
Why EnginE yard is bEttEr
than do it yoursElf

Engine Yard • www.engineyard.com • sales@engineyard.com • 1-866-518-9273 • 1-415-624-8380

Comparisons between Platform as a
Service and self-administered infrastructure

Introduction
Those unfamiliar with PaaS options may at times ask, “what’s the true benefit of using a

Platform as a Service?” They elaborate by saying, “heck, I can install Ruby (or Node.js, PHP,

MySQL, PostgreSQL, etc.), deploy my application and monitor the systems myself!” This is

definitely true. There are thousands of companies doing their own DevOps today and that

pattern works for them.

Where a PaaS like Engine Yard really shines is when a

company doesn’t have the developer resources, in-house

expertise, or contractor budget to properly manage their

production infrastructure. A PaaS allows a development

team of any size to focus on their application instead of

their infrastructure, thus making them more productive and

providing more “bang for the buck” with development dollars

spent. Which would you rather do as a developer: write code,

or get tied down in several days of yak shaving while building

a new production cluster? And what if that cluster has a

hardware failure at 4AM—how do you feel about being “on call”?

We are going to lay out some explanation on what it takes to build, monitor, support and

manage, a production web application cluster at medium scale, and then contrast that

with equivalent steps when using Engine Yard PaaS.

Running your own production setup on your own has its place and its merits. Developers

can learn so much by running their own production cluster, and those lessons will help

them write more stable and efficient applications. However, as with all things, there are

tradeoffs of time and effort (and therefore, budget) to consider, and in those cases a

PaaS may very well be a better option, especially for small teams. If you’re on the fence,

not sure which way to go, this ebook aims to illuminate the differences in control, time

and cost to help you make an informed decision that best benefits your team, your

client(s), your project and your users long-term.

Write code or get tied down
building a new cluster?

1

The Basics
Let’s start with the basics. In most modern applications, you’ll want to use a cloud

hosting provider due to the cost savings and disposability of virtual machines.

At Engine Yard, we use Amazon EC2 for our underlying infrastructure. You have

plenty of choices out there including EC2, Rackspace Cloud, and HP Cloud.

Each have their pros and cons. For the purposes of this ebook, we’re going to

compare a “DIY” setup with Engine Yard.

Some organizations and/or applications may be better suited to running bare metal

in a co-located data center. Remember that you’ll likely have some complex contracts

and logistics come up in the process of putting hardware in that data center. A fully

managed solution will be simpler to have set up, but you won’t own the hardware and

such solutions can be rather expensive, also at times involving contractual obligations.

After deciding where your application will be hosted and on what type of platform,

you would need to make a choice as to your Linux distribution. Our general advice

would be to use whatever Linux distribution your team feels most comfortable with

and that has the best overall community and/or commercial support.

2

http://aws.amazon.com/ec2/
http://www.rackspace.com/cloud/
https://www.hpcloud.com

3

Building a Cluster
Once you’ve made the above basic decisions and assessed your traffic expectations, you can
start building out an initial production cluster. For the purposes of this ebook, we’re going to
assume you’ve decided to run a Rails app on Amazon EC2, or a similar cloud service, directly.

As you can see from the following comparison, you have complete and total control over
the individual specific functions of setting up a cluster on your own, but at a significant
trade off: time and effort. The amount of work we’ve seen put into standing up a cluster
in some cases can range from a day to a week, depending on the complexity involved
and how many surprises get thrown your way.

With Engine Yard, or any properly built PaaS frankly, that “day to week” timeframe is
shrunk down to a matter of minutes. The process involved in the Engine Yard section can
be completed in under an hour in most cases (issues of loading existing
database and DNS propagation withstanding). However, there is a trade off here too:
flexibility. When using any form of automation, by the very nature of the beast, you’ll
have less flexibility. Which can prompt another question: “How can I get that flexibility
back, and how much flexibility do I need?”

On Engine Yard, we solve this flexibility problem with Chef. An automated configuration
tool written in Ruby, Chef is designed to be easy to learn and to help you automate and

do it yoursElf

Continued Next Page

EnginE yard

Continued Next Page

 1 Create security group and manage SSH
keys for you and your staff

 2 Configure security group to allow traffic on
ports 443, 80, and 22 (SSH)

 3 Choose a virtual machine size and boot from
an AMI.

 4 Update package manager.
 5 Upgrade all available base packages to latest

versions to avoid known security vulnerabilities.
 6 Install Ruby and RubyGems, probably from

source since some distributions tend to lag
behind on patchlevel vs. the latest available,
and you should keep your version of Ruby
patched to the latest patch level available to
avoid commonly known security vulnerabilities.

