
 

Migrating from Redshift to ClickHouse 
 
iFunny is a fun picture and GIF app that lets users to pass the time looking at memes, comics, funny pictures, cat GIFs, etc. Plus, users                          
can even upload their own content and share it. The iFunny app has been using Redshift for quite some time as a database for events                         
in backend services and mobile apps. We went with them because in the beginning there really weren’t any alternatives comparable in                     
terms of cost and convenience. 
 
However, the public release of ClickHouse was a real game changer. We studied it inside and out, compared the cost and possible                      
architecture, and this summer finally decided to try it out and see if we could use it. This article is all about the challenge Redshift had                          
been helping us solve and how we migrated this solution to ClickHouse. 
 
 

  CHALLENGE        REDSHIFT-POWERED SOLUTION 

 
iFunny required a service similar to Yandex.Metrika, but        
designed exclusively for internal use. Let me explain why. 
 
External clients—including mobile apps, websites, or internal       
backend services—create events. It is very difficult to explain to          
these clients that the event handling service is currently         
unavailable, and that they should "try again in 15 minutes or           
maybe an hour." We have a lot of clients, they’re constantly           
sending event messages and do not want to wait at all. 
 
But we also have internal services and users that are rather           
tolerant in this respect: they can work fine even when the           
analytics service is unavailable. The majority of product metrics         
and A/B testing results only need to be checked once daily, or            
maybe even less. That is why requirements for reading are          
rather low. In the event of a disaster or update, database can            
be unavailable or lose consistency for several hours, or in the           
worst case, days. 
 
If we dig into the numbers: we need to accept about 5 billion             
events per day (300 GB of compressed data), and at the same            
time maintain the data for three months in hot storage available           
for SQL queries. We also need to keep data in cold storage for             
a couple years or more while being able to return to hot storage             
in just a few days. 
 
In general, our data are sets of time-ordered events. There are           
about three hundred types of events, each with its own set of            
properties. We also have some data from external sources that          
need to be synchronized with the analytics database: for         
example, a collection of app installations from MongoDB or the          
external AppsFlyer service. 
 
In the end, we need about 40 TB of disk space for the database              
and around 250 TB more for cold storage. 

 
 
 
Okay, so we have mobile clients and backend services the          
events should be received from. An HTTP service receives the          
data, carries out basic validation, groups the events into files by           
minute of reception, saves them on a local disk, and then           
compresses and sends them to an S3 bucket. The availability          
of this service depends on the availability of application servers          
and AWS S3. Applications are stateless, which makes them         

 



 

easy to balance, scale, and replace. S3 is a rather simple file            
storage service with a good reputation and high availability, so          
we know we can rely on it. 
 
Then we need to somehow get the data to Redshift. This part is             
relatively easy: the recommended method to upload data to         
Redshift is its built-in S3 importer. Every 10 minutes, a script is            
executed  that  connects to  Redshift and  asks  it  to 
request data at the prefix 
s3://events-bucket/main/year=2018/month=10/day=

14/10_3* 

 

We use Apache Airflow to track task uploading status because          
we can repeat the operation in the event of an error and it has              
an easy-to-read task execution log, which is crucial when the          
number of tasks is high. If we encounter any issues, we can            
repeat the upload for specific time intervals or upload cold data           
from S3 storage dating back up to a year. 
 
Airflow also has scheduled scripts that connect to the database          
and periodically upload data from external storage or make  

event aggregations with operations like  
 
INSERT INTO ... SELECT … 

 

Redshift has poor availability guarantees. AWS can stop a         
cluster for updates or scheduled maintenance once a week for          
up to half an hour (the time slot is specified in settings). When             
one node goes offline, the cluster also becomes unavailable         
until the host comes back online. This usually takes about 15           
minutes and happens approximately twice a year. It isn’t a          
problem for the current system, as we knew from the start the            
database would be periodically unavailable. 
 
We used 4 ds2.8xlarge instances (36 CPU, 16 TБ HDD) for           
Redshift for 64 TB of total disk space. 
 
