
« 

Modeling 
Embedded Systems

 For 15 years the UML plays an increasingly important role in the development of
software. However, in the field of embedded software, especially 

embedded software on target environments with limited resources, ‚C‘ is still the
development environment of choice.

Actually strange, because the often safety related embedded systems would benefit
immensely from the increase in overview, changeability, testing possibilities, links with

requirement management systems and so on.
For all UML with code generation could give a real boost to the quality of  

embedded systems and support in certification processes. 
Willert Software Tools offers several solutions for UML environments tailored for

even the smallest embedded systems. All Solutions with their own specific 
features, benefits and price.

What must be considered, however, is that the UML has a much larger 
 „instruction set“ than ‚C‘. To apply the UML on a target environment this must first

be implemented in an efficient way.
This is where Willert Software Tools shows it‘s real strength. We have put all the

experience in real-time embedded software development that we have collected
since 1992, in our UML Framework & Debug Technology. This enables you to use

the UML in it‘s full strength for your embedded software development!

Index:

Evolution of Programming

Why UML Modeling ?

What do I need to use UML ?

RXF Framework

IBM Rational Rhapsody

SPARX Enterprise Architect

UML Target Debugger

Embedded UML Studio III

Using embedded UML tools to create high quality embedded
software on hardware with limited resources

DatS - UML Modeling- V8.0en 2

Evolution of Programming
What is the essential problem, we are facing today in software engineering?
What keeps us from becoming more productive?
Why do we need more and more capacity for testing?
The answer is short and simple and reveals itself, if we take a look at the history of programming.

1.GL - First Generation Language
First generation actually means pre-historic. Computers were programmed using wires and/or switches. Binary
codes needed to be checked, programming was very tiresome. Inserting statements meant recalculating all offsets
and jumps. Errors were, off-course, made very easily so people started searching for better ways to program com-
puters. After some years they found:

2.GL - Second Generation Language
Assembly language took away lots of the disadvantages of the binary methods used before. The introduction of la-
bels took care of the error-prone recalculation of jumps and offsets. The mnemonic notation allowed a quicker and
better understanding of what really happened. Programming was still a job for experts but could be learned more
easily now. Errors were still made but they were no longer in trivial parts. Programming was done more and more
often and programs got bigger. This caused that the nice assembler programs from the early assembler days were no
longer easy to maintain. The search for better methods started.

3.GL - Third Generation Language
3GL languages come in a lot of flavors. For administrative environments there was COBOL, more technical envi-
ronments used FORTRAN. For embedded programming the switch from Assembler to 3GL took longer, lots of us
can still remember it. The wealth of choice for implementation languages was actually a big disadvantage in the em-
bedded world where stability and re-use were already common before the PC world ever heard of it.
The arrival of a standard (ANSI-C) caused that even the conservative embedded world finally gave in to 3GL.
Nowadays there are highly optimized compilers that make us forget that assembler ever existed.
But our software continues growing and is therefore more difficult to handle. Still the need for better programming
methods continued. Other languages were introduced (C++) Operating Systems are more widely used but they
are only tools.

4.GL - Fourth Generation Language
Since 1996 there is the UML. Actually nothing new but a collection of best practices. The advantages of Object Ori-
entation, State-charts, sequence diagrams, it was all invented before the UML, but it was all combined in one lan-
guage (Hence unified). The possibility to extend the language in a standardized way helps to create a powerful lan-
guage for any domain.

DatS - UML Modeling- V8.0en 3

Why UML Modeling ?
So what is the answer to our questions and what has brought us from one language generation to the next?  
It was the rising complexity from our software which was caused by increasing requirements. Before each step, the
complexity of our software has reached a critical level. It be-
came more and more expensive to program, handle, and test
the current software generation. Only the use of a new
technology can minimize the complexity. Of course, a step to
another language generation was associated with a lot of
effort. But has someone repented the step from assembler
to  
ANSI C? Or would you still write your programs in assem-
bler today? I hope not. Thus, this effort has been worthwhile,
right? 
 