 7 Create another server in your security group for
your database.

 1 Upload your SSH public key through a web-
based GUI.

 2 Create an “application” in the dashboard. Specify
the git URI for your application’s source code.

 3 Use the dashboard to create an environment
and designate your public key as having
access.

 4 Select the instance size you want for your
application, database and utility servers, and
how many of each you want, all on one screen.

 5 Click “Boot”.
 6 Click “Deploy”
 • Optional: migrate the database for a fresh

app with no data by clicking the “migrate”
checkbox

 • Optional: Ignore the “migrate” checkbox
and load your data by hand if coming from
another app (a SQL dump for example)

 7 Verify the app is functioning as expected.

4

standardize system configuration by writing code. Since virtual machines are treated as
disposable commodities, you need configuration automation
to make certain that all nodes in any given cluster are identical and that their configura-
tions are
repeatable in the future, even when being stood
up from scratch from an empty data volume.

Using custom Chef recipes, you can exercise
nearly 100% total control over your cluster
configuration. Once written, properly tested
and in use, custom Chef recipes allow you to
automatically configure any aspect of any of your clustered instances at boot time,
meaning that you can trash one instance and spin up another one and not have to
worry about configuration at all. It just happens automatically when you have custom
Chef recipes uploaded for a given environment.

do it yoursElf

Time Estimate: 2–4 days

EnginE yard

Time Estimate: 45 minutes–1 hour

 8 Configure security groups to allow access to
the database server on its running port from
only other members of the same security group
and on port 22 (SSH). Deny all other access on
all other ports.

 9 Install and configure your database of choice.
 • Optional: Load the database schema and

data if you have it (for apps with existing data)
 • Optional: create the database and then

migrate it up and seed it later in your initial
deploy

 10 Install and configure your application server of
choice (Thin, Passenger, Unicorn, Puma, etc.)
on your application instance.

 11 Install and configure a front-end web server:
e.g. nginx or Apache. Integrate it with your
application server (tell nginx about the Unix
socket that Unicorn is storing all its requests
in; Passenger is much easier but may not be
appropriate for all apps).

 12 Configure Passenger workers for global queue
and “always on” workers for single apps need-
ing 24/7/365 constant performance if using
Passenger

 13 Set up deployment tools of choice (e.g. Capistrano)
 • Remember to have it clean up after itself;

leaving old releases around will slowly but
surely eat up all your disk space!

 14 Configure your application to look at your single
database master.

 15 Deploy code.
 16 Start your front end and back end application

servers.
 17 Test your application’s functionality.
 18 Deploy your code again to test that your

deploys work as expected.
 19 Test the application again to be sure that

deploys didn’t break anything.
 20 Obtain an Elastic IP address and attach it to the

one/primary application instance you have running.
21 Tweak DNS entries to point your domain to that

IP address.

 8 Adjust DNS to point to the EIP already issued
and wait for propagation.

 9 High five everyone in the office.

252426

https://support.cloud.engineyard.com/entries/21009867-customize-your-environment-with-chef-recipes

5

standardize system configuration by writing code.
Since virtual machines are treated as disposable
commodities, you need configuration automation
to make certain that all nodes in any given cluster
are identical and that their configurations are
repeatable in the future, even when being stood
up from scratch from an empty data volume.

Using custom Chef recipes, you can exercise
nearly 100% total control over your cluster
configuration. Once written, properly tested
and in use, custom Chef recipes allow you to

automatically configure any aspect of any of your clustered instances at boot time, meaning
that you can trash one instance and spin up another one and not have to
worry about configuration at all. It just happens automatically when you have custom
Chef recipes uploaded for a given environment.

Get flexibility with Chef recipes

https://support.cloud.engineyard.com/entries/21009867-customize-your-environment-with-chef-recipes

6

Scaling
Any application that’s built to be successful is eventually going to need to scale. In this
example we’re starting out with the most basic cluster we realistically can operate in
production: one application instance and one database master instance.

At some point however, you’re going to need to add more application instances to
handle load from end users. Additionally, you may run into performance issues using
a single database master for both reads and writes. At scale, it just won’t keep up and
will take forever to return query results to your application instances, so you’ll need to
horizontally scale your database as well.

Scaling the Application Tier
Let’s start with a discussion on scaling the application tier. You’ll need to duplicate
your existing application server, which is easy if the entire thing is EBS-backed on EC2.
However, having an entire instance based on EBS can make for slow performance, so
you may not have opted for that route. Either way, you need a way to quickly and easily
make another of those servers.

Once that’s done, you also need a way to tell incoming traffic to be load balanced
between those servers. You can do this with a virtual load balancing appliance such
as an Elastic Load Balancer, or with software, such as haproxy.