The final issue is backup. The backup schedule can be set in 
the cluster settings, and it runs very smoothly. 

 
 

 
 

 

   REASONS TO MOVE TO CLICKHOUSE 
 
Of course, nobody would ever think about migration to ClickHouse if they never had any issues. And we’re no exception. 
 
When we compare the storage schemas in ClickHouse with the MergeTree engine and Redshift, we find their ideology is quite similar.                     
Both databases are column-based, they excel at handling a large number of columns and are very good at compressing data on disks (in                       
Redshift, you can even configure the compression types for each specific column). Data are even stored identically: they are sorted by                     
the primary key, so only specific blocks are read and there is no need to keep specific indices in memory, which is crucial when working                         
with big data. 
 
As usual, the devil is in the details. 

 

https://airflow.apache.org/


 

 

One day,  
one table 

Data are sorted on the disk and deleted in Redshift when you run the following command: 
 
VACUUM <tablename> 
 
The vacuum process works with all data in the table. But when data for all three months is in a single                     
table, the process requires an outrageous amount of time. However, we needed to run it at least once                  
per day because we had old data deleted and new data added. We had to create a special table for                    
every day and consolidate them with views, which not only complicated the view rotation and support,                
but also slowed down query execution. The “explain” operator showed that all tables were scanned               
upon query execution, and even though scanning one table takes less than a second, every query                
takes at least a full minute to execute when we have 90 such tables. This is far from convenient. 

 

Duplicates The second issue was duplicates. Whenever data are transferred online, two things can happen: data               
are lost, or duplicates are created. We could not afford losing messages, so we just came to terms                  
with the fact that a small fraction of events will be duplicated. Daily duplicates can be deleted by                  
creating a new table, inserting data from the old table into it with rows with identical IDs deleted by a                    
window function, deleting the old table, and renaming the new one. We needed to keep in mind that                  
the view derived from the daily tables and we had to delete it when the tables were being renamed.                   
We also had to keep an eye on locks, otherwise we could receive a query that would lock the view or                     
one of the tables, which would extend the process for a long time. 

 

Monitoring and 
maintenance 

There are no queries in Redshift that take less than a couple of seconds. Even if you just want to add                     
a user or browse the list of active queries, you need to wait for a couple dozen seconds. Of course,                    
we got used to waiting, and a delay of this length is acceptable for this class of databases, but                   
eventually we started losing too much time. 

 

Cost According to our calculations, deploying ClickHouse on AWS instances with the same resources was              
exactly half as expensive. But that makes sense: Redshift is an out-of-the-box database. You just               
click a few times in the AWS console, connect to it with any PostgreSQL client, and AWS does the                   
rest for you. But was it really worth the money? We already had the infrastructure and presumably                 
knew how to back up, monitor and configure a large number of our internal services. So why not                  
support СlickHouse? 

 
 

   MIGRATION 
 
At the beginning, we deployed a small ClickHouse installation: just a single machine. We used built-in tools to regularly import                    
data from S3. As a result, we were able to test our assumptions about ClickHouse performance and capabilities. 
 
After spending a couple weeks testing a small data copy, we understood that some issues needed to be solved before fully                     
replacing Redshift with Clickhouse: 
 

● What types of instances and disks should we use for deployment? 
● Do we need replication? 
● How do we install, configure and launch it? 
● How do we monitor? 
● What schema should we use? 
● How do we send data from S3? 
● How do we rewrite all queries from standard to non-standard SQL? 

 



 

 
INSTANCES AND DISK TYPES. We decided to use the current          
installation of Redshift as a reference to determine the number          
of CPUs, disks and amount of memory we needed. We had           
several options, including i3 instances with local NVMe disks,         
but in the end we opted for r5.4xlarge and an 8T ST1 EBS             
storage for each instance. According to our estimates, this         
would give us performance comparable with Redshift at half the          
price. With EBS disks, we get simple backup and recovery via           
disk snapshots, which is almost the same as in Redshift. 
 