Back to our software requirements. Do you think, they will
stagnate or even decline? Unfortunately, there is only one
direction, upwards, even in the embedded world. And it gets
even worse. Complexity is rising much faster than our re-
quirements.
Therefore, we are back to the step of using a new technolo-
gy.  
A fourth generation language like the UML, which brings us
from programming to modeling. The UML approach is to
simplify a complex program by dividing it into several graphical
charts. For each point of view (e.g. structural, behavioral or runtime), there is a suit- able dia-
gram. Moreover, graphical notations have a higher information density than conventional high-level languages like
ANSI C. This reduces our complexity again.

What do I need to take  
full advantage of the UML?
Modeling Tool to create a UML model
First, we need a modeling tool, to create our UML model. Programs like “MS Visio“ are often used for documenta-
tion. But is it that what we want? UML for documentation only and a high level language for coding? Have we doc-
umented our assembly code with high level languages in the past? That would be exactly the same.  
We need to keep model and code congruent. That is no job for a human being. Finally, you would also not perform
the tasks of a compiler. What we need is called code generation. This must be the first important requirement of
our UML tool. 
 
Many UML tools do not have a built-in repository. But UML elements are often used several times inside the same
model. For example, an attribute could be used simultaneously in statecharts, flowcharts, methods, and so on. If we
want to change the name of this attribute, we have to search the entire model, unless our tool has a repository.
With a repository, we would always access the same attribute. Therefore we have to change the name only once.  
 
Of course, our tool should be established and widespread used. There are two tools that meet these requirements.

IBM® Rational® Rhapsody®

Sparx® Enterprise Architect

current GL next GL

effort

complexity

DatS - UML Modeling- V8.0en 4

IDE for compiling, linking, HLL debugging, flashing
Just like before, we need a normal IDE to compile and link the generated source code. Nothing has changed here.

Framework for the step from 4.GL to 3.GL
To be able to execute generated code from a UML model, the generated code needs to rely on a strong base of func-
tionality. The UML notation is much more powerful and on a higher abstraction level than any high level programming
language. A third generation language can not directly reflect the UML-instruction set, which includes asynchronous
communication, active classes, complex state behavior and many other powerful features.
If no standard framework would be chosen, all of these functionalities need to be implemented by the user, including
lots of beta testing in a complex environment and staying with limited functionality and flexibility. Also, without a
framework, target and RTOS specific elements would be spread all over the application model. This corrupts one of the
major advantages of model driven development.
Selecting a stable framework gets the project productive much faster while benefitting from a lot of advantages includ-
ing best practice solutions for static memory management, how to avoid RTOS pitfalls (like deadlocks), get an optimized
IRQ to model latency etc. A solid base framework with a good user base is very important for successful production
code generation on an embedded system.
The RXF also fills the gap between UML modeling tool and IDE and it optimizes the code-generation especially for a
resource friendly use in the embedded realtime world.

RTOS (or run-time system)
There are a lot of embedded real-time projects around where, when asked, the developers clearly state that they have
not used an RTOS or a run-time system. This may be true they mean that they did not explicitly bought a commercial
RTOS. But every application, no matter how small, contains a run-time system. Even a simple loop program (while(1)
{ do(); }) is a run-time system and must be considered when designing an application like that. That global variables are
used for communication is also a run-time decision. So the statement: "I don't need an RTOS" should in fact be "Gee, I
didn't know I already use an RTOS".
As already stated, the UML does not contain just programming language elements that can be projected on a common
high-level language, some elements represent run-time environment settings. Things like Active Classes require the use
of a preemptive RTOS to create the threads needed to make a class active. Sending and receiving events in a state-
chart requires that there are message queues that can do that for us. Then there are timers, mutexes, semaphores, etc.
It is possible to build this all in the UML Framework (In fact, this is what Willert Software Tools has done with the OO-
RTX). The RTX RTOS functionality is not comparable to a full third party RTOS! However, it is optimized to fulfill the
minimal RTOS requirements, to use the UML for embedded realtime systems.  
Often there is already an RTOS in use that could be used to implement all this functionality. Therefore, the RXF Frame-
work has an RTOS Interface that allows the easy integration of most off-the-shelf RTOS's.