Next, you have to deploy your code to the second (or third, fourth, fifth, and so on) application
server in your cluster and verify that it’s been set up correctly, is secured, has been added to
the load balancer pool, and is actually serving up the right code.

Finally, you have to alter your deployment process to push your new code to all application
servers in your cluster, and devise a strategy for doing it with minimal downtime.

If you have an application that takes uploaded assets and does something with
them, please note: Moving from a single application server to a multiple application
server cluster is going to cause you pain no matter how you do it. The reason being
that a request will go to one application server with the uploaded data (say, a forum
avatar for example) but not the other(s). Then it gets saved on disk on one of the
application instances, but not on the others, meaning that future requests to
/path/to/wherever/your/static/assets/are/avatar.png returns a 404 on all servers
except the one that processed the original upload.

This is why you really need to upload your assets to Amazon S3 or a similar storage service
(Rackspace Cloud Files for example). Many gems support this pattern already, and for
non-Ruby users, I’m sure there are libraries and/or examples on how to achieve similar re-
sults in your language of choice.

https://support.cloud.engineyard.com/entries/21715452-use-elastic-load-balancing-with-engine-yard-cloud
http://haproxy.1wt.eu

7

Scaling the Database Tier
Now that you’ve added your application instances, you’ll want to scale out your database
tier with one or more replicas. To do this, your application first should be configured via
whatever gem or library you choose to perform reads from replicas and writes to the master.
This applies primarily to standard SQL databases (MySQL, PostgreSQL).

do it yoursElf

Time Estimate: 1-2 days

EnginE yard

Time Estimate: 20 minutes

 1 Add another application server and do
every thing you already did before above
when standing up the server in the first
place, minus the database related parts.
That may take you an entire day, or more if
you run into surprises.

 • Optional: If you did set it up to be fully
EBS backed, you could snapshot the
application server volume, then boot
another instance and create a separate
volume for it based off that snapshot.
That would definitely be far faster, but
performance may not be adequate if you
have to frequently read or write a lot of
information to the disk.

 2 Add an Elastic Load Balancer or install a
software based load balancer on your
primary application instance (where the EIP
is attached).

 • If you add an ELB, you have to move the
EIP to the ELB, or modify DNS with the IP
address of the ELB. (Sorry about the TLA’s,
it’s just part of DIY.)

 • If you use a software based load balancer,
you’ll need to configure it with the host-
name and port of the other servers in the
cluster. This means you’ll likely have to
run the load balancer on port 80/443,
and then change your front-end web
server to run on, for example, 81/444 and
forward traffic to those ports on the other
machines. This is how we do it with
haproxy right now, for example.

 1 Go to the environment screen, click “add”,
select an application instance and click “add
to cluster”.

 2 No, seriously, that’s it. Off to the beach!

252426

8

Let’s start by examining what you’d have to do to add a single database slave to a
MySQL cluster. PostgreSQL is discussed on the next page.

do it yoursElf

Time Estimate: 1–2 days

EnginE yard

Time Estimate: 20–40 minutes

 1 Create a new instance, update all packages,
and install MySQL; verify that you’re running
the same version on both Master and Slave.

 2 Configure the master to use binlogs and
restart MySQL.

 3 On the Master, flush tables to disk and lock
the master so that no further data gets writ-
ten. Wait for the flush to finish.

 4 Issue SHOW MASTER STATUS\G on the
master and record the binlog file name and
position.

 5 Initiate a snapshot in your AWS console, or
start an rsync of data from the master to the
slave.

 6 Once the snapshot starts and you’re certain
that it’s running, you can release the data-
base lock.

 • If you went the rsync route, you have to
wait for the entire rsync to finish before
you can release the database lock.
Otherwise the data on disk will change
right underneath rsync and you won’t be
able to reliably re-establish replication.

 7 On the master, create a replication user with
replication privileges.

 8 On the slave, use the CHANGE MASTER
statement in the console to specify the
master hostname/IP address, port, user-
name, password, binlog file and position.

 9 Issue START SLAVE
 10 Check that it’s indeed replicating by issuing

SHOW SLAVE STATUS\G every few minutes
to check that it’s advancing (look at “seconds
behind master”). Eventually, depending on
the size of the data, it should catch up and
continue being in-step with the master.

Repeat this for each slave you want to add to
your cluster.

 1 On the environment page, click “Snapshot”.
 2 Once complete, click “Add”.
 3 Add a database slave and select the latest

snapshot, then click “Add to Cluster”.
 4 Break for pizza.