REPLICATION. As we were using our existing Redshift        
configuration as a reference, we decided not to use replication.          
Another benefit of this is that we did not need to learn            
ZooKeeper, a service we don’t have in our infrastructure yet (but           
it’s great we can now perform replication when we need to). 
 
INSTALLATION. This is the simplest part. Just a small Ansible          
role that installs ready-to-use RPM packages and makes the         
same configuration on every host is enough. 
 
MONITORING. We use Prometheus with Telegraph and       
Grafana to monitor all our services. So we just installed the           
Telegraph agents to our ClickHouse hosts and prepared a         
Grafana dashboard to show the current workload on server         
CPUs, memory, and disks. We used a Grafana plugin to display           
the current queries to the cluster, the status of the import from            
S3, and other useful things. The result was much better and           
more informative than the AWS console dashboard, and it         
worked quicker too! 
 
SCHEMA. One of our main mistakes in Redshift was storing          
only the main event fields in separate columns while  
concatenating all other rarely-used fields in one large column         
named properties. Indeed, we were able to flexibly edit fields at           
early stages when we had no understanding which events we’d          
collect and what properties they’d have (plus they might change          
5 times a day). But on the other hand, queries to the large             
properties column were taking more and more time. In         
ClickHouse, we decided to do everything right from the very          
start by taking all the columns we could and assigning them the            
optimal type. As a result, we were left with a table with            
approximately two thousand columns. 
 
The next stage was selecting the right engine for storage and           
partitioning. 
 
As for partitioning, we decided not to reinvent the wheel: we just            
copied our approach from Redshift creating a partition every         
day, but now all the partitions were stored in a single table,            
which considerably accelerated queries and simplified      
maintenance. We chose the ReplacingMergeTree engine for       

storage, as we can delete duplicates from a specific partition by           
just running the OPTIMIZE… FINAL command. Moreover, with        
the daily partitioning model, we work with data for just one day,            
which in the event of errors or disasters is much quicker than            
dealing with a month’s worth of data. 
 
DELIVERY OF DATA FROM S3 TO CLICKHOUSE. This was         
one of the longest processes because we were unable to use           
the built-in ClickHouse tools for uploading. S3 stores data in          
JSON, so each field has to be extracted via its jsonpath (as we             
did in Redshift), and sometimes we even had to make          
transformations: for example, converting the message UUID       
from a standard form like     
DD96C92F-3F4D-44C6-BCD3-E25EB26389E9 into bytes and    
putting it into FixedString(16). 
 
We wanted to have a special service similar to the COPY           
command in Redshift. But we were unable to find an          
out-of-the-box solution, so we had to make it on our own.           
Describing this solution could be a topic for another article, so to            
make a long story short, it is an HTTP service deployed on each             
host with ClickHouse. Any host can be communicated with. In          
the query parameters, we specify the S3 prefix, from which the           
files are taken, the jsonpath list to transform from JSON to a set             
of columns, and the set of transformations for each column. The           
server receiving the query starts scanning the files from S3 and           
sets parcing tasks to other hosts. It was important for us to store             
all rows that could not be imported into a separate СlickHouse           
table along with an error message. This is very helpful in           
investigating issues and bugs in the event handling service and          
in the clients that generate these events. When we deployed the           
importer directly on the database hosts, we utilized resources         
that were usually idle because they do not receive complex          
queries round-the-clock. We also have the option of moving the          
importer service to standalone hosts if the number of queries          
increases. 
 
Importing data from external sources was not a challenge for us.           
We just changed the destination from Redshift to ClickHouse in          
the scripts we already had. 
 
