultaneous reflective PPG and a force sensor, placed on the opposite sides 
of the same fingertip, Keikhosravi et al (2013) showed that the photoplethysmogram signal is 
mainly due to volume changes not the blood compression and rarefaction induced by heartbeat. 
Although, PPG has traditionally been used to measure oxygen saturation and heart rate deter-
mination, it has shown that its capability and usefulness is not limited to the calculation of the 
aforementioned physiological parameters. Active research efforts in this field are being devoted 
to identifying additional physiological parameters that can be extracted and measured from the 
PPG signal. Thus, investigation into the analysis of the PPG signal has increasingly become 
widespread. Ghamari et al (2016) proposed a mathematical model to represent the original PPG 
signal as a summation of two Gaussian functions. In the case of sleep apnea as an example, when 
apnea occurs, the sympathetic activity of the nervous system increases. This increase leads to 
vasoconstriction which directly reflects on the original shape of the PPG signal by a decrease in 
the signal amplitude. (Somers et al 1995, Nitzan et al 1998, Leuenberger et al 2001).

Peripheral arterial tonometry (PAT) technology uses a finger pneumo-optic plethysmograph 
to assess arterial oxyhemoglobin desaturation. The PAT signal is sensitive to the sympathetic 
nervous activity to the periphery that is characteristic of obstructive apneic events (O’Donnell 
et al 2002). Greater airflow obstruction produces greater reductions in PAT signal amplitude, 
and brief periods of airflow obstruction that do not cause EEG arousal can significantly reduce 
the PAT signal amplitude (O’Donnell et al 2002). When compared with polysomnography, 
the Watch_PAT system, which combines PAT technology with actigraphy and arterial oxygen 
saturation to diagnose OSA, had high concordance with both the respiratory disturbance index 
Chicago criteria (RDI.C) and the Medicare criteria (RDI.M) with intra-class correlation coef-
ficients of 0.88 and 0.95 respectively for in-lab assessments, and 0.72 and 0.80 for in-home 
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assessments (Pittman et al 2004). In another study comparing in-home polysomnography and 
the Watch_PAT system, there was strong correlation of the AHI, RDI, and ODI assessed by the 
PSG and the Watch_PAT system (r  =  0.90, 0.88 and 0.92 (n  =  92), p  <  0.0001, respectively) 
(Zou et al 2006). The Watch_PAT system is an effective, portable, and less-costly method for 
sleep studies that correlates well with PSG measurements.

2.1.3. Measurement of electropotentials. Electropotentials are measured during sleep studies 
to detect SAS events and sleep patterns. Signals such as EMG, EEG, and EOG are collected 
during polysomnography, as illustrated in figure 3.

A number of studies have shown that SAS events and patterns can be detected with high 
accuracy using only single channel ECG data. HRV information can be obtained from the 
ECG signal, and using the standard deviation of the NN interval of both nighttime and daytime 
heart beats has shown to detect obstructive sleep apnea with high sensitivity (89.7%) and high 
specificity (98.1%). However, using ECG as the sole parameter for sleep apnea screening has 
its limitations, as diseases such as diabetes, sequelae of myocardial infarction and chronic 
heart failure, which are often associated with OSA, can cause false negatives when screening 
for OSA (Roche et al 1999, Shiomi et al 1996). Changes in HRV due to tidal volume and 
breathing effort must be taken into account when processing HRV data (Meziane et al 2015). 
Even when not used as the sole parameter for sleep apnea detection, ECG data are still a valu-
able tool used in polysomnography.

Chin and leg EMG is a traditional parameter used during polysomnography. EMG data are 
most often used during polysomnography to monitor sleep stages, along with EEG and EOG, 
because muscle tone subsides during NREM sleep and is at its lowest during REM sleep. In 
addition, chin electrodes are typically placed close to the geniohyoideus (GH) and genioglos-
sus (GG) muscles which are pharyngeal dilator muscles and which play an important part 
in maintaining upper airway patency. Therefore, chin EMG can be considered a noninva-
sive method to assess upper-airway muscles’ EMG activity shown in figure 3. OSA patients 
have been found to have significantly higher chin EMG at sleep termination, which correlates 
with other findings that OSA patients have higher upper airway muscle activities than normal  
subjects in wakefulness (Mezzanotte et al 1992, Al-Angari 2008).

Lastly, surface EEG allows for detailed analysis of depth of sleep through sleep staging, 
as well as sleep architecture and efficiency based on phasic transitions through sleep cycles. 
While not required to obtain a SAS diagnosis, EEG provides a clinically useful measure of 
the effect of SAS respiratory pathology on the overall quality of sleep. In SAS patients, con-
ventional parameters showed predictable decrements in total sleep time (TST), fragmentation 
of sleep architecture, slow wave sleep, and REM sleep and increases in stage 1 and nocturnal 
awakenings (Terzano et al 1996). Moreover, obstructive event-induced work of breathing or 
hypoxemia has an effect on electrocortical activity. In a study of severe SAS patients, statisti-
cally significant differences were observed in the brain activity of apneic patients relative to 
normative patients globally and in particular in the local temporal region to SAHS events. 
More specifically, EEG signals measured directly following apnea onset displayed average 
differences of 268% between initial and maximum signal amplitude measurements, and 202% 
between initial and final values of amplitude, frequency, phase, and other signal and descrip-
tive statistical parameters (Svanborg and Guilleminault 1996). As such, the AASM recom-
mends three EEG derivations for scoring of sleep, including frontal, central, and occipital 
sensor locations F4/M1, C4/M1, O2/M1, as well as back-up derivations: F3/M2, C3/M2, and 
O1/M2 (Iber 2007, Ruehland et al 2011).
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Electrooculogram (EOG) is used to capture the distinct sharp eye movements character-
istic of REM sleep. Arousal from REM sleep is accompanied by sudden halting of rapid eye  
movement on EOG and increased muscle tone recorded on EMG.

2.1.4. Patients’ sleeping behavior and body movements in sleep. Body position of patients 
during a sleep cycle is of great interest to researchers because OSA severity can vary with 
body position. To monitor body position, accelerometers or video recordings have been used.

Figure 3. The polysomnographic tracing includes electroencephalogram (EEG), 
electromyogram (EMG) EMGgg: Electromyogram of the genioglossus muscle 
(intramuscular); EMGsub: EMG of the submental muscle (surface), RESP flow, 
SaO2, etc. (A) The cessation and resumption of flow defines the apneic event. (B) One 
obstructed apneic event (between the dotted vertical lines in (A)) is expanded to illustrate 
the progressive increase in inspiratory effort, pressure at the level of the epiglottis (Pepi) 
and dilator muscle EMG (EMGgg) during the apnea. It demonstrates snoring on the 
flow tracing followed by apnea, and increases in EMG activity throughout the apneic 
event. Reprinted with permission of the American Thoracic Society, Copyright © 2016 
American Thoracic Society (Eckert and Malhotra 2008).
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Using accelerometry (or actigraphy), patient body movements can be recorded, typically 
with inexpensive piezoelectric sensors. Its ability to track body motion and snoring helps track 
information such as sleep duration and the number of times a patient wakes during the night. 
Although actigraphy has lower specificity than polysomnography in identifying wakefulness 
in patients, its use might be preferred to polysomnography when patient monitoring spans a 
long duration, as it is easier for patients to comply with actigraphy monitoring than traditional 
polysomnography (Roebuck et al 2013).

Video recordings and corresponding image processing technology have been widely used 
in the noncontact apnea detecting field. Many researchers correlate the PSG signals to the 
patient’s sleeping behavior, such as body position, which is extracted from videos. In some 
cases, video recordings have helped to confirm diagnoses when used in conjunction with PSG 
signals. Even though the AHI limits may be normal, video recordings may show supplemental 
information about respiratory events such as head movements and arousals (Griffiths et al 
1991, Sivan et al 1996, Anders and Sostek 1976, Silvestri et al 2009, Kryger et al 2013).

Table 2 shows summary of SAS diagnostic parameters from PSG, types of physiological 
events encompassing those parameters, sensor modalities for detecting events, and classifica-
tion methods, and algorithms commonly used to recognize SAS event patterns.

2.2. Signal processing, algorithms, and techniques

Once single or multichannel sleep data of sufficient quality has been acquired, subsequent 
analysis is needed to quantify and summarize relevant diagnostic parameters for SAS includ-
ing the apnea–hypopnea index (AHI), respiratory disturbance index (RDI), arousal index, 
sleep architecture, and sleep efficiency. The current gold standard for obtaining these mea-
surements is manual scoring, and typically involves a certified polysomnography technician 
applying visual pattern recognition techniques to the sleep data on a 30 s epoch basis. For 
each epoch, the technician identifies any obstructive, central or mixed apneas, hypopneas, 
respiratory effort related arousals, EEG arousals, oxygen desaturations, arrhythmias, periodic 
leg movements, the relevant sleep stage, among other physiological variables (Benca 2012, 
Berry et al 2012b).

This manual scoring process is time consuming, often requiring 1–2 h per Type-1 sleep 
study. In addition, manual scoring is prone to error and inconsistency. The AASM Inter-Scorer 
Reliability program enables estimation of the average epoch by epoch agreement between an 
individual technician’s scoring to an expertly scored sample polysomnography study. The lat-
est results indicate a 77.1% agreement on OSAs, 52.4% on CSAs, 65.4% on hypopneas, and 
82.6% on arousals (Rosenberg and Van Hout 2013, 2014). A key source of variability comes 
from indirect measurement of respiratory airflow; thermistor on the nose, pressure measure-
ments at the nose, and other common signals are indirect measures of airflow and breathing, 
and render it difficult to objectively detect hypopneas or CSAs. Other factors contributing to 
relatively low inter-rater agreement include physiological variability between patients, data 
quality and noise characteristics, human fatigue, and the task complexity of analyzing hun-
dreds of epochs of multimodal sensor data for dozens of multivariate physiological patterns.

Significant research efforts have focused on exploring computational approaches to sleep 
scoring, with the aim of developing automated systems that can achieve non-inferior, equiva-
lent, or superior performance relative to expert humans (Cabrero-Canosa et al 2004). Multisite 
studies at five academic centers have evaluated the performance of an automated scoring sys-
tem versus computer-assisted manual scoring, as well as the computer-assisted scoring agree-
ment across sleep centers (Kuna et al 2013, Malhotra et al 2013). Large validation studies 
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like these have assisted in the development of commercially available systems for autoscoring 
(Anderer et al, 2005, 2010). Yet the acceptance of these systems remains limited; in 2015, a 
survey of 179 sleep labs reported by ResMed showed only 14% used any form of autoscoring 
or computed assisted scoring as of 2015. As such, the development of broadly accepted and 
utilized computational approaches to scoring remains an open research challenge.