Rhapsody is definitely the Mercedes of all UML tools. Unfortunately, the price is also like a Mercedes. However, we can
offer you along with our Embedded UML Studio III a more affordable version. It‘s an Architect version with code gener-
ation for embedded systems. This version costs only a fraction of a full developer version.  
 
New in offer is our Embedded UML Studio III with Sparx Enterprise Architect. UML and Enterprise Architect simply
belongs together. Sparx Systems Enterprise Architect is due to its comparatively low price and its early implementation
of UML 2 widespread used as UML editor. Moreover, Enterprise Architect is expandable by many plug-ins. All this makes
Enterprise Architect to a good alternative solution to IBMs Rational Rhapsody.

Target Debugger for UML level debugging
With the UML Target Debugger™, the UML model can now also be debugged on the actual hardware. Take a look on
your animated sequence- and timing diagrams in realtime. One advantage of MDD (Model Driven Development) is
that models can be tested and debugged at an early stage, usually based on simulation. According to experience, this
method helps to identify numerous errors in early process phases.

DatS - UML Modeling- V8.0en 5

The RXF Framework
The Embedded UML RXF™ (Real time eXecution Framework) is the solid foundation for your software architec-
ture.
It forms the interface between a UML model and the target platform consisting of CPU, compiler and runtime sys-
tem or RTOS. It also efficiently allows to combine legacy code based parts of your software with generated code.
It contains an abstraction layer to support most real-time operating systems in the market. Thus, mechanisms like
timers or events can be employed independent of the operating system, resulting in a high degree of portability,
reusability and platform independence. Your software design will be target-independent and guarantees maximum
return on invest.

Adaptations for a large number of target platforms 
ARM – C167 – Blackfin – M16C – MSP430 – V850 – TMS320 – ATMega – RL78 – PIC32 – RX – RaspberryPi…
Support of many real-time operating systems 
CMSIS-RTOS – Linux – embOS – OSEK – MQX – CMX – FreeRTOS – Keil-RTX – µC/OS – RTEMS…
Support many IDE‘s like Keil MicroVision, Eclipse, IAR Embedded Workbench, Tasking EDE, and many more
Support 2 of the most widely used UML Modeling Tools: Sparx Enterprise Architect and IBM Rational Rhapsody
Optimized for use in embedded systems with limited resources
Deterministic real-time behavior (in connection with OO RTX, no interrupt latency for 32 bit CPUs and max. 4
instructions interrupt disabling for 16 bit CPUs)
Reliable and with a long-year and wide user base to ensure a stable base for your software development
Best practice solutions for modeling event based logic with time based software controllers
Supports integrating generated components into an AUTOSAR RTE, including communication between tasks
A certification package is available for safety critical software development projects
Delivery with source code
UML-level debugging with the Embedded UML Target Debugger
12 months warranty
No royalties
Highly optimized versions for ‘C’ and ‘C++’

With Embedded UML RXF™, you implement your UML Models designed with Rhapsody or Enterprise Architect in
target code. Each RXF variant is specially designed for a tool chain combination and integrates it tightly. This also
includes deploying the generated code in your IDE project, allowing the use of the IDE’s target configuration wizard.
Short processing cycles are provided between IDE / debugger and your UML model.
Our highly optimized framework is suitable for code generation for embedded applications with limited resources.
Configuration settings for the real-time operating system and RXF can be stored where all your software is de-
signed and implemented: inside the UML model. Also adaptations to different target hardware requires a minimum
effort.
The delivered installation routine provides a fast start-up with the RXF and integrates the complete tool chain.
The RXF‘s debug interface allows you to debug and test your model on UML level, tool independent, without de-
stroying your timing behavior, as it uses a highly optimized monitor to communicate with a PC in real-time.

 

DatS - UML Modeling- V8.0en 6

Features of the RXF

Deterministic Real-Time Behavior
Compared to most other UML framework solutions, RXF operates with only minimum
manipulation of interrupt latency. There is no interrupt locking on 32 bit CPUs and one
interrupt locking of max. 4 command cycles on 16 bit CPUs.