There was also an option to connect MongoDB as a dictionary           
instead of doing daily copies. Unfortunately, this did not suit us           
because a dictionary must be always stored in memory, and the           
sizes of most MongoDB collections make this impossible.        
However, we still made use of dictionaries because they are          
very convenient in connecting GeoIP databases from MaxMind        
and are very useful in queries. To do this, we use the ip_trie             
layout and CSV files provided by the service. For example, the           
configuration of the geoip_asn_blocks_ipv4 dictionary looks like       
this: 

 
 

 

 

https://clickhouse.yandex/docs/en/query_language/misc/#optimize
https://docs.aws.amazon.com/en_us/redshift/latest/dg/r_COPY.html


 

< dictionaries > 
< dictionary > 

< name >geoip_asn_blocks_ipv4</ name > 
< source > 

< file > 
< path >GeoLite2-ASN-Blocks-IPv4.csv</ path > 
< format >CSVWithNames</ format > 

</ file > 
</ source > 
< lifetime >300</ lifetime > 
< layout > 

< ip_trie  /> 
</ layout > 
< structure > 

< key > 
< attribute > 

< name >prefix</ name > 
< type >String</ type > 

</ attribute > 
</ key > 
< attribute > 

< name >autonomous_system_number</ name > 
< type >UInt32</ type > 
< null_value >0</ null_value > 

</ attribute > 
< attribute > 

< name >autonomous_system_organization</ name > 
< type >String</ type > 
< null_value >?</ null_value > 

</ attribute > 
</ structure > 

</ dictionary > 
</ dictionaries > 
 

 

 

Just put this config at /etc/clickhouse-server/geoip_asn_blocks_ipv4_dictionary.xml, and you can make requests to 
the dictionary to get a provider name by IP address: 
 
SELECT dictGetString('geoip_asn_blocks_ipv4', 'autonomous_system_organization', 
tuple(IPv4StringToNum('192.168.1.1'))); 
 

 

Changing the data schema. As previously mentioned, we decided to abstain from replication because we can afford unavailability in the 
event of a disaster or scheduled maintenance, and a data copy already stored in S3 can be moved to ClickHouse in a reasonable 
amount of time. We do not need to deploy ZooKeeper if we don’t use replication, but the absence of ZooKeeper makes it impossible to 
use the ON CLUSTER expression in DDL queries. We solved this issue with a small Python script that connects to any ClickHouse host 
(there are just 8 of them now) and executes the specified SQL query. 
 
Incomplete SQL support in ClickHouse. We were converting queries from the Redshift to ClickHouse syntax at the same time we were 
developing the importer, and this task was mostly accomplished by an analyst team. It might seem strange, but the case was not in 
JOIN, but in window functions. It took us several days to understand how to implement them with arrays and lambda functions. We were 
lucky this issue is often addressed in the numerous articles on ClickHouse, for example, on events.yandex.ru/lib/talks/5420. At the time, 
our data were recorded in two places at the same time, Redshift and the new ClickHouse database, so we could compare the results 
when transferring queries. Nonetheless, it was rather difficult to compare performance because we removed one large properties 
column, and most queries addressed only the columns they actually needed. Of course, performance growth was easy to notice in such 
cases. As for queries that did not address the properties column, they had either the same or slightly higher performance. 
 

 

https://events.yandex.ru/lib/talks/5420/


 

As result, the database schema looked like this: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   RESULTS 
 
In the end, we gained the following: 
 
 

● One table instead of 90 
● Execution of service queries in milliseconds 
● Cost halved 
● Simple deletion of event duplicates 

 
 

There were also some cons, but we were ready for them: 

● We have to recover clusters on our own in the event of 
disasters 

● Schema changes must be carried out on each host 
separately 

● We have to update the system on our own 

We can’t make a straight comparison about query speed because the data schema changed so much. But many queries sped up simply 
because less data are read from the disk. Truth be told, we should have made this change in Redshift, but we decided to combine it with 
our migration to ClickHouse. 
 
It took us three months to prepare and carry out the migration. Two specialists started on the project at the beginning of July and 
wrapped it up in September. On September 27, we shut down Redshift, and since that time we have been working exclusively on 
ClickHouse. In other words, just about three months have passed. Not a very long time, but we have not yet encountered a data loss or 
critical bug that would make the entire cluster go offline. We’re looking forward to upgrades to new versions! 
 

 