This review section provides an overview of the fundamental algorithmic and signal pro-
cessing techniques employed to automate the detection of apnea related physiological events. 
In particular, we discuss the application of amplitude based analysis, time-frequency and 
wavelet based transformations, nonlinear transformations, autoregressive models, and recent 
machine learning approaches to identify apneas, hypopneas, and sleep stages in single and 
multichannel polysomnography data settings. This discussion is by no means comprehensive, 
and seeks to give readers a sense of the classes of tools at hand. For additional information, we 
refer the reader to a review on computer-assisted diagnosis specific to apnea–hypopnea event 
detection (Alvarez-Estevez and Moret-Bonillo 2015), a comparative review of automated 

Table 2. Summary of SAS diagnostic parameters, the types of physiological events, 
sensor modalities, and commonly used classification methods.

Diagnostic 
parameters

Characteristic 
physiological 
events

Relevant signal and sensor 
modalities

Classification 
methods

Reliable sensor 
modalities

Apnea–hypopnea 
index (AHI), 
respiratory 
disturbance 
index (RDI), 
other respiratory 
parameters

Obstructive 
apneas, 
central 
apneas, mixed 
apneas, 
hypopneas, 
respiratory 
effort-related 
arousals, 
oxygen 
desaturations, 
bradycardia, 
sinus 
tachycardia

Pneumotachometry, nasal 
cannula pressure sensors, 
thermistor, thermocouples, 
polyvinylidene fluoride, 
hotwire anemometers, 
respiratory inductance 
plethysmography (RIP), 
impedance pneumography (IP), 
magnetometer, strain gages, 
end-tidal PCO2, pulse oximetry, 
photoplethysmography, ECG, 
audio (acoustic sensor), IR, 
sonar, video, actigraphy, 
peripheral arterial tonometry

Amplitude 
and adaptive 
thresholding, 
fuzzy networks, 
artificial neural 
networks, 
decision trees, 
ensemble 
models, nearest 
neighbor 
methods, linear 
and kernel 
SVM, deep 
neural networks

Gold standard 
PSG studies 
recommend 
thermal and 
pressure based 
airflow sensors 
used with 2 
effort belts, 
nasal cannula 
pressure 
sensors, End-
tidal PCO2 in a 
hospital setting 
(Collop 2011)

Sleep 
architecture, 
sleep efficiency 
(SE), arousal 
index (ArI), 
sleep latency 
(SL), REM 
latency (RL), 
total sleep time 
(TST), periodic 
leg movements 
(PLMS) index, 
other arousal and 
sleep parameters

Stage wake, 
stage REM, 
stage N1, 
stage N2, 
stage N3, 
arousals, sleep 
spindles, 
K-complexes, 
periodic leg 
movements, 
spikes, sharps, 
vertex wave 
sharps

EEG (F4-M1, C4-M1, O2-M1, 
F3-M2, C3-M2,O3-M2), Chin 
EMG, EOG, ECG, Leg EMG, 
audio, video, actigraphy

Autoregressive 
models, hidden 
Markov models, 
Gaussian 
mixture 
models, linear 
and quadratic 
discriminant 
analysis, 
random forests, 
regression trees, 
deep belief 
networks, deep 
neural networks

Gold standard 
PSG studies 
recommend 
primary EEG 
derivations at 
F4/M1, C4/
M1, O2/M1, 
submental 
EMG, and 
back-up EEG 
derivations at 
F3/M2, C3/
M2, and O1/
M2 (Iber 2007, 
Ruehland et al 
2011)
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sleep staging algorithms (Şen et al 2014), and a review specific to artificial neural network 
applications for sleep scoring (Ronzhina et al 2012).

2.2.1. Signal processing and data representations. A common framework through which we 
can consider the problem of recognizing SAS related patterns in physiological data involves 
two general concepts—data representations and models. Data representations can be defined 
as abstract reformulations of the original raw signal data that aim to exhibit desirable ana-
lytical properties for classification, such as being more discriminative between disease and 
normative classes, better conditioned, lower in dimensionality, sparser, among others. Models 
then operate on these resulting data representations, and estimate or predict the corresponding 
class label for each representation. In the context of automated approaches to sleep scoring, 
each data representation typically represents a single epoch of sleep data, while the applied 
models output which, if any, of the aforementioned apnea related events are found within that 
epoch.

Figure 4 shows the process of obtaining data representations involves applying techniques 
from fields including signal processing, pattern recognition, data mining, feature engineering, 
and machine learning to single and multichannel polysomnography data. The sections below 
discuss some common data representation techniques that have exhibited promising perfor-
mance for respiratory and neural event detection in empirical studies.

2.2.1.1. Time-frequency based transforms. Time-frequency domain transformations are 
among the most popular techniques for producing data representations for apnea and hypop-
nea detection problems, by analyzing the temporal and spectral characteristics and changes 
in relevant respiratory signals. This approach commonly involves computing sufficient sta-
tistics such as mean, variance, skewness, kurtosis, variation and others on the data in the 
frequency or another transform domain, and supplying these summary level statistics to an 
adaptive model for detecting apnea and hypopnea events (Khandoker et al 2009, Kocak et al 
2012). For sleep staging, frequency power spectrum, power ratio, spectral frequency, duration 

Figure 4. SAS diagnostic parameters of interest, the types of physiological events that 
characterize those parameters, clinically useful sensor modalities for observing disease 
relevant biosignals, and classification methods commonly used to recognize SAS event 
patterns.
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ratio, spindle ratio, SWS ratio, relative spectral band energy, harmonic parameters, Itakura 
distance, and interdependency measures have also been effective (Krakovská and Mezeiová 
2011, Liang et al 2012b).

2.2.1.2. Multiresolution and wavelet based transforms. Multiresolution analytical (MRA) 
techniques, like the discrete wavelet transform (DWT), have also demonstrated promising 
performance for sleep apnea event detection (Khandoker et al 2009, Sweeney et al 2013) and 
sleep staging (Garg et al 2011, Fraiwan et al 2012) in both single and multichannel settings. 
These techniques commonly involve an orthonormal decomposition of the signal data into 
some wavelet basis, whereby summary statistics can be computed at multiple levels of resolu-
tion. In the multiscale setting, additional informative parameters like multiscale entropy have 
been incorporated for effective single channel sleep staging (Fraiwan et al 2012). Sleep data 
tend to exhibit greater sparsity in the wavelet domain than the original, so this technique can 
be used to compress the dimensionality of epoch representations in cases where there are few 
epochs for analysis and the modeling system becomes underdetermined.

2.2.1.3. Nonlinear and other transforms. Epoch by epoch data representations have been 
generated using nonlinear and other transformation procedures to classify respiratory and 
neuronal signals with some success. This class of transformations applies mathematical and 
information theoretic processes for producing analytical systems whose changes in outputs 
are not proportionate to changes in input, enabling the modeling of chaotic, unstable, ape-
riodic, and solitionious dynamics. Largest Lyapunov exponent (LLE), detrended fluctuation 
analysis (DFA) and approximate entropy (APEN) have been used to estimate OSA sever-
ity (Kaimakamis et al 2009). Analysis of ECG signals enables the extraction of information 
on both heart rate and the rate of respiratory inspiration and expiration. Cardiorespiratory 
coupling techniques explore the interplay between these derived heart and respiratory rate 
signals by analyzing their covariance structure, a measure of how the correlated variables 
change together. In the single ECG channel setting, nonlinear cardiorespiratory coupling 
dynamics were extracted based on recurrence quantification analysis to identify apnea and 
hypopneas (Karandikar et al 2013). The Choi–Williams distribution, Hilbert–Huang trans-
form, as well as nonlinear spectral techniques including bispectral analysis, nonlinear higher 
order spectra, the scattering transform, and reflection coefficients produced by a lattice fil-
ter representation of a recursive autoregressive process have been used for classifying sleep 
stages with comparable accuracy to human experts (Dagum and Galper 1993, Khandoker 
et  al 2009, Acharya et  al 2010). Some work has applied unsupervised machine learning 
approaches to apnea hypopnea detection, including particle swarm feature optimization paired  
with 1-nearest-neighbor classification methods with robust performance (Chen et al 2012).

While many algorithmic approaches focus on automatically scoring apneic events, another 
well-established method seeks to characterize a whole signal, such as airflow or SpO2, sub-
sequently enabling automated SAHS determination methods that do not rely on events as 
the sole source of information. Nocturnal pulse oximetry is a widely studied single channel 
signal modality proposed as an alternative to PSG as a screening tool for OSA. Several oxi-
metric indexes have been derived from nocturnal blood oxygen saturation (SaO2). Prior work 
has analyzed the performance of nonlinear transformations applied to the SaO2 and airflow 
signals individually to characterize SAHS including the central tendency measure (CTM), 
principal component analysis (PCA), APEN, sample entropy (SEn), kernel entropy (KEn), 
spectral entropy (SE), multiscale entropy (MsE), second- and fourth-order statistical moments 
in the time domain, the Lempel-Ziv complexity (LZC), respiratory rate variability (RRV), and 
other methods (Álvarez et al 2007, Hornero et al 2007, Alvarez et al 2010, Gutiérrez-Tobal 
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et al 2012, 2013, 2015, Marcos et al 2016). Overall, multiclass-classifiers and AHI estimators 
using SpO2 and airflow signals have been analyzed in validation studies showing substantially 
similar performance to more traditional manual and automatic event scoring approaches.

2.2.2. Algorithms and classification models. Models and classifiers take individual feature 
vectors or representations and output either continuous or discrete class labels. For sleep scor-
ing, the data representations are typically vectors that correspond to a single 30 s epoch of 
polysomnography data. These vectors are used as inputs, while class labels for each epoch 
include normal breathing, apnea events, hypopnea events, and the relevant stage of sleep. The 
available classifiers range in complexity from simple models with a small number of static 
parameters such as adaptive thresholds, to architectures composed of hundreds of millions of 
tunable parameters as in the case of deep learning. The key aspect of machine learning classi-
fiers is that their core models can be adaptively parameterized through a training optimization 
procedure that seeks to minimize the prediction error on available data while maximizing the 
generality to unseen data. In this sense, all models discussed here with data-adaptive param-
eters whose performance improves with experience could be understood in a machine learning 
context. This section of the review discusses specific algorithmic approaches for the classifica-
tion of SAS patterns in single or multichannel PSG data.