Memory Management with Deterministic Behavior
RXF features memory management with user-defined block sizes. A configurable number
of static block sizes can be configured. Also the number of blocks can be defined while
modeling in your UML Tool. 
Dynamic memory can thus be used without encountering the common disadvantages
such as the need for defragmentation and non-deterministic time behavior during memory
allocation.

Fast Event Implementation
Fast events are available especially for the integration of interrupt service routines in the
UML model. Thus, an object-oriented interface based on static events from interrupt rou-
tines can be implemented with minimized overhead.
The speed of events is measured in PEPS (Processed Events Per Second). A small target
like a C167 running with 20 Mhz can already handle more then 10.000 PEPS.

NOTE
This product is designed to be used together with a UML Tool like Rhapsody or Enterprise Architect.

Low-Power Support  
RXF automatically detects periods in which the system is idle and jumps to a routine in
which the user can switch the CPU to low-power mode. This is fully configurable for your
own CPU. For the MSP430 an example application is included. Enjoy the advantage of an
event drive system.

High Water Marks
The Framework can be used in a fully static way. The static memory blocks can be fully tai-
lored for optimal use. The utilization of these memory areas and also event queues and
timer queues across application runtime can be monitored and optimized.

Best Practice Solutions
- AUTOSAR integration as well as import ARXML and code generation
- single threaded RTOS for very small applications
- Traceability with REQXChanger
- Certifiable Version available.

DatS - UML Modeling- V8.0en 7

Add-ons and Plug-ins
The RXF is built up so that it is fully configurable for almost any embedded environment. You only need a base license
to use all available bridges. The Willert Software Tools Download Portal allows you to download the adapters that are
included in your license.
The list below gives an overview of actually available bridges. If your desired environment is not on the list, then don‘t
worry.
Adaptations can be made with a minimal effort, you can do it yourself or you can order us to do the necessary adap-
tation for you. Contact us for the details.

What is OO-RTX?
To make UML Models runnable you need a run-time system. The
RXF is the link to an off-the shelf RTOS. Adapting to an RTOS is
quite easy. But when an RTOS uses too much resources for a
project we created an even resource friendlier version: The OO-
RTX.
The memory usage of RXF with a small third-party RTOS is
15-20k ROM and 0,5k of RAM. So if this is too much, or if pre-
emptive behavior is not necessary (or even wanted) then the
OO-RTX is a minimal RTOS that fulfills all the requirements of
the UML.
Due to it‘s compact integration in the RXF it is much smaller and
much faster then a third party RTOS. Depending on your com-
piler the OO-RTX consumes 3-6k ROM and 200b of RAM. Also
the speed is higher than that of an of the shelf RTOS with RXF.

Adaptations for a large number for target platforms 
C167 – TriCore - ARM – M16C – BlackFin – MC16 - Coldfire – ATMega – 8051 – PIC32…
Super fast timer implementation.
ROM Usage between 3k and 6k
RAM Usage 200 bytes
Highly optimized for use in systems with limited resources
Delivery with source code
Convenient configuration through properties
Optional interface with UML Target Debugger
12 months warranty
Supported target platforms see www.willert.de
No royalties

NOTE
The OO-RTX is not a stand-alone RTOS. It
can be used ONLY in cooperation with the
RXF.

DatS - UML Modeling- V8.0en 8

IBM® Rational® Rhapsody®

The IBM® Rational® Rhapsody® Devel-
oper is a embedded and real-time soft-
ware development environment based
on industry standard UML/SysML.
For over 10 years Rhapsody® sets the
standard for UML development in the
embedded domain. Willer t Software
Tools RXF is the perfect match to allow
development on even the smallest of
targets.
There are Rhapsody® Versions for Sys-
tem Engineering, Software Engineering
(Architect) and for Software Develop-
ment.
Add-ons are available to connect to
Doors® or other Requirements Man-
agement Tools, test environment. For
testing there is Test Conductor that is
based on the UML testing profile.

