
The Foundations
of Successful Test
Automation
Automating the test process applies
computational power to what it
does best, the repetitive exercise of
software systems. And yet, anyone
who has been in the software testing
field for more than a few years has
seen a test automation effort fail.

Learn what you need to know to
make your test automation effort a
success.

WHITE PAPER

White Paper: The Foundations of Successful Test Automation 2

Table of Contents

Overview 3
The Choice to Automate 4
Developing a Test Automation Strategy 5
Cultivate a Test Automation Culture 5
How to Prepare for the Test Automation Effort 7
Optimize & Scale Your Automation Project 8
Coding Best Practices for Test Automation 10
Best Practices for Test Creation & Maintenance 11
Choosing the Right Test Automation Tools 13

Dumb Record & Playback Test Tools 14

Smart Record & Playback Test Tools 14

AI Assisted Auto Discovery & Playback 14

Abstract Syntax Test Tools 15

Hand Coded Test Development 15

Quantifying Your Automation ROI 16
Helping You Achieve Success 18
Summary 19

Overview
Software development has progressed from the Waterfall method
that allowed months and even years for creating, assembling, and
testing a software release to the Agile and Continuous Integration
methodologies that crank out releases in a week or two. As a result,
test automation has become an integral component of software
development.

In the software marketplace, development efforts must get it
right the first time. The modern user community has very little
tolerance for content format issues or slow performance, much
less functional failures. The immediacy of market requirements
that are desperately trying to distinguish a product from dozens
of competitors makes little space for a careful measured approach
to testing. The rapid release of features and defect fixes in these
software products and services means that test verification has
had to change dramatically to keep up.

3

The Choice to Automate
Automating the test process applies computational power to what it does
best, the repetitive exercise of software systems. And yet, anyone who has
been in the software testing field for more than a few years has seen a test
automation effort fail. The project starts out with great optimism that the
selected automation tool will work wonders and in short order all the tests
will run with the push of a button. However, the tools don’t quite work as
advertised, the automation is a bit trickier than expected, and everything
about automation takes longer and costs substantially more than estimated.

Then the automated tests start generating false failures due to changes in
the system. This causes diversion of test automation team members to help
fight these false failure issues, further slowing progress. Next, a few test
automation team members take their acquired experience to other companies
and maintaining their code becomes much more difficult. Management starts
to get disillusioned at the slow progress. Developers get tired of the false
failures and want additional proof before they will work on bugs caught with
automation and the whole thing spirals downward from there.

Despite its obvious benefits, the horror stories of failed automation attempts
and massive investments in a technology that didn’t provide a positive ROI
have left many companies on the fence about test automation. So, what are
the considerations for starting a successful test automation initiative?

White Paper: The Foundations of Successful Test Automation 4

White Paper: The Foundations of Successful Test Automation 5

Developing a Test Automation Strategy
It is critical to develop a test automation strategy that meets your business
needs. Test automation can generate a huge ROI, but it takes time.
Management must be committed to the effort and their expectations must
be carefully calibrated against a well-thought-out strategy. Automation is
not a closed ended project, but rather a fundamental change in how the
testing aspect of software development is performed.

Test case parsing, automation tool selection, staffing and automation
priorities must all be considered in a unified approach to creating as
solid foundation for the automation effort. Test automation is no less a
programming project than is production code development. The initial
sticker shock of test automation can easily dim management’s prospects
for an actual ROI making strategic plans for implementation absolutely
necessary.

Cultivate a Test Automation Culture
Using test automation during the software development life-cycle provides
quick feedback to the team after a new feature has been developed. It is a
strategy that is especially beneficial for tests that don’t change frequently
and are executed repeatedly on every new release.

Test automation isn’t so much about creating more available time in the test
cycle, but instead being more efficient and productive with the time spent
testing. This is best supported with a mind-set of looking to see where

White Paper: The Foundations of Successful Test Automation 6

automation makes sense and avoiding trying to make it a one size fits
all. By automating repetitive tests, you can reallocate that time to running
exploratory tests to verify that your application is still in good order as
changes are being delivered. The downside of automating those repetitive
tests is that many organizations fall into a “set-it-and-forget-it” mentality.
Automated test script maintenance is one of the most crucial aspects of
test automation. As the development of your product progresses, so must
your automation code.

Test automation doesn’t eliminate the need for human interaction.
If anything, it requires more collaboration if the scripts are to
be comprehensive and effective. Writing scripts can’t happen in a bubble.
The most effective scripts result from an agile collaboration between
the business analysts, developers, and QA team. This sharing of ideas is
what ultimately leads to a comprehensive suite of scripts that reflect the
expanse of system functionality.