2.2.2.1. Amplitude and adaptive thresholding. Some studies proposed an amplitude-based 
thresholding algorithm while their method included nasal airflow (NAF), forced oscillation 
technique (FOT), and/or abdominal breathing signals (Reisch et  al 2000). In these cases, 
numeric thresholds were predefined or adaptively defined with programmatic methods to 
classify the presence or absence of SAHS related pathologies based on changes in signal 
amplitude, frequency powers, statistical characteristics, or other derived measures. There have 
been many studies showing the amplitude-based thresholding of different respiratory signals 
for online detection of the apneic events. Studies show that online automated apneic detec-
tion would be efficient when incorporating two or more different respiratory derivations. Taha 
et al (1997) presented detection of hypopnea and cessation in breathing by analyzing the oxy-
hemoglobin saturation level combined with RIP. Further classification of apnea into central, 
mixed, or obstructive was achieved based on the presence of abdominal breathing effort. The 
algorithm was able to detect 93.1% of the manually detected events.

Other studies investigated amplitude-based and breath-by-breath ways for offline detection 
by using a FOT and nasal mask pressure signal time series (Steltner et al 2002). The method 
is based on pressure amplitude, FOT amplitude and baseline extraction. Then, these features 
were compared with defined thresholds which lead to detection and classification of hypopneas 
as well as obstructive, mixed, and central apneas (Steltner et al 2002). In addition, adaptive 
thresholding has been used with Teager energy operators (TEO) and other R-wave detection 
methods to predict OSA and CSA events from single channel ECG (Karandikar et al 2013).

2.2.2.2. Linear and kernel methods. Linear and kernel methods have been utilized for pat-
tern recognition for SAS applications due to their simple implementation, theoretical sound-
ness, and broad extendibility. These models can be described succinctly as a weighted linear 
combination of input parameters whose weights are adaptively selected based on a learning 
optimization process when applied to training or development data. Kernel methods extend 
the previously defined linear models by applying the kernel trick, a method for introducing 
nonlinearities such as polynomial or Gaussian radial basis functions to the input data for learn-
ing in a computationally feasible and efficient way. First and second order autoregressive tech-
niques have used model sleep phasic transitions as autoregressive processes. Autoregressive 
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models such as these have been employed to utilize single channel EEG data for the estima-
tion of epoch-by-epoch sleep stages (Ning and Bronzino 1990) (Liang et al 2012b). Addi-
tionally, classifiers based on quadratic (QDA), linear (LDA) discriminant analysis, K-nearest 
neighbors (KNN) and logistic regression (LR) were evaluated on spectral and nonlinear input 
features from single channel SpO2. In this study, the classifier based on LDA with spectral fea-
tures provided the best diagnostic ability with an accuracy of 87.61% (91.05% sensitivity and 
82.61% specificity) and an area under the ROC curve (AROC) of 0.925 (Marcos et al 2009).

Another popular machine learning method is support vector machine (SVM). Al-Angari 
and Sahakian (2012) and Vapnik (2013) used SVM classifiers with linear and second-order 
polynomial kernels to evaluate the classification of normal and apneic events using the res-
piratory signals, thoracic and abdominal, combined with ECG and oxygen saturation sig-
nals. The best performance of their implemented algorithm was achieved when features of 
available respiratory and oxygen saturation data sets were used. In the subject experiment, 
the polynomial kernel had distinct improvement in the oxygen saturation accuracy as the 
highest accuracy of 95% was achieved by both the oxygen saturation (Sensitivity: 100%, 
Specificity: 90.2%) and combined-features (Sensitivity: 91.8%, Specificity: 98.0%). Stepwise 
feature selection (FSFS), genetic algorithms (GAs), Fisher’s linear discriminant (FLD), logis-
tic regression (LR) and SVMs were applied to overnight SpO2 in the classification of OSA 
diagnosis, GAs  +  SVM also achieved high generalization with 84.2% accuracy on the valida-
tion set and 84.5% accuracy in the test set (Alvarez et al 2013). However, uses of long data 
sets need long training time which is considered a disadvantage of the SVM. Theoretical and 
empirically-driven development of new kernel methods which are well suited to the recogni-
tion of SAS related events is an open area of ongoing research.

2.2.2.3. Tree based models. Tree based models have grown more popular in SAS event 
detection literature for their numerous desirable properties including robustness to noisy 
signal data, built in feature selection mechanisms, and human interpretability. Tree based 
methods are similar to linear classification models from a computational learning theory 
standpoint, except in that the model itself represents an adaptive histogram based classifier 
instead of a separating linear function or hyperplane. Random forest models incorporate 
bootstrap resampling statistics to improve the generalizability of single tree classifiers by 
utilizing an ensemble hypothesis learning approach. Prior work includes using C4.5 deci-
sion trees to estimate OSA severity from Nasal cannula flow, thoracic belt movement and 
blood oxygen saturation (Kaimakamis et al 2009). In another study, decision trees were 
evaluated against the performance of neural network, auto neural, regression to identify 
apnea and hypopnea events from single channel ECG (Karandikar et al 2013). Moreover, 
regression trees or random forests with single channel EEG were used to perform sleep 
staging (Fraiwan et al 2009, Chapotot and Becq 2010). In the multichannel setting, hier-
archical decision trees have been used to invoke rule-based learning methods to perform 
reliable sleep staging (Liang et al 2012b). Linear discriminant analysis (LDA) and clas-
sification and regression trees (CART) models sequentially obtained through AdaBoost 
(AB) showed high diagnostic performance when determining SAHS and its severity with 
performance testing results including 86.5% (5 events h−1), 86.5% (10 events h−1), 81.0% 
(15 events h−1), and 83.3% (30 events h−1) for AHI estimation on an independent test set 
(Gutiérrez-Tobal et al 2016).

2.2.2.4. Artificial neural networks. The use of an artificial neural network (ANN) approach is 
known as a predictive tool for sleep apnea. Artificial neural networks apply the backpropaga-
tion training algorithm, typically based on stochastic gradient decent optimization and softmax 
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classification methods, to sequentially transfer nonlinear error gradients through a predefined 
directed acyclic graphical network based accrued losses on training data. The validity of neural 
networks in sleep apnea has been investigated since the late 1990s (El-Solh et al 1999). Several 
other papers since then have reported the use of ANN and variants, including two-stage feedfor-
ward networks and neural-fuzzy networks (Flexer et al 2005, Khandoker et al 2009). Studies have 
demonstrated the diagnostic performance of OSA prediction tools based on an ANN by using the 
PSG signal as reference (Teferra et al 2014). Multiple linear regression (MLR) and multilayer 
perceptron (MLP) neural networks were evaluated comparatively to predict the apnea–hypopnea 
index based on a dataset of 240 SaO2 signals. In this experiment, the MLP algorithm achieved the 
highest performance with an intraclass correlation coefficient (ICC) of 0.91 (Marcos et al 2012).

Várady et al (2002) presented neural network apnea and hypopnea online detection which 
is based on the analysis of NAF and/or RIP. This method can serve as a basis of an on-line 
respiration monitoring system. From the respiratory signal the instantaneous respiration ampl-
itude and interval signals were derived and four feedforward ANNs were investigated. In this 
article, the signal processing techniques (both time- and frequency-based) were used to extract 
the feature and quantify respiratory events over each channel. Then, extracted features were 
grouped into reasoning units. Finally, the reasoning units were evaluated by a fuzzy inference 
system (FIS) to characterize them as each of three breathing types: apnea, hypopnea, and  
normal (Álvarez-Estévez and Moret-Bonillo 2009).

2.2.2.5. Fuzzy logic systems and networks. Zadeh (1965) devised fuzzy logic to mimic deci-
sion making process in computing. Fuzzy logic systems are similar to probabilistic estimators 
in that they both provide scaled mathematical models (from 0 to 1) that quantify important 
aspects of an algorithmic conclusion; fuzzy logic characterizes the degree of truth and vague-
ness in measurement scales to express partial or inexact knowledge as a continuous variable 
versus the probabilistic chance uncertainty as a modeling of observer ignorance to latent fac-
tors. The use of fuzzy logic in medical research is now found in many disciplines, such as 
sleep-disordered breathing. Nazeran et al (2001) and Al-Ashmouny et al (2006) proposed a 
fuzzy logic-based algorithm to emulate human level decision-making. Their fuzzy inference 
algorithm used three input variables derived on a breath-by-breath basis from respiratory air-
flow measurements in order to produce a ‘severity index’ (SI) quantifying the degree of SAS. 
Nazeran et al (2001) demonstrated the usage of fuzzy logic to process the normalized area and 
the standard deviation of consecutive 3 s intervals of baseline adjusted and rectified airflow 
signal to detect apnea and hypopnea in OSA patient data with an overall correct detection rate 
of 83% across all patients. Overall, FIS has been shown to improve the decision making pro-
cess in the epidemiology of sleep disorders. There have been many short term studies showing 
usage of other classifier algorithms which use multichannel signals for sleep apnea detection 
which are discussed in the next section. Morillo and Gross (2013) proposed another multivari-
ate system for SAHS detection from the analysis of overnight SpO2 that included sequential 
forward feature selection and a probabilistic neural network to achieve 92.4% sensitivity and 
95.9% specificity. Methods such as these demonstrate potential to be used as an alternative or 
supplementary method in a domiciliary approach to early diagnosis of SAHS.

2.2.2.6. Deep learning. Deep learning is an active subfield of machine learning whereby the 
feature extraction and selection process is incorporated directly in the feature learning pro-
cess. In the context of SAS event detection, deep learning algorithms can be applied directly 
to raw signal data on an epoch by epoch basis, and adaptively derived data representations that 
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optim ize the statistical differences between non-apnea and apnea epochs. In the signal channel 
ECG setting, Kaguara et al (2015) employed stacked autoencoders with deep multilayer per-
ceptron classifiers to robustly recognize apnea events, even with the computational and energy 
constraints of mobile computing. Längkvist et al (2012) trained deep belief nets to perform 
sleep staging on multichannel neural signals with high accuracy. In this approach, hidden 
Markov models (HMM) were used as a postprocessing step to accurately capture the trans-
itions between sleep stages probabilistically. Zhang et al (2015) applied sparse deep belief 
networks to raw multichannel EEG data to provide staging of sleep phases. In another series 
of studies researchers showed the highly successful application of parallel multi-state HMMs 
with generative models, such as GMMs or discriminative models such as deep neural net-
works (DNNs), for describing the posterior probability of HMM states in real time detection 
of a wide range of acoustic events under high noise conditions (Najafian and Hansen 2016). 
These approaches are appealing, because they enable practitioners to avoid the expertise and 
time intensive process of iterative, manual feature extraction.