Full Simulation of Diagrams, even on Target. (Requires TCP/IP and high-performance target)
C, C++, Java, and Ada code generation of state-charts.
Model multicore affinity,
Generate code and build files for leading embedded and real time development environments.
Visualize C# code from Microsoft Visual Studio and generate C# code from Rational Rhapsody
Integrates within Eclipse development environment
Import existing C, C++, Java or C# code for visualization and documentation
Flexible development environment synchronizes code and model.
Requirements traceability.
Develop software on host before target hardware is available.
Maintain consistency of architecture, design, code and documentation automatically
Architect Data Distribution Service for Real-Time Systems (DDS) applications to manage the complexity of inter-
connected components
Automate documentation across product lifecycle with Rational Publishing Engine integration
Develop automotive applications using AUTOSAR from concept to code
Leverage MARTE profile for architecting multi core applications
Collaborate using model-based differencing and merging features, including an integration with the Jazz- based
IBM® Rational® Team Concert solution
Automate model based testing with Rational Rhapsody TestConductor Add On
Extendable and customizable modeling and code generation
Rational Rhapsody, DoDAF, MODAF, and UPDM Add On assists in delivering compliant and consistent architec-
tures for these architectural frameworks support with ability to develop your own profiles
Rational Rhapsody Developer 7.5 adds support for AUTOSAR 4.0 system authoring and behavioral design, token
based activity diagram simulation, improved performance for code generation, and improved code customization.

DatS - UML Modeling- V8.0en 9

Sparx Enterprise Architect with
LieberLieber embedded coder RXF

Enterprise Architect is a high perfor-
mance modeling, visalization and design
platform based on the UML 2.x stan-
dard.

With complete traceability from mind
mapping, through requirements to busi-
ness and software design and deploy-
ment , Enterprise Architect provides the
kind of robust and efficient visualization
and collaboration required in today's
large and demanding modeling environ-
ments.

A truly agile modeling solution, Enter-
prise Architect provides a low installation
overhead, sparkling performance and an
intuitive interface.

Keep your entire team on the same page with Enterprise Architect, a tool priced for team deployment and designed
for real-world situations.

Enterprise Architect is the worlds leading tool for UML and SysML. It‘s versatility allows usage on many different area‘s.
MDG Technologies allow numerous Add-ons exists for Requirements Management, Testing, Code Generation and
Simulation. 

In contrast to IBM‘s Rational Rhapsody, Enterprise Architect doesn‘t have a built- in embedded code generator. Fortu-
nately, we can add this feature through a plugin by the Enterprise Architect specialists “LieberLieber“. The LieberLieber
Embedded Engineer RXF plugin generates ANSI ‘C’- code from the EA UML model. Moreover, with the help of anoth-
er plugin: LieberLieber AM|USE, we can simulate and execute our UML diagrams directly in Enterprise Architect.

LieberLieber Embedded Engineer RXF is your tool for interactive UML & SysML modeling. Whether you want to
maximize the output of your modeling endeavor or you are just starting to use MDD - embedded coder RXF will be
your best ally.

Embedded Engineer RXF integrates with Enterprise Architect from Sparx Systems and guarantees a consistent way of
modeling. Enterprise Architect is one of the leading modeling-tools on the market. If your focus in software- and sys-
tems-development is on quality and efficiency, Enterprise Architect and LieberLieber Embedded Engineer RXF is the
combination to use.

The Code generator and the RXF together produce optimized production code that runs directly on your target envi-
ronment.

http://sparxsystems.com/products/ea/trial.html
http://sparxsystems.com/products/ea/trial.html

DatS - UML Modeling- V8.0en 10

Embedded UML Target Debugger™

Target
Monitor

Even software modeled in UML isn’t al-
ways free from errors. Therefore, debug-
ging remains one of the key tasks in
software development. In the context of
so-called embedded systems, the hard-
ware used is often proprietary, and some
of the errors probably occur only when
the software is executed on this hard-
ware. In addition, many embedded sys-
tems have to manage limited hardware
resources (e.g. memory).  