Scripts will need to be revised as requirements change. New cases will
need to be developed as new features arise. Existing test cases may
need to be deactivated or thoroughly rewritten to accommodate system
changes. All of this requires a feedback loop between every member of
the agile team to keep everything in sync.

White Paper: The Foundations of Successful Test Automation 7

How to Prepare for the Test Automation
Effort
There are many good reasons why companies want to start automated
testing. There are potentially large costs saving over manual testing.
Release cycles are getting shorter, so testing must be accelerated. Perhaps
the most compelling reason is that test automation improves product
quality by catching bugs earlier in the process. A set of manual tests may
take a week to run, the same tests automated could be run once or twice
a day.

The triaging and maintenance of automated tests is where most
organizations tend to trip up. They don’t build that time into their initial
test automation strategy and the automation project dies as a result.

This is one place where a 3rd-party testing service can be of great use.
QualityLogic’s services are regularly utilized to review test failures as well
as debug and update test automation code. We are also extremely adept
at helping companies develop their test automation strategy and writing
automated test scripts. Utilizing an outsourced software testing company
to ensure the success of your automation project allows your company
to focus on developing revenue-generating code for new features and
critical updates.

There are two primary types of tests that are typically automated. Unit
tests that focus on individual source code methods and functional tests

White Paper: The Foundations of Successful Test Automation 8

that ensure all aspects of the software program are working correctly. The
task of unit test automation is usually the domain of the developer, while
functional test automation typically rests with the software test team.

A good starting point for test automation is to create a sanity check that
serves as a touch on each major system feature to verify that it is in place
and elementally functional. Note that a sanity check does not test a feature
in depth. Its purpose is to assure that some change in the system, be it
a new feature or a defect fix, has not damaged a supposedly unrelated
portion of the system code.

Test automation is an investment in increasing test throughput and should
be viewed as such. Its main payoffs are its ability to increase test case
execution, facilitate high repetition, and detailed regression testing.

How to Optimize and Scale Your
Automation Project
Automated and manual testing go hand-in-hand. Neither is inherently
better than the other. Both strategies complement each other in ways that
allow for the most comprehensive and effective test strategy. That said,
you will need to employ both at some point in your development cycles.
The key is knowing when and how to implement each.

As mentioned previously, continuous integration environments require a
testing approach that can keep pace. Test automation makes it possible

White Paper: The Foundations of Successful Test Automation 9

to repeat an entire test suite as often as needed. Not only that, automated
scripts can simulate multiple concurrent users to evaluate the system’s
performance.

Data-driven functions are another prime area for automation. There may
be cases where the same tasks need to be validated with different inputs.
Doing so manually is time-consuming and a waste of QA resources.
Automating these types of tasks ensures that all possible input scenarios
are accurately covered in depth.

Lastly, static and repetitive tasks are ideal for automated scripts. Why
waste time having someone manually verify things that remain relatively
unchanged from one cycle to the next? Letting automated test scripts
handle these tasks frees your team to work on more important items.

That said, there are scenarios where human observation is more
appropriate than an automated script. For example, when the goal
is testing usability, a manual approach is best. Humans learn more about
user perspective during their evaluation. They can then use this knowledge
to make recommendations on how to improve the user experience. Also,
people are good at catching things the system missed. It is not uncommon
for someone to find things that were never addressed as a part of the
automated scripts. Lastly, and perhaps most importantly, there is no
substitute for the analytical observation skills required to evaluate complex
systems. It may not be possible to evaluate certain features using
automation. In those cases, a manual approach is necessary.

White Paper: The Foundations of Successful Test Automation 10

In the end, the real question isn’t which is better than the other. The real
question is, how can you capitalize on both to get the most effective
results.

Coding Best Practices for Test
Automation
Showing automation results quickly is a huge confidence builder for
both the automation team and management. A result of this is that code
developers are pressed into automation script development at the outset
of most automation projects.

They will bring their coding practices with them and good production code
shares its foundations with good automation script code.