2.2.2.7. Low dimensionality and total variability based approaches. Significant training data-
set sample sizes are a necessary prerequisite for training an accurate Gaussian mixture model 
(GMM) or hybrid deep neural network-hidden Markov model (DNN-HMM) based classifi-
cation system. These algorithms enable data to be fitted using parametric probabilistic dis-
tributions that statistically model data as an expression of transition dynamics of the data a 
Baysian network through unobserved states following a Markov process. Senoussaoui et al 
(2010) have shown that similar accuracies can be achieved using i-vector based approaches in 
which the acoustic features are mapped to a lower dimensional total variability space where 
the necessary information for a target classification task can be found. I-vectors provide a low-
dimensional representation of feature vectors that can be successfully used for classification 
and recognition tasks. Presenting the acoustic events in the low-dimensional total variability 
space, ensures that for representing a new acoustic feature only a small number of parameters 
need to be estimated. To achieve this total variability space needs to encapsulate as much as 
possible of the super vectors in its restricted number of dimensions. Najafian et al (2016) 
proposed and successfully used this approach for acoustic event and speaker’s acoustic char-
acteristic classification. It is interesting to measure their success in sleep apnea detection tasks 
using corresponding acoustic features where the amount of data is limited and applying deep 
learning based approaches is not possible.

2.2.2.8. Discussion of signal processing and algorithm techniques. To sum up, a rich library 
of methods has been developed and validated in prior work for the automated detection of 
obstructive and central apneas, hypopneas, sleep stages, among other pathophysiological pat-
terns in polysomnography signals. Table 3 shows a summary of data representations, classi-
fication methods, and results from reviewed studies. Contributions have included a collection 
of signal processing and representational learning methods that seek to expose useful structure 
in PSG data by exploiting a variety of time, frequency, multiresolution, and other nonlinear 
transformation techniques. Paired with detection algorithms and adaptive classification mod-
els, these elements are combined in modern diagnostic hardware and software systems to 
enable time savings and benefits to reproducibility in the clinical setting.

A combination of statistical, information theoretic, signal processing, machine learning, 
techniques are used to reduce and summarize different representations of multivariate signal 
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data. Common statistical measures alone do not always elucidate discriminative and underly-
ing structures of interest in data, and can be supplemented with techniques including entropy, 
other complexity measures, factorizations of the original data, among other feature extrac-
tion methods to achieve robust and accurate classification performance (Garg et  al 2011). 
Exploratory data analysis of data in different transform domains may be useful and important 
to the development of new methods. Domain expertise and computational methods may be 
applied to produce novel features and phenotypes that have an interpretable physiological 
basis, and may be investigated and validated to improve the understanding of the biological 
basis for sleep apnea (Fernandez et al 2017).

Examples from prior work of simple classification modules have similarly demonstrated 
good performance, such as envelop tracking of single channel airflow signals with adaptive 
thresholding for 93.1% apnea detection accuracy (Ciolek et al 2014). While humans seek to 
interpret scoring rules such as the AASM or R&K guidelines quantitatively, the ultimate out-
put of the scoring process is based on visual perceptual reasoning and is therefore qualitative 
in nature and prone to disagreement unrelated to chance. With that, accurate performance has 
been validated with machine learning methods, such as kernel SVM and random forests, that 
may adaptively incorporate a degree of high-dimensional data that may be suited to modeling 
and emulating the human visual pattern recognition process with greater generalizability to 
noise characteristics, physiologic variability, and expected human disagreement that are inher-
ent to manual analysis of sleep signals (Fraiwan et al 2009, Al-Angari and Sahakian 2012). 
Methods like these work well for a broad class of general applications, and may be tested dur-
ing exploratory analysis side-by-side with simple models, like linear regression, to provide a 
sense of the benefit of more complex, high-dimensional, or adaptive models.

Other research areas show promising potential to advance the field of computational and 
algorithmic approaches to SAS detection and diagnosis. First, deep learning techniques have 
been identified as an area of significant potential to increase the efficiency and productiv-
ity of the engineering design process, as well as having shown very promising performance 
and accuracy in preliminary sleep applications (Längkvist et al 2012). However, a significant 
disadvantage of deep learning is the lack of interpretability in both the features and models, 
which may consist of nonlinear interactions between hundreds of thousands or hundreds of 
millions of tunable parameters. Physiological models that better exploit and model the causal 
structure underling PSG data may inform high performance simple models that are highly 
interpretable. However, physiological systems are highly dynamic and complex, and therefore 
may be hypothesized to be well modeled by systems with hundreds of thousands or millions 
of parameters than to be characterized by simple models such as linear or histogram based 
learning algorithms. Theoretical advances in the statistical basis for deep learning, nonconvex 
optimization, and physiological modeling together may allow for a rich class of models that 
are both highly performant and accurate, as well as and highly interpretable from a clinical 
and physiological perspective. Moreover, there are several research efforts to validate new 
and existing methods for automatic SAS event detection. A significant critique of existing 
validation studies lies in the size of the dataset analyzed, and therefore the statistical power 
and reproducibility of the described performance. Larger scale validation studies, involving 
multiple sites, device modalities, and thousands of normative and SAS affected patients would 
greatly assist in directing the field with generalizable algorithms and computational methods 
that are safe and effective in clinical practice for a broad class of patients and sleep disorders 
(Fernandez et al 2016).
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Table 3. Summary of data representations, classification methods, and results from 
empirical studies of the performance of automated approaches to scoring and SAS event 
recognition.

Prediction 
type

Signal 
modalities

Data 
representations

Classification 
methods Main results References

Apnea events ECG and 
accelerometer

DWT based 
features

Decision tree Classification F1 
score 91.4%

Sweeney et al 
(2013)

Apnea events ECG Raw signals Deep neural network 
with stacked 
autoencoders

90% detection 
accuracy

Kaguara et al 
(2015)

Apnea events ECG Statistical time-
frequency features

R-wave detection 
methods including 
adaptive  
thresholding and 
Teager energy 
operators (TEO)

Significant 
differences in 
normal, OSA, and 
CSA HRV spectral 
ratios

Kocak et al 
(2012)

Apnea, 
hypopnea 
events

ECG Dynamic 
coupling based 
on recurrence 
quantification

Neural network, 
autoneural, 
regression, decision 
tree and ensemble 
models

88.06% detection 
accuracy

Karandikar 
et al (2013)

Apnea, 
hypopnea 
events

ECG Statistical DTW 
based features

Two-staged 
feedforward neural 
network

Detection accuracy 
94.84% for OSA 
and 76.82% 
Hypopnea

Khandoker 
et al (2009)

Apnea, 
hypopnea 
events

RIP, Oxygen 
Saturation

Raw signals Amplitude 
thresholding and 
AASM rules

93.1% detection 
accuracy

Taha et al 
(1997)

Apnea, 
hypopnea 
events

Single-channel 
airflow record

Square-law, 
Hilbert-based, and 
modified envelope 
detectors

Adaptive 
thresholding

82%–95% Cohen’s 
coefficient of 
agreement

Ciolek et al 
(2014)

Apnea 
severity

Nasal cannula 
flow, thoracic 
belt movement, 
SpO2

Largest Lyapunov 
exponent, 
detrended 
fluctuation 
analysis, and 
approximate 
entropy

C4.5 decision Trees 74.2% accuracy 
dividing patients 
into severity 
groups

Kaimakamis 
et al (2009)

Sleep stages Single EEG 
channel

Autoregressive 
modeling and 
multiscale entropy

Linear Discriminant 
Analysis

88.1% sensitivity, 
Kappa coefficient 
0.81

Liang et al 
(2012b)

Sleep stages Single EEG 
channel

Choi–Williams 
distribution, CWT, 
and Hilbert–
Huang Transform

Random Forest 83% detection 
agreement, Kappa 
coefficient 0.76

Fraiwan et al 
(2009)

(Continued)

Physiol. Meas. 38 (2017) R204



R228

Topical Review

Sleep stages Single EEG 
channel

Reflection 
coefficients

Gaussian observation 
hidden Markov 
Model

80% approximate 
detection accuracy

Flexer et al 
(2005)

Sleep stages Savitzky-Golay 
filtered Single 
EEG channel

DWT Based 
Features

Regression Trees 75% detection 
accuracy

Fraiwan et al 
(2009, 2012)

Sleep stages EEG Relative spectral 
band energy, 
harmonic 
parameters, and 
Itakura distance

Autoregressive 
modeling and neuro-
fuzzy classification

— Estrada et al 
(2004)

Sleep stages EEG Bispectral analysis 
techniques

Second-order AR 
model

96% agreement 
SWS, 95% 
Agreement REM

Ning and 
Bronzino 
(1990)

Sleep stages EEG Nonlinear higher 
order spectra

Gaussian mixture 
model

88.7% detection 
accuracy

Acharya 
(2010)

Sleep stages Multichannel 
EEG

Sparse and 
collaborative 
representations 
of classical time-
frequency features

Extreme learning 
machine

81.1% detection 
accuracy

Shi et al 
(2015)

Sleep stages Multichannel 
EEG

Raw signals Sparse deep belief 
net

91.31% detection 
accuracy

Zhang et al 
(2015)

Sleep stages EOG and EEG DWT with 
Relative Wavelet 
Energy

ANFIS based 
neurofuzzy classifier

97.4% detection 
accuracy

Garg et al 
(2011)

Sleep stages EEG (C4  −  A1), 
chin EMG

Shannon entropy, 
sample entropy

Artificial neural 
network

82% detection 
accuracy for deep 
and paradoxical 
sleep

Chapotot and 
Becq (2010)

Sleep Stages EOG, EMG, 
EEG

Frequency power 
spectrum, power 
ratio, spectral 
frequency, 
duration ratio, 
spindle ratio, 
SWS ratio

Rule based methods, 
hierarchical decision 
tree

86.68% detection 
agreement, Kappa 
coefficient 0.79

Liang et al 
(2012a, 
2012b)

Sleep stages EEG, EMG, 
EOG

Raw Signals Deep belief networks 
with hidden Markov 
model

— Längkvist 
et al (2012)

Sleep stages EEG, EMG, 
EOG, and ECG

Linear spectral 
measures, 
interdependency 
measures, and 
nonlinear measures 
of complexity, 
entropy

Quadratic 
discriminant analysis

74% detection 
accuracy

Krakovská 
and Mezeiová 
(2011)

Table 3. (Continued )

Prediction 
type

Signal 
modalities

Data 
representations

Classification 
methods Main results References
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3. Current treatment modalities

Due to the complex pathophysiology of sleep apnea, several nonsurgical and nonpharmaco-
logical treatments have emerged that have proven quite effective. However, an effective and 
comfortable treatment option for sleep apnea has yet to be developed. This section discusses 
the assistive and therapeutic oral devices for sleep apneas.