When debugging with conventional CASE tools, it is possible
to execute the code generated from the model and to ani-
mate the model simultaneously. The program behavior can
thus be monitored at model level. To this end, run-time in-
formation has to be generated on the target system and
transmitted to the development PC which is usually handled
through so-called code instrumentation. However, there is a major disadvantage to this approach. The code to be exe-
cuted is unnecessarily loaded with overhead which considerably slows down the actual run-time. A debugging solution is
now available that is compatible with Embedded UML Studio III™ and based on a monitor like conventional embedded
high-level language debuggers. It offers the benefit of real-time debugging with minimum overhead at UML model level.

deterministic real-time behavior (other than with instrumented code, the new technology does not affect the run-
time behavior)

live animation of sequence diagrams to trace the event order on target

see which instances of your reactive objects (with a statechart) have been created and destroyed

navigate through a model element tree to show attributes or the current state of a statechart for any instance

display the current values of the highwatermarks when used with the OO-RTX

inject events from the host-side and track the reaction of the target (currently only events without arguments are
supported)

monitor the elapsed time-ticks between two events

One advantage of MDD (Model Driven Development) is that models can be tested and debugged at an early stage,
usually based on simulation. According to experience, this method helps to identify numerous errors in early process
phases. But in many cases, errors occur later, when the code is generated from the UML model and executed on the
actual hardware.
Another disadvantage of simulation is the need to provide all external interfaces required for the simulation procedure
which can be quite laborious. With the UML Target Debugger™, the model can now also be executed on the actual
hardware. All required run-time information is provided through a monitor at model level. Thus, animation takes place at
model level in parallel to model execution.
In addition, information can be transferred from the development PC to the target system, so that UML based tests can
be automated on real hardware, e.g. with Test Conductor.

DatS - UML Modeling- V8.0en 11

Embedded UML Studio™  
Third Generation

Supports all required diagrams for embedded software engineering.

Target-specific highly optimized ANSI-C generation. Enables reaction-times down to the interrupt-response-time of
the implemented CPU. (Adaptations are available for a large number of target-platforms, including ARM, C167, AT-
Mega, PIC, Blackfin...)

Upgradable by implementing the Embedded UML Target Debugger™ for UML Animation and Test-automation.

Interfaces to other tools (Configuration Management, Requirements Management, Testautomation ...)

Based on the proven and market-leading technology Embedded UML Studio™

Is delivered royalty free, complete with source code

Free of charge access to all available bridges.

Based on 10 years of experience in development of UML-solutions and specialized for use in Embedded Software
Engineering, we have responded to the market needs. The answer is Embedded UML Studio III™, which is now avail-
able in two different editions. First of all, based on the market-leading technology from IBM® Rational® Rhapsody®. An
established, high quality tool. And now, also available with the widespread, low budget solution - Sparx Enterprise Ar-
chitect.  
This technologies are enhanced by adding the proven RT Framework from Willert Software Tools. The outcome is an
UML-based engineering-environment at a low price, which provides everything for a successful development of em-
bedded software.

Download an evaluation DVD for free
We have provided a Demo DVD for both tool chains. Apart from a Windows PC, you do not need additional
hardware. The target hardware (LPC1768 Cortex M3) will be simulated by the Keil’s µVision IDE.
Please visit our website for detailed informations: http://www.willert.de/uml-getting-started/

http://www.willert.de/uml-getting-started/
http://www.willert.de/uml-getting-started/

DatS - UML Modeling- V8.0en 12

Training by Willert:

■ EMBEDDED UML START-UP TRAININGS
 Hands-on exercises based on Rational® Rhapsody® in C  
 Hands-on exercises based on Sparx Systems Enterprise Architect

■ EMBEDDED UML ADVANCED TRAININGS 
 

■ REQUIREMENTS ENGINEERING
 START-UP TRAININGS
 1. Hands-on exercises based on Rational® DOORS®  
 2. Hands-on exercises based on Polarion®

■ SOFTWARE ARCHITECTURE-DESIGN
 for Embedded Systems / Workshop

willert.de/events

Author:
WALTER VAN DER HEIDEN

Editor:
WILLERT SOFTWARE TOOLS GMBH
Hannoversche Straße 21
31675 Bückeburg
www.willert.de
info@willert.de
Tel.: +49 5722 9678 - 60

http://www.willert.de
mailto:info@willert.de
http://www.willert.de
mailto:info@willert.de