Coding best practices for test automation include templates that guide
the test script developers’ efforts. Key elements of an effective set of best
practices include:

• Test case naming

• Object location strategies (use more than one)

• Hard or soft asserts

• Wait handling

• Page object pattern usage

• Data driven test inputs

White Paper: The Foundations of Successful Test Automation 11

• Minimal dependencies with other test cases

At QualityLogic we use AI-based similarity analysis of manual test cases
to identify opportunities to build libraries for common user interactions
and to identify the order in which to approach coding of test cases to
maximize development progress. The techniques can be grouped into the
following approaches:

• Isolation of globally common test sequences whose functionality can
be automated as part of a common code library

• Clustering similar test cases for assignment to the same programmer

• Predictive ordering of test cases for development to maximize code
sharing between similar test cases

Best Practices for Automated Test
Creation and Maintenance

Automated tests should focus on clear and narrow objectives, typically
replicating a specific typical user action. Tests with a narrower scope are
easier to code, easier to debug, and easier to maintain. Remember, test
automation is software development. Robust source code management is
a must using platforms like GitHub.

Manual test operations tend to rapidly cull test cases due to the continuous
review they receive from testers. But automated tests tend to raft up like old
clothes stuffed into the back of a large closet. The relatively recent advent

White Paper: The Foundations of Successful Test Automation 12

of test automation tools that generate test scripts by recording processes
and GUI activity has aggravated the issue of test script management.
Advertised as engines for quick, accurate test script generation, the code
produced by these tools usually must be altered before useful testing can
occur.

This tends to consume exactly the maintenance resources they are
intended to free up. If used extensively, test recorders can cause a great
many marginally useful and very inflexible test scripts to be amassed in a
very short period.

Take the output of an auto-generating test tool, combine it with the test
scripts created specifically by code developers, then add in tests written
by QA engineers to plug the gaps and the body of test scripts can get out
of hand quickly. Now salt heavily with functional changes brought about
by defect fixes with undesired feature interactions and you have a test
array that rapidly goes from unmanageable to unusable.

Living with false failures is a fatal mistake for automation efforts. If a test is
flakey, pull it out of the daily automation runs until it is fixed. If development
is not going to fix certain bugs, pull the test cases that trigger those errors
from daily runs. You must preserve an environment where an automation
run failure is a red flag to everyone on the team. False failures or failures
that are ignored poison that assumption.

Test creation should be predicated on clear criteria for why the test is

White Paper: The Foundations of Successful Test Automation 13

necessary and when it is to be implemented. At the other end of the
process, formal test retirement criteria should govern a regular audit of the
existing tests. With the pressures to create them, test retirement becomes
critical. A firmly grounded retirement plan keeps test suites from growing
out of control.

Regression tests are another source of rapid test suite growth. Retirement
of obsolete scripts will help keep regression suites under control.
Understand that full regression testing and the data sets it entails may
simply take longer than the development schedules permit. “Regression
test everything” sounds impressive but it doesn’t scale and can undermine
your automated testing effort.

A test automation framework should be put in place. This is more than just
the selected automation tool. It includes common resources and libraries
that test cases leverage; integration with build processes; issue trackers
and other parts of the software development infrastructure. This allows
the test developer to focus on coding test cases knowing the framework
will take care of the execution and reporting details.

Choosing the Right Test Automation
Tools
There are a wide variety of test automation tools available with varying
degrees of effectiveness and requiring differing skills. The first order
selection criteria are whether to go with a commercial tool offering or

White Paper: The Foundations of Successful Test Automation 14

open source tools. Commercial test automation tools from big players
like Tricentis are robust, but very expensive. Commercial tools tend to be
relatively easy to use, simplify the test creation process, have training and
support for their products, and tend to be less buggy than their Open
Source counterparts.

Open Source automation tools are free, have supportive user groups, and
some, like Selenium, have become de facto standard test tools. Multiple
Open Source tools may need to be used in concert for a given automation
solution and integration can be challenging. Customer motivations vary,
but few like the idea of being locked into a single vendor for a critical part
of their development infrastructure.

Automation tools can be roughly categorized in to the following general
areas:

Dumb Record & Playback Test Tools

A brute force recording of user interactions with the application. Test scripts
are very fragile and break with the slightest change in the application.

Smart Record & Playback Test Tools

More adaptive recording of user interactions with the application, storing
multiple object identifiers and leveraging machine learning. They can adapt
in a limited fashion to application changes without breaking the test script.

AI Assisted Auto Discovery & Playback

Self-discovery of paths through the application using reinforcement

White Paper: The Foundations of Successful Test Automation 15

learning, with the ability to playback any of the discovered paths. Able to
adapt in a limited fashion to application changes without breaking the test
script.

Abstract Syntax Test Tools
Use of natural language, keywords, or procedural text (think Cucumber/
Gherkin) to define test cases, with the underlying automation code
driven by the abstract test definitions. In some tools the automation code
triggered by the abstract test definitions must be hand coded while other
tools have some helper routines deal with more common scenarios that
can be inferred from the application objects.