3.1. Assistive devices

A positive airway pressure (PAP) device usually consists of three major parts: a positive pres-
sure generator; a nasal or oral interface such as a mask; and a tube connecting the two parts. 
The pressure generator is a fan or turbine which is used to apply external pressure to the 
patient’s upper airway. PAP devices are normally divided into four different types which are 
summarized in table 5 and discussed shortly along with their major advantages, features and 
target patients (Levitt 2001, Randerath et  al 2001, Ayas et  al 2004, Hukins 2004, Essouri 
et al 2005, Ho and Wong 2006, Philippe et al 2006). Additionally, another recent review dis-
cusses engineering advances in the treatment of OSAHS related to optimization of the positive 
pressure delivered to the patient, methods and systems for continuous self-adjusting pressure 
during inspiration (IPAP) and expiration phases, and techniques for electrical stimulation of 
nerves and muscles responsible for the airway patency (Álvarez et al 2015).

3.1.1. Types of PAP device. The first developed PAP device, CPAP, delivers constant pressure 
for the whole night, which requires manual titration in the laboratory before use. CPAP is the 
basic type of PAP machine, invented by Colin Sullivan in 1981 (Sullivan et al 1981), and has 
been widely accepted as the gold standard for treatment of OSA (Kribbs et al 1993). CPAP 
is effective at eliminating apneas and hypopneas (Weaver et al 2012, Becker et al 2003). The 
major problem for CPAP is that over 40% of the patients with OSA are noncompliant with the 
treatment (Kribbs et al 1993, Weaver and Grunstein 2008). Several components were added 
to the CPAP device to improve the adherence such as chin straps, mask re-fitting, and humidi-
fication for the tube (Engleman and Wild 2003). While effective at treating OSA, CPAP may 
not suppress CSA, particularly in patients with heart failure (Arzt et al 2007), causing search 
for alternative treatment options.

The second developed PAP device, bi-level positive airway pressure (BPAP) delivers a 
higher IPAP and a lower pressure during expiration (EPAP), which decreases the effort for 
the patients to breathe. BPAP is the pressure-controlled ventilation that allows spontaneous 
breathing at any time. A flow sensor detects the timing to change from EPAP to IPAP. IPAP 
and EPAP usually range from 4 to 30 cmH2O (Berry et al 2012b). Other parameters, such 
as inspiration time, pressure rise time, and flow trigger sensitivity are set by the technician 
(Zdrojkowski and Estes 2000).

The third PAP device, auto-titrating positive airway pressure (APAP) provides adjustable 
pressure to maintain airway patency, and gives appropriate response to the respiratory events. 
Several studies have been hypothesized that adjustable lower pressure with APAP could 
increase acceptance and adherence with chronic positive pressure treatment (Teschler and 
Berthon-Jones 1998, Berthon-Jones et al 1996, Berry et al 2002, Berry and Sriram 2014). The 
data in the literature mostly shows that CPAP and APAP have similar sleep quality. Since the 
treatment effects are similar between APAP and CPAP, the therapy of choice may depend on 
other factors such as patient preference, specific reasons for non-compliance and cost (Ip et al 
2012). APAP and CPAP devices can adjust and compensate the pressure when leaks occur. 
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However, due to excessive increases in pressure in the case of mask/tube leakage, potential 
risk may arise, and some patients may be sensitive to the pressure changes and thus feel less 
comfortable with APAP (Hussain et al 2004, Berry and Sriram 2014).

The final PAP device, adaptive servo ventilation (ASV) provides patients steady, min-
ute ventilation based on the measurement of patient breaths. Although initially used in CSA 
patients (Hussain et al 2004), a 2015 study SERVE-HF involving 1325 patients showed that 
while ASV was efficacious in treating CSA, it had no significant effect on a broad spectrum 
of functional measures including quality-of-life measures, 6 min walk distance, or unplanned 
hospitalization for worsening heart failure. In contrast to smaller studies and meta-analysis, a 
significant increase in both cardiovascular mortality and all-cause mortality was observed in 
the ASV group. A first possible explanation for this trial failure is that CSA is a compensatory 
mechanism for heart failure. The second hypothesis is that PAP device may impair the cardiac 
function for some patients (Cowie et  al 2015). While theoretically feasible, these hypoth-
eses have no experimental basis, and based on the many adverse effects of CSA on CHF  
pathophysiology, further research is needed to understand why the SERVE-HF study failed.

3.1.2. Current PAP technology. In addition to the types of the PAP devices, this section dis-
cusses current continuous technological advances that aim to improve the patient’s comfort, 
adherence, and clinical benefits which could be categorized as respiration phase detection, 
ventilation estimation, CSA distinguishing, humidifiers, expiratory pressure relief (EPR), 
ramp, and automatic start and finish.

Determining the respiration phase is essential for auto PAP devices to apply future EPR 
and inspiratory flow limitation. ResMed’s devices employ fuzzy logic to separate the whole 
respiration cycle into nine different phases described in table 4, which is based on the respira-
tion flow rate direction and the volume of flow (Berthon-Jones 2014). Respironics’s devices 
divide the respiration cycle into fixed time segments (64 ms). To estimate the total duration of 
the respiration cycle, Respironics records and analyzes the history inspiration time and expira-
tion time data (Hill 2004).

To quantify a patient’s breath quality, different companies employ different algorithms to 
estimate ventilation. A weighted peak flow (WPF) method which averages the WPF over a 
current period of time (Matthews et al 2007, 2012) has a good noise rejection to estimate the 
ventilation. ResMed measures long term average ventilation (for example, the instantaneous 
ventilation is averaged within a 100 s interval by a low pass filter). The target ventilation is 
taken as 95% of the long term average ventilation (Berthon-Jones 2003).

Airway patency detection could distinguish CSA from OSA. Two methods are used to 
detect airway patency: cardiogenic oscillation testing (Morrell et  al 1995) and device- 

Table 4. ResMed’s fuzzy logic for phase determination.

Flow Rate of change Fuzzy phase

Zero Increasing Start inspiration
Small positive Increasing slowly Early inspiration
Large positive Steady Peak inspiration
Small positive Decreasing slowly Late inspiration
Zero Decreasing fast Start expiration
Small negative Decreasing slowly Early expiration
Large negative Steady Peak expiration
Small negative Increasing slowly Late expiration
Zero Steady Expiratory phase
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generated pressure oscillation testing (Berthon-Jones 2010). The first method tries to detect 
the cardiogenic flow, which is the airflow induced in the lungs. It is related to the proximity 
of the lungs and the heart during sleep. Based on analysis of a large number of clinical cases, 
some researchers concluded that no cardiogenic oscillation was shown in OSA thus it could 
be a good indicator of CSA (Ayappa et al 1999, Martin and Oates 2014). Cardiogenic oscil-
lations in the airflow have been observed during some central apneas, but there is controversy 
over whether they correlate with airway patency (Morrell et al 1995). The presence of cardio-
genic oscillations on the current CPAP flow signal is a specific indicator of central apnea and 
may have a role in self-titrating CPAP algorithms. Some results from the trials are promising, 
but larger studies are needed to determine the accurate correlation between airway patency 
and cardiogenic oscillations (Ayappa et al 1999). The second method, applies an oscillatory 
pressure waveform to a patient’s airway. This waveform induces an airflow signal. Figure 5 
shows that patients with OSA (airway obstructed) have lower mid-inspiratory flow than CSA 
patients. This indicator, compared with the pre-set threshold, helps the device to distinguish 
CSA from OSA (Berthon-Jones 2010).

Patients without airway obstructed (CSA patients or normal people) have higher  
mid-inspiratory flow.

Several methods have been developed to increase patient comfort on PAP. Humidifiers 
increase the humidity of inhaled air. They most often are heated, and consist of a water cham-
ber and a heating plate. To get desirable humidification of air, temperature sensors at the heat-
ing plate or humidification at the tube are necessary to control the production of water vapor. 
Higher humidification of inhaled air helps to reduce nasal irritation and congestion (Massie 
et al 1999). If bedroom temperature is much cooler than the heating temperature, water may 
condense in the tube or mask, which is called ‘rainout’. Insulation of the PAP hose can prevent 

Figure 5. The high airway resistance of OSA patients causes the mid-inspiratory flow 
limitation.
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condensation. Also, a heated hose could also benefit the user’s comfort, which could increase 
humidification and eliminate ‘rainout’.

To aid patients’ exhalation against CPAP, the EPR feature was introduced. With EPR, 
when the patient exhales, the flow generator device detects the beginning of exhalation, and 
then adjusts the motor speed to drop treatment pressure, thus reducing the breathing effort. 
Generally, EPR is set from 0 to 3 cmH2O and should not drop below 4 cmH2O. Manufacturers 
have different names for exhalation relief, but they mostly work the same way. ResMed uses 
EPR for pressure relief. Respironics calls their pressure relief C-Flex, A-Flex, or C-Flex+. 
Zhu et al (2016) reported the effect of the pressure-relief feature on fixed CPAP and APAP 
treatment efficacy with a respiratory bench model. They found out pressure-relief features 
may attenuate CPAP efficacy if not adjusted and calibrated at the beginning of the treatment. 
On the other hand, the pressure-relief feature may overstate delivered pressures in APAP.

The ramp feature reduces the uncomfortable feeling of sudden air pressure increase. It 
works by gradually increasing pressure over a defined time range. Commonly this time is 
around 15–20 min. ResMed’s AutoRamp fixes the starting pressure and keeps tracking the 
state of the patients’ sleep. When patients have fallen asleep, the pressure increases gradually 
until it reaches the preset pressure. It determines the state of sleep by detecting the breath sta-
bility or the occurrence of sleep events. Respironics smart ramp increases the speed of ramp if 
hypopneas or obstructive apneas are detected (Ogden 1997).

Some PAP devices automatically start working when the machine senses airflow from 
breathing, which indicates that the patient is wearing the mask. If the machine senses very 
high airflow for a certain period of time (e.g. 1.5 s) this indicates the machine is working incor-
rectly and will automatically turn off.

Other new technology to mention is SensAwake CPAP modality (reducing pressure on awak-
enings) which works in conjunction with the Auto CPAP algorithm. SensAwake uses flow to 
continuously monitor patients’ breathing patterns. It senses the change from breathing patterns 
associated with sleep to those associated with awake states. Once it detects a transition from 
sleep to awake it promptly reduces that pressure delivered to the patient (Dungan et al 2011).

Table 5 summarizes the benefits and challenges of PAP modalities. In summary, PAP 
devices are extremely effective when used correctly; however, their major challenge remains 
the patients’ intolerance and nonadherence. Several studies have looked into improving adher-
ence through various forms of additional communication and monitoring systems. Fox et al 
(2012) found that sending data every night to a web-based database can improve PAP adher-
ence rates. By sending data such as air leaks, applied pressures, and objective adherence, 
coordinators could reach out to patients to help when necessary. However, other forms of com-
munication were not as successful (Munafo et al 2016). In addition, the use of psychological 
and behavioral therapies have been shown to have significant effect on CPAP compliance 
rates. This suggests that possible improvements to increase CPAP compliance rates should 
consider the psychological aspect of CPAP as well (Somiah et al 2012).

3.2. Therapeutic oral devices

3.2.1. Oral appliances. OAs or intraoral devices (ODs) which aim to treat OSA by physically 
altering the mandible, tongue, or soft palate during sleep to prevent the collapse of upper air-
way muscles that is characteristic of OSA (Hoffstein 2007). ODs are growing in popularity, as 
they are found to be more comfortable than CPAP and have higher adherence rates. However, 
ODs tend to be a secondary form of treatment for OSA to CPAP as CPAP has a higher effi-
cacy; ODs are recommended when a patient becomes noncompliant to CPAP (Kushida et al 
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2006). Yet, there is no predictive effectiveness ability for ODs since they have been shown to 
either help, hinder, or not alter sleep apnea in patients.

There are three types of ODs: soft palate lifters (SPLs), tongue retaining devices (TRDs), 
and mandibular advancement appliances (MAAs or OA). MAAs are by far the most used 
ODs today to combat OSA. MAAs operates by holding the mandible in an anterior position 
to physically open up the airway. When the mandible is kept anteriorly to its normal position, 
the MAA prevents the mandible from receding into the oropharynx and blocking the airway. 
TRDs hold the tongue forward in the mouth to prevent it from receding into the airway, while 
SPLs hold the soft palate in place to prevent collapsing in the airway. With the main airway 
kept open during sleep, OAs prevent apneic episodes (Hoffstein 2007).

Table 5. Summary of benefits and challenges of PAP modalities.

Types 
of PAP 
device Benefits Challenges Target Features Typical models

CPAP Less expensive, 
CPAP Fixed 
pressure setting 
does not require 
monitoring

Relative high 
pressure, less 
patient comfort, 
low compliance

OSA patients Fixed 
pressure 
by manual 
titration

AirSense 
10 CPAP, 
System One 
CPAP devices 
ICON™  +  Novo, 
IntelliPAP®

BPAP Significant and 
comparable 
decrease in 
respiratory effort 
(Ho and Wong 
2006, Levitt 2001)

Ventilation was 
associated with 
patient-machine 
asynchrony; does 
not offer any 
significant clinical 
benefits over 
CPAP

OSA patients 
nonresponsive 
or nontolerant 
of CPAP

Bi-level 
pressure 
by manual 
titration

System One   
bi-level devices, 
IntelliPAP 
Bilevel S®

APAP Improved sleep 
architecture, 
reduced treatment 
pressure, low 
pressure leak, 
less side effects 
(Randerath et al 
2001, Ayas et al 
2004, Hukins 2004)

Costly; it has 
no better ability 
to eliminate 
respiratory events 
or to improve 
subjective 
sleepiness

OSA patients 
and home 
testing patients

Adjustable 
pressure

Airsense 10 
AutoSet,System 
One auto devices, 
ICON™  +  Auto, 
IntelliPAP

ASV Greater benefit for 
CSA-CSR patients 
for improved 
respiratory 
disturbances, 
oxygen 
desaturations, and 
arousals (Essouri 
et al 2005, Philippe 
et al 2006)

Costly, no 
significant effect 
on quality-of-
life measures, 
observed 
significant increase 
in cardiovascular 
mortality (Cowie 
et al 2015)

OSA and 
respiratory 
insufficiency 
patients with 
central apnea, 
periodic 
breathing such 
as Cheyne-
Stokes 
respiration 
(CSR), or 
complex apnea

Pressure 
support

AutoAdjust®
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3.2.2. Types of oral devices.
3.2.2.1. Mandibular advancement appliances (MAA).  MAAs have many different designs 
but are fairly consistent in their effectiveness. MAAs are fixed in the mouth by attaching them 
to one or two dental arches. They can be molded using dental impressions obtained at the 
dentist’s office or use thermoplastics that can be molded at the clinic. Depending on the MAA, 
the mouth can be left opened during sleep while other designs keep it closed. Tubes and holes 
can be used to allow for pressure relief or oral breathing. Some MAAs combine with posterior 
additions to retain the tongue or hold up the soft palate. All MAAs rotate the mandible down-
wards and protrude the mandible into an anterior position to create an increase in the upper 
oropharyngeal airway (Schmidt-Nowara et al 1995).

Material choice and construction can vary across MAAs. They may be made from a custom 
molding using plaster casts (Marklund et al 2004) or wax interocclusal records. More recently, 
there have been MAAs that can be customized by using a thermoplastic, removing the need for 
time-intensive molds to be made. Possible material choices include soft elastomers (Marklund 
et al 2004), acrylic (Mehta et al 2001), and soft polyethylene (Rose et al 2002) among others. 
MAAs may be fixed in the oral cavity by hugging the dental arches (Mehta et al 2001) or by 
being molded to the teeth (Rose et al 2002). Keeping the lower mandible in the proper position 
has been achieved by using screws (Mehta et al 2001), plastic flanges for biting, and U-shaped 
springs (Rose et al 2002).

The major concern with using MAAs is determining how far protruded the mandible needs 
to be, to reduce the AHI to an acceptable level while preventing temporo-mandibular joint 
pain. Previously, to determine the correct mandible placement, the MAA was set as far for-
ward as tolerable by the patient and then a polysomnography was performed to determine the 
effectiveness, and repeated until the minimal protrusion was found. Titration protocols have 
been developed to determine the correct protrusion level, but no common consensus has yet 
been reached. With current titration protocols call for adjustments to be made over weeks in 
the clinic or remotely at the patient’s home instead of having multiple arousals during the 
night in a sleep lab, obtaining the proper jaw placement has become more effective. Tsai 
et al (2004) found an absence of apneas of participants at 64% using this protocol. A newer 
protocol involves using a remote controlled mandibular positioner to advance the MAA in 
sub-millimeter steps anteriorly until apneas cease as determined by a sleep clinician using a 
polysomnography (Remmers et al 2013). This new protocol differs from older ones by start-
ing at posterior position and moving forward versus from the outmost anterior position and 
moving posteriorly and it is also remote controlled to avoid sleep disturbances while older 
methods were manual adjustments.

3.2.2.2. Tongue retaining device (TRD). Tongue retention devices are the second most uti-
lized form of OA, as they can be both a stand-alone appliance or in combination with MAAs. 
TRDs utilize negative pressure to secure the tongue (Deane et al 2009). The negative pressure 
can come from either a stand-alone vacuum device that connects to a plastic mouthpiece that 
provides suction, or a plastic bulb that fits in between the teeth (Hoffstein 2007, Schwab et al 
2014). TRDs have lower efficacy rates and compliance rates than their MAA counterparts, 
making them less common to treat OSA. TRDs can be used in conjunction with MAAs or 
stand-alone if there are dental issues with using MAAs.

3.2.2.3. Soft palate lifter (SPL). SPLs presently are rarely used. SPLs are the most uncom-
fortable OA since they operate on the most posterior region of the mouth, next to the uvula. 
SPLs are secured by a mouth guard or retainer along the maxilla with a plate or rigid planar 
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extrusion from the posterior side, supporting the soft palate. This device has not been shown 
to be effective against OSA nor tolerable by patients (Barthlen et al 2000).

3.2.2.4. Oral pressure therapy (OPT). A newer approach to oral treatment of sleep apnea is 
by use of OPT. OPT uses a vacuum in the mouth to pull the soft tissues forward and prevent 
collapse. By using negative pressure in the mouth, the soft palate and tongue are held forward 
when the muscles would normally relax and allow for airflow to continue through the nose. 
While this approach still requires an external device, it tends to be quieter than CPAP and is 
less obstructed by being able to use a small mouth guard versus a mask (Farid-Moayer et al 
2013).

3.2.3. Comparison of OA to CPAP. MMAs have a role as alternative treatment strategies for 
OSA. Since CPAP has been proven to be the most effective method of treatment for OSA, it 
is the first-line treatment strategy. If the patient cannot tolerate CPAP due to side-effects, the 
next course of action may be to use OAs. OAs are used only for mild cases of OSA, as for 
more severe cases of OSA CPAP is still the better option. Also, OAs are not effective against 
CSA. When considering using OAs, it is important to establish what is causing the OSA and 
determine if oral adjustments can possibly treat the cause. Furthermore, dental factors have to 
be considered when using OAs. If there are issues with any dental structures from teeth to the 
temporomandibular joint (TMJ), OAs therapy might not be possible, as common side effects 
of OAs are teeth discomfort and TMJ pain (Epstein et al 2009).

OA have promise as a main treatment for sleep apnea for patients who can’t tolerate CPAP. 
OAs have been shown to greatly reduce or eliminate snoring in almost all patients accord-
ing to bed partners and patients. The effectiveness of OAs also proves attractive, with rela-
tively high rates in reduction of AHI. The side-effects for both MAAs and TRDs are mild 
and can be overcome with continued use of the device. Compliance rates for OAs tend to be 
higher than CPAP, which supports the use of OAs when patients don’t comply with CPAP  
(Schmidt-Nowara et al 1995). Although OA are not as effective as CPAP in reducing sleep 
apnea, snoring, and improving daytime function, they have a definite role in the treatment of 
snoring and mild sleep apnea.

3.2.4. Comparisons between intra-oral devices.
3.2.4.1. MAA versus OPT. OPTs also have a role in treatment of OSA, which can be consid-
ered as alternative therapy for sleep apnea. Since MAAs have a high compliance rate and are 
effective at treating mild OSA making them the first choice for ODs. OPTs can be used as 
a secondary option if the patient does not tolerate MAAs. OPTs were found to have a 90% 
compliance rate after three months and had a 53% reduction in AHI over the night in patients 
with mild-severe OSA. These results suggest that OPT could be used as alternative treatment 
for a small subset of the sleep apnea population who are nonusers of other forms of ODs or 
CPAP (Colrain et al 2013). There has been no direct comparison between MAAs and OPTs.

3.2.4.2. MAA versus TRD. When comparing MAAs to TRDs, it was found that MAAs were 
favored and performed better than TRDs. After three weeks, MAAs had a compliance rate of 
86.4% whereas TRDs of 36.4%. MAA was favored over TRD by 90.9% of patients and elimi-
nated snoring in 40.9% of patients versus 27.3% for TRD. MAAs were also ripped out of the 
mouth during sleep less often than TRDs, 9% versus 86.4%, respectively (Deane et al 2009).

3.2.5. Compliance/adherence issues of oral devices. While compliance rates are high for 
oral devices, the main reason for discontinued use often deals with the perception of the 
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device’s effectiveness. Wearers of OAs most frequently use their devices because of com-
plaints from their bed partners about snoring. Since the patients tend to only have a mild form 
of sleep apnea, they experience few daytime symptoms. This lack of daytime symptoms can 
lead the patient to not realize they have sleep apnea or that it has been dealt with and they stop 
usage. With no bed partner to detect snoring, or if they stop noticing it, the patient might stop 
using their treatment device even if it is comfortable. This can lead to lower compliance rates 
for sleep apnea patients, even though they are pleased with their devices (Hoffstein 2007).