Hand Coded Test Development

Use of common programming languages to define automated test cases
using an underlying automation API such as those supported by Selenium,
Appium, or mobile device operating systems.

While there is a lot of excitement around the AI enabled testing tools,
particularly those that can auto-generate test scripts, these tools work
best with applications whose application logic is relatively simple. In our
experience, applications with more complex application logic require hand
coding of automated test cases to fully test that application logic.

Programming skills are needed for most test automation efforts. Senior
test developers can code reference tests for various test classes, then more
junior staff can use those reference tests as a guide for derivative tests.

White Paper: The Foundations of Successful Test Automation 16

Most organizations select a specific language for test case development
and it is prudent to have potential test developers demonstrate their skills
in the selected language before being added to the team.

Industry-wide, Java and JavaScript are the most popular for test
automation projects, however QualityLogic’s customers have been more
frequently using C# or Python. In theory, Python is a friendlier language
for more junior developers which may be a consideration when selecting
a language.

Quantifying Your Automation ROI
Quality has been moved onto the front lines. Testers and code developers
are expected to work in tandem fixing bugs as quickly as they are found.
The Agile SCRUM has stand-up meetings daily in which the ‘stories’
selected for the current two-week sprint are discussed in terms of the
day’s progress in both code development and operational verification.
Once a fix or feature is integrated into the system, it is expected to be
verified and released in a day or two at the most.

This pushes hard against the reality that failing to perform adequate testing
costs more than the initial investment. A study by the National Institute
of Standards and Technology (NSIT) found that software defects cost the
economy nearly $60 billion annually.

Think you’re exempt? Think again. Imagine, just one post-deployment issue

White Paper: The Foundations of Successful Test Automation 17

could leave an entire function of your system out of commission costing
you money and customers. With that said, test automation is about much
more than speed to market. It’s about catching bugs pre-deployment
when they are less expensive to fix.

Quantitative measurement of test automation results is a problematic
proposition. You need to be able to numerically analyze which defects
didn’t show up in the released product. One step to doing this is to tag
defect reports with the specific QA phase in which they were discovered.
This will produce a readily parsed data array of which defects were caught
by automation and whether the effectiveness trend is increasing for the
number of these detections.

One of the most telling aspects of defect tracking is the escape rate.
Microsoft coined this term to label those defects that passed all the way
through the QA process and were found only in the released product.
These are obviously the most damaging bugs and improving automation
implementation should measurably drive this number down.

Aside from the cost benefits, there are several intangible benefits that
more than justify the cost. Automating repetitive tests frees up time that
can allow a team to more deeply reflect on the needs and wants of the
customer.

White Paper: The Foundations of Successful Test Automation 18

Helping You Achieve Success in Your
Test Automation Initiative
Production management is caught between two fires in that they need
skilled engineers to crank out the code that fulfills their marketing needs,
and that code must be fully tested before it goes out the door. All of
which leaves management with the unenviable task of parsing out scarce,
expensive resources, that they never have enough of, to project leads who
begin to regard each other as competitors rather than colleagues.

QualityLogic has recognized this problem from many years of test project
work with clients who must deal with it constantly. We offer skilled test
script development engineers who have that keen perspective on quality
that translates into excellent coverage on a fixed commitment basis. We
work across an array of different test systems, both open source and
proprietary, developing test specifications and their attendant scripts.

We maintain and update test scripts to keep them current, and we
guarantee the quality of the test scripts and their interdependence in
systems or re-work them at no cost to the client. We can create scripts on
existing customer platforms, or we can create an entire test automation
facility from scratch, delivering a working platform and training in-house
resources on its use and maintenance.

19

Summary
We realize that not all projects are created equal. Our team will
help you identify aspects of your system that lend themselves to
automation and which do not. Based on that, we will devise a
strategy and determine a framework that best suits your needs.
With this approach, you won’t waste time and money on a ton of
bulky features that you’ll never use. Our unique approach to test
automation uses the latest in virtualization and cloud computing.
As a result, we can scale our testing environment based on your
needs limiting the impact to your project schedule and budget.

There is finally a solution to the shortage of skilled engineers that
doesn’t rob development of badly needed resources to create
test scripts. QualityLogic brings those skills to your project at
affordable rates so that you can create the automation platform
that assures the high quality of each end user’s experience.

For More Information
Visit www.QualityLogic.com or call +1 208-424-1905