Compliance rates for OAs have had difficulty in being accurately described due to various 
reasons for discontinued use. Since OAs are used to treat mild forms of OSA, patients can 
discontinue use even though they still have sleep apnea because they do not realize it. This 
leads to variations in studies about how many patients continue compliance with their devices 
over time as between different studies that use different lengths of follow-up and definition of 
compliance. For instance, three different studies had a compliance rate of 100% for 3 to 21 
months, 75% after 7 months, and 52% after 3 years (Schmidt-Nowara et al 1995). However, 
a new method to measure compliance uses a small embedded temperature sensor that detects 
when the device is inside the mouth will allow for more accurate compliance values in future 
studies (Sutherland et al 2014). CPAP, in contrast, compliance is best measured quantitively 
by downloading the usage data from the machine itself so there is no need for additional  
sensors like in OAs (Lal et al 2010, Somiah et al 2012).

Table 6. Comparison of oral appliances.

Device Method Effectiveness Compliance
Side 
effects

Comparison 
against CPAP Reference

Mandibular 
advancement 
appliance

Hold 
mandible 
forward 
to open 
airway 
using 
intraoral 
appliance

68.2% 50–100% Jaw 
soreness, 
mouth 
dryness

Less effective, 
higher 
compliance

Hoffstein (2007), 
Deane et al (2009)

Soft palate 
lifter

Prevent 
soft palate 
collapse 
into airway

minimal 25% Gagging, 
soft tissue 
irritation, 
and 
choking

Less effective 
and less 
compliance

Barthlen et al 
(2000)

Tongue 
retaining 
device

Retain 
tongue to 
prevent 
obstruction

45.4% 36.4% Excess 
salivation, 
dryness 
of mouth, 
soft tissue 
irritation

Less effective, 
similar 
compliance

Deane et al (2009)

Oral pressure 
therapy

Provide 
suction to 
hold soft 
tissue in 
place

~50% 48% Soft tissue 
irritation

Less effective, 
similar 
compliance

Farid-Moayer et al 
(2013)
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Side effects for OD can be common, but are relatively mild and tolerable, especially when 
compared to CPAP. Possible adverse effects for MAA were found to include jaw discomfort, 
TMJ pain, dryness of mouth, and slight shifting of the teeth. Similar side effects were also 
found with TRDs, being dryness of mouth, excess salivation, and soft tissue irritation (Deane 
et al 2009). For SPL, the side effects were more severe and have led to lower compliance rates. 
They are: gagging, soft tissue irritation, and choking (Barthlen et al 2000). Table 6 summa-
rizes the comparison of the oral appliances.

3.3. Nasal EPAP

Another form of sleep apnea therapy is by the use of nasal expiratory positive airway pressure 
(NEPAP). In NEPAP, two nasal valves placed on the nostrils provide low resistance during 
inhalation and high resistance during exhalation. The high resistance causes a positive pres sure 
to build up through the airway to open the soft tissues up (Berry et al 2011). In a randomized 
control study, at a three month follow up 50% of the NEPAP subjects experienced treatment 
success (either a 50% reduction in AHI or  <10 apneas h−1) while the sham control device had 
a 22% success rate. The compliance rate among the study participants was 88% as recorded 
in user diary entries. In a review of NEPAP, two mechanisms were thought to be at play:  
(1) increased upper airway pressure; (2) increased CO2 concentrations from retained CO2 

Figure 6. Effect of mild hypercapnia via rebreathing with fixed-volume dead space in 
a patient with OSA (AHI  =  60). Repetitive obstructive apneas with associated transient 
EEG arousals were noted during air breathing as indicated by the repeated absence 
of flow despite respiratory efforts. Almost all of these obstructions and arousals were 
eliminated by raising PETCO2

 an average of 2 mmHg (left arrow) above stable, non-
obstructed breathing levels in sleep. Abrupt removal of the added FICO2

 (right arrow) 
resulted in the immediate return of the cyclical obstructive apneas. On the basis of 
these types of findings, we raised PETCO2

 2–5 mmHg via dead space rebreathing during 
90–120 min of sleep in a group of patients with moderate to severe OSA and observed 
an average 85% reduction in AHI below air-breathing control in 17 of 21 patients  
(Xie et  al 2013, Dempsey et  al 2014). Copyright © 2013 and 2014, The American 
Physiological Society.
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during exhalation that causes increased respiratory drive, similarly to rebreathing CO2. 
Reported side effects of NEPAP included dry mouth, headache, trouble falling asleep, and con-
gestion. The review concluded that the efficacy and compliance rates for EPAP were similar to 
what was found in the Barry study, more studies are needed to draw larger conclusions on the  
effectiveness of NEPAP (Wu et al 2015).

3.4. Positional Therapy

Positional OSA is a subset of OSA that can be defined by a two-fold increase in AHI while 
in a supine position versus a non-supine position. Under this definition, about half of all OSA 
patients have positional OSA. To correct positional OSA, positional therapy (PT) is used. 
Examples of PT include alarm systems, pillows with straps, a tennis ball technique, and vibrat-
ing devices. There lacks long term data, but compliance with PT starts well but decreases over 
time to sub-optimal rates (>60% rejection after a year). A waistband PT study found that 
there was a reduction in supine sleeping time and in AHI (~60% effective). Overtime, how-
ever, these gains were lost. PT has promise as a primary option for positional OSA patients, 
but otherwise should be used in conjunction with other therapies until more research can be 
conducted on long term success

3.5. Inspired CO2

Another potential method for controlling abnormal breathing abnormalities is the use of 
inspired CO2. Since the early 1980s, several studies have shown that the constant inhalation of 
CO2 can help prevent apneas (Berssenbrugge et al 1983, Badr et al 1994, Steens et al 1994, 
Xie et al 1997, Lorenzi-Filho et al 1999). It is believed that breathing in low CO2 concentra-
tions can help prevent periodic reductions in PACO2

. By preventing these levels from falling 
below the apnea threshold, the number of breathing cessations can be reduced. However, 
handling all the equipment for exogenous CO2 can be cumbersome in a household setting, 
and the benefits towards sleep quality are still debated (Steens et al 1994, Andreas et al 1998, 
Szollosi et al 2004). Another method of increasing CO2, is the addition of extra dead space. 
Dead space is the portion of the airway passages that does not contribute to gas exchange 
(i.e. trachea and bronchi). It has been shown that the apnoea-hypopnoea index (AHI) can be 
decreased by the addition of as little as 400–600 ml of dead space (Khayat et al 2003, Xie et al 
2001, 2013). Though there are possible adverse effects to the cardiovascular system (Khayat 
et al 2003, Shokoueinejad et al 2017), CO2 rebreathing has been shown to be highly effective 
in preventing central apnea and instabilities in sleep caused by hypoxic exposure and CHF, 
and over many months in CPAP-treated OSA patients with ‘residual’ central apnea, i.e. so-
called ‘complex’ sleep apnea (Gilmartin et al 2005, Thomas 2005).

Xie et al reported the first experimental study that tested added CO2 alone as a treatment for 
OSA (Xie et al 2013). When dead space was added in size sufficient to increase PETCO2

 by 1–5 
mmHg, over 1–5 h of sleep, they found that AHI was reduced to 15  ±  4% of control and most 
often to  <10 event h−1 in 17 of the 21 patients (see figure 6) (Xie et al 2013). Further, add-
ing smaller amounts of inspired CO2 during the hyperpneic phase of the apnea cycle so that 
transient hypocapnia was prevented and PETCO2

 maintained at control levels, caused a smaller 
reduction in AHI to 31  ±  6% of control in 14 of 26 OSA patients. These data suggest that 
added CO2 had two types of effects on OSA, depending on the amount of consequent hyper-
capnia: (1) stabilizing respiratory motor output when transient hypocapnia was prevented, and 
(2) recruiting upper airway muscle dilators to prevent airway obstruction at mild to moder-
ate elevations in PETCO2

. While this study showed added CO2 to be a remarkably effective 
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treatment of even moderately severe OSA, before we can envision clinical application of this 
treatment, there is a need to consider other unwanted side-effects of hypercapnia.

Although upper airway collapsibility is a critical component of OSA, it is now  
well-established that pathophysiologic characteristics such as a sensitive arousal threshold (to 
elicit ventilatory overshoots), high ‘loop gain’, i.e. chemosensitivity and plant gain, and/or 
reduced responsiveness of airway dilator musculature to chemoreceptor stimulation are also 
commonly present in the majority of OSA patients (Eckert et al 2013, Dempsey et al 2014). 
In turn, CO2 has been shown to be a major regulator of upper airway caliber during sleep, i.e. 
when the ‘wakefulness’ stimulus is removed, as evidenced by the following observations:  
(1) small transient reductions in PaCO2

—as experienced with ventilatory overshoots which 
occur upon recovery from an apnea and/or via transient arousals—of 1–4 mmHg will elicit 
apneas and ventilatory instability during NREM sleep (Skatrud and Dempsey 1983, Iber et al 
1986); (2) adding inspired CO2 sufficient to increase PaCO2

 1–3 mmHg removes most or all 
of the hypocapnic induced central apneas and the periodic breathing induced via hypoxic 
exposure and/or CHF, spinal cord injury, or with idiopathic central apnea (Berssenbrugge 
et al 1983, Xie et al 1997, Lorenzi-Filho et al 1999, Khayat et al 2003, Sankari et al 2014); 
and (3) adding inspired CO2 increases both phrenic (linear) and hypoglossal (alinear) motor 
nerve activity, thereby recruiting both diaphragm and upper airway dilator muscles (Haxhiu 
et al 1987, Horner et al 2002).

So theoretically, increasing CO2 should stabilize central respiratory motor output, as well as 
improve upper airway caliber and prevent upper airway obstruction. There have also been sev-
eral short-term studies where inspired CO2 has been shown to successfully treat CSA (Xie et al 
1997, Khayat et al 2003), and even those that also suffer from congestive heart failure (CHF) 
(Steens et al 1994, Lorenzi-Filho et al 1999, Guntheroth 2011). The CO2 was able to stabi-
lize overall breathing rhythm, PaCO2

, pH (Khoo et al 1982) as well as general CSA symptoms 
(Szollosi et al 2004). While there are some very promising studies regarding the use of inspired 
CO2, there are also several potentially dangerous safety concerns that should be explored in 
longer term studies before being used as a possible treatment for SA (Mulchrone et al 2016).

3.6. Electrical stimulation of the hypoglossal and phrenic nerves

An alternative to CPAP, custom-made OA, and upper airway surgery, electrical stimulation 
of the hypoglossal and phrenic nerves has been explored to treat the ineffectiveness of pha-
ryngeal dilator muscles (Malhotra 2014). Recent technological advancements have allowed 
for the development of an implantable hypoglossal nerve stimulation (HGNS) device, with 
acceptable performance with regards to patient safety, respiration sensors, lead failures, and 
stimulation failures (Eastwood et al 2011).

Stimulation of the hypoglossal nerve innervates the GG muscle while minimizing the 
stimulation of sensory nerves, thus preventing waking the patient (Eastwood et  al 2011). 
Stimulation of the GG muscle leads to increased inspiratory airflow, and activation of the 
GG muscle is correlated with increased upper airway patency (Schwartz et al 2001). With 
improved upper airway patency and decreased apneic events, patients are able to go into 
deeper stages NREM sleep (Schwartz et al 2001).

Patients who undergo HGNS require surgery to implant the electrical stimulator. A stimula-
tion electrode is placed on the hypoglossal nerve, which stimulates tongue-protrusion; sensing 
leads are used to detect ventilation effort; and a neurostimulator is implanted (Schwartz et al 
2001, Strollo et al 2014). Stimulation is delivered just prior to inspiration, when the upper 
airway is most prone to narrowing and collapse (Eastwood et al 2011).
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Several feasibility studies and clinical trials have been conducted on HGNS. Schwartz 
et al (2001) found that stimulation significantly reduced the mean AHI in patients with an 
AHI of 52.0  ±  20.4 without stimulation and 22.6  ±  12.1 (P  <  0.001) with stimulation dur-
ing NREM sleep, and AHIs of 48.2  ±  30.5 without stimulation and 16.6  ±  17.1 (P  <  0.001) 
with stimulation during REM sleep. Eastwood et  al (2011) demonstrated that HGNS has 
favorable safety, efficacy, and compliance with reduced OSA severity. Patients in the trial had 
significantly reduced AHI, with an AHI of 43.1  ±  17.5 without stimulation and an AHI of 
19.5  ±  16.7 (P  <  0.05) with stimulation throughout the night. Strollo et al (2014) observed a 
68% decrease in median AHI from baseline measurements of 29.3 events h−1 to 9.0 events h−1  
measured 12 months after implantation. The studies have shown strong efficacy of HGNS 
with minimal complications.

The cost effectiveness of HGNS should be considered. However, the cost of surgical 
implantation for HGNS may be especially valuable if it can help avoid the consequences of 
sleep apnea such as stroke and motor vehicle accidents (Malhotra 2014). Also, patient selec-
tion for the procedure needs to be refined by analyzing airflow signals and other biomarkers 
to ensure that the patients suffer from pharyngeal muscle dysfunction and could benefit from 
HGNS (Malhotra 2014). However, the studies conducted on HGNS show promise for HGNS 
as an alternative treatment for patients who do not respond well to CPAP.

Stimulation of the phrenic nerve has also been explored as a method to treat sleep apnea, 
by stimulating the diaphragm to restore a normal, physiological breathing pattern during sleep 
(Abraham et al 2015). Stimulation of the phrenic nerve has been used as treatment for dia-
phragmatic paralysis from cervical spine injuries for over 50 years (Joseph and Costanzo 
2016). Phrenic nerve stimulation systems are similar to hypoglossal nerve stimulation sys-
tems, consisting of a pulse generator, stimulation lead, and sensing lead (Abraham et al 2015). 
The phrenic nerve stimulators stimulate the phrenic nerve if it is within normal sleeping hours, 
the patient activity is low, the patient is in sleeping posture, and the patient should be in the 
inspiratory phase of respiration.

Initial studies of phrenic nerve stimulation have shown improvements of AHI. Abraham 
et  al (2015) found a reduction in AHI from 49.5  ±  14.6 for baseline measurements to 
22.4  ±  13.6 three months after implantation (P  <  0.0001). However, 26% of patients in this 
study had serious adverse effects related to the device or procedure, including hematoma, 
migraine, and atypical chest discomfort. However, this rate of adverse health effects is similar 
to other newly introduced cardiac devices at the stage of early development.

While still in development and trials, phrenic nerve stimulation has shown promise as an 
alternative to CPAP, possibly leading to improved patient compliance (Joseph and Costanzo 
2016).

4. Discussion and conclusions

In summary, tremendous research and engineering efforts have been applied to design and 
optimize tools that enable the study and understanding of physiological substrates that char-
acterize sleep apnea syndrome. These efforts have contributed to the advent of a broad class 
of signal and sensor modalities that can be administered clinically, individually or in combi-
nation, to provide reliable measures for SAS diagnosis. With this, an extensive collection of 
computational and signal processing methods has been proposed and evaluated to automate 
the identification of SAS disease patterns. Once diagnosed, patients benefit from a grow-
ing array of therapeutic techniques and technologies that continue to evolve with ongoing 
research and development.
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Despite this significant progress in our understanding of SAS, as well as development and 
refinement of diagnostic and therapeutic tools, the epidemiological problem of sleep apnea 
and its impact on population health, productivity and healthcare costs continues to grow. It 
is estimated that between 18 and 22 million Americans suffer from SAS, 80–90% of adults 
suffering from SAS remain undiagnosed and untreated, and costs of untreated SAS may dou-
ble a patient’s medical expenses mainly due to increased CVD risk and mortality (Tarasiuk 
and Reuveni 2013). Motivated by the scale of this growing problem, significant remain-
ing research challenges must be addressed to reach the unaddressed SAS population and 
ensure access to efficient and effective care. This review concludes with a discussion of open 
research and engineering challenges for signal, sensor, and computational approaches to SAS  
detection, as well as the development of new therapeutic methods.

First, there is a significant opportunity to improve the detection and understanding of SAS 
phenotypes through research on new and improved diagnostic signal and sensor modalities. 
Complex patients suffering from a combination of SAS along with comorbid neurological and 
cardiopulmonary conditions indeed require a Type 1 supervised nocturnal polysomnography 
study. For these patients, attended in-lab PSG remains the gold standard for diagnosis because 
the controlled environment allows for expert application and monitoring of biosensors, acqui-
sition of a larger quantity and variety of signals, and helps to ensure high quality and fidelity 
of diagnostic data. However, with 26% of persons age 30–70 estimated to suffer from sleep 
apnea, these complex cases represent a significant minority of the total affected population 
(Peppard et al 2013). At-home sleep studies decouple the acquisition of diagnostic SAS data 
from the equipment, personnel, and capacity constraints of physical sleep labs, offering a 
faster and lower cost pathway for the majority of patients. Nonetheless, Type 1 in-lab sleep 
studies account for the vast majority of diagnostic tests for patients of all suspected severity 
levels conducted each year. Therefore, research that aims to improve signal and sensor tech-
nology for at-home sleep studies, such that it more closely reproduces the quality, quantity, 
and comprehensive variety of controlled in-lab sleep studies is paramount. We hypothesize 
that acceptance of at-home sleep studies can be improved among clinicians, while allowing 
for more convenient and inexpensive testing options for patients. Moreover, increasingly non-
invasive and noncontact sensor modalities promise the potential for ongoing at-home monitor-
ing of SAS patterns and sleep quality, to inform preventive care and treatment optimization.

Second, research focused on computational and signal processing methods for SAS pattern 
identification offers potential to introduce significant efficiencies into the clinical diagnostic 
workflow. The scoring of sleep studies represents a critical step in the SAS diagnostic process, 
whereby the collection of relevant disease patterns is reduced to clinically relevant diagnostic 
parameters including AHI, RDI, and others. Today, an estimated 86% of sleep centers don’t 
use any form of either computer assisted or automated scoring, despite the availability of 
clinically validated commercial systems. A common hypothesis for the slow clinical accept-
ance of these systems is the complex, repetitive, and genuinely ambiguous nature of the event 
scoring task, where, for example, even expert scorers on average agree 52.4% on CSAs and 
65.4% on Hypopneas (Rosenberg and Van Hout 2014). With these factors in mind, additional 
research is needed to create automated scoring methods, algorithms, and software that can 
overcome the barriers to clinical acceptance with improved sensitivity and specificity towards 
the expert human standard. To advance this research, open data formats and interoperability 
standards will be required to enable both retrospective and prospective evaluations of new  
computational, signal processing, and algorithmic methods.

Finally, development of new treatment techniques and deeper investigations into the altera-
tions in physiological mechanisms are needed. It is well understood that patient compliance 
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with PAP devices is very low, with over 40% of patients with OSA being non-adherent to 
CPAP, and many patients regularly adherent for a small fraction of their TST (Weaver and 
Grunstein 2008). OA have shown significant benefits in this regard for mild OSA sufferers, but 
do not offer the same efficacy as PAP for moderate to severe OSA, CSA, or complex comorbid 
patients. Moreover, the recent SERVE-HF study indicated not only that ASV therapy did not 
significantly improve many quality of life indicators, but resulted in an observed increase in 
cardiovascular and all-cause mortality in CSA patients (Cowie et al 2015). It is clear that new 
alternative devices that are more comfortable, tolerable, and better accepted by patients are 
needed to truly achieve an improved sleep quality. For CSA and complex comorbid patients in 
particular, more research and greater knowledge of disease alterations to sleep physiology are 
needed, to understand which, if any, of the expressed physiological symptoms may in fact be 
beneficially acquired compensatory mechanisms that present as seemingly pathological, but 
assist in patient homeostasis and systemic preservation through nonobvious pathways. These 
and other alternative and improved therapies are critical to effectively treat the growing SAS 
population.

In conclusion, sleep apnea is a significant and rapidly growing problem at the societal 
scale, for which tremendous scientific and engineering effort has been applied to understand 
and develop diagnostic and therapeutic tools. This work has led to an array of validated signal 
and sensor modalities for acquiring, storing and viewing sleep data, a broad class of compu-
tational and signal processing approaches to detect and classify SAS disease patterns, and 
a set of distinctive therapeutic technologies whose use cases span the continuum of disease 
severity. This review provides a current perspective of the classes of tools at hand, along 
with a sense of their relative strengths and areas for further improvement. These engineer-
ing contributions have defined our understanding of sleep science and pathology, and cannot 
be understated. However, diagnosing and treating the large and growing unaddressed SAS 
population remains a paramount challenge. Future work in improved at-home signal acquisi-
tion systems, new noninvasive and noncontact sensor modalities, sensitive and specific com-
putational approaches to automate sleep scoring, and open interoperable sleep data formats 
show significant promise to increase the efficiency and accuracy of SAS diagnosis. These, 
paired with research into comfortable therapeutics that improve adherence, and safer, better 
understood treatment alternatives for severe and complex comorbid patients, will enable a 
transformative difference in sleep, quality of life, productivity, and reduce healthcare costs for 
tens of millions of patients, globally.
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