252426

9

When establishing MySQL replication, recording the position and filename of the
binlog on the database master is of paramount importance because that’s how your
slave knows where to start replicating from. In situations where an rsync is required
to move data across (as opposed to a snapshot, which can include any changes that
occur during its execution in the snapshot itself) from master to slave, you’ll need
to keep the database locked until the rsync is complete to avoid possible data loss
or other issues.

Setting up replication with PostgreSQL is different—at least from the “DIY” standpoint.
There are multiple replication strategies that can be used for different reasons and
architectures, and you’d first have to assess which is best for your application and
cluster configuration. Once that’s done, you would need to create new PostgreSQL
replica servers, rsync files from the master to the replica, make configuration changes
and edits on both, and then restart the servers. The PostgreSQL wiki has a great getting
started tutorial here. Note that on Engine Yard, all this is handled for you through the
exact same interface as mentioned for MySQL above: just “add to cluster” and
you’re done.

Additionally, being alerted to problems with replication is also a key factor.
On Engine Yard this is already monitored for you; on your own, you would need to
enable monitoring of replication and the overall health of both databases on your own.

http://wiki.postgresql.org/wiki/Binary_Replication_Tutorial

10

Database Backups
Having a database replica or two in your cluster is always a good practice to help
you quickly recover from a database-impacting event by promoting a replica to master
status, but that shouldn’t be the complete sum of your database backup strategy. You
should regularly snapshot and/or perform SQL dumps of your data and store them.

do it yoursElf

Time Estimate: 1–2 days

EnginE yard

Time Estimate: None. Built-in to
the product.

 1 Establish a database replica. At any form of
scale, you probably shouldn’t be executing
SQL dumps or snapshots against the master
because various locks and I/O performance
issues can come into play, so your snapshot/
sqldump should be taken from the replica.

 2 Create an automated script in bash, ruby,
python, etc. to run a SQL dump for your
database of choice (e.g. mysqldump) and
then ship the dumped file off to a remote
storage location, Amazon S3 for example.

 3 Test the script to ensure that it works.
 4 Create a cron job entry to execute that script

at your lowest traffic time(s) every so often—
maybe once or twice per day.

 5 Configure cron to email you if a problem
occurs.

 6 Create some form of automation to purge
old SQL dumps from S3 (or your storage
provider of choice) and ensure that it runs
at regular intervals.

 7 Test all of the above thoroughly to be sure
that it works as expected.

 1 By default, this is already done. All you have
to do is tell Engine Yard Cloud how many
backups to keep, and how long to keep
them. That’s it.

 2 Time to kick back and relax.

252426

Log Management
Any sufficiently sized application will result in a multitude of logs being created, and
without proper log management in place, can fill a disk rather quickly.

Monitoring
The DIY sysadmin’s job is still not done. Once your cluster is built and running the
way you want it, you’ll need to implement a monitoring system of some form.

There are two basic “observational vectors” for monitoring. The first is what we’ll call “inter-
nal”—monitoring that’s internal to the system, running on a host that may warn you if memory
and swap become dangerously low, or if CPU usage spikes.

The second observational vector we consider to be “external”— e.g. a site uptime monitor.
You need to know if your site goes down and you’ll need a separate service, such as
SiteUptime or Pingdom, or a multitude of others, to be able to alert you if that happens.

do it yoursElf

Time Estimate: 2–3 hours

EnginE yard

Time Estimate: None. Built-in to
the product.

 1 Identify each log on the system that needs to
be rotated by logrotate.d.

 2 Create configuration files in /etc/logrotate.d
for each of them.

 3 Restart logrotate.d.

 1 Grab your friends and
head out for drinks,
because this is already
handled by default.

252426

11

%20http://siteuptime.com
https://www.pingdom.com

12

Setting up external monitoring is quite a bit easier as it usually involves purchasing
a monthly service from a third party, such as pingdom or siteuptime.com. However,
depending on your choices, you may have additional fees vs. what’s already built into
the Engine Yard platform.

In addition to the monitoring available to you by default with Engine Yard, you can
use the AppFirst and/or New Relic addons to obtain metrics about your application(s)
and servers. Enabling these on Engine Yard takes a matter of minutes, whereas doing
so by hand may take hours to days, depending on how billing accounts need to be
set up and departmental approval that may be needed.

do it yoursElf

Time Estimate: 1–2 days

EnginE yard

Time Estimate: 3 minutes

 1 Make a choice for system monitoring. There
are many tools out there: commercial, open
source, brand new or long-standing and
battle-tested. Your choice.

 2 Go through the documentation for the tool of
your choice and install the monitoring tool.

 3 Write configuration files to monitor what you
consider to be important. This may not be a
simple task whatsoever depending on the
tool you choose.

 4 Ensure that alerts are e-mailed to you at an
appropriate address.

 1 Enter your e-mail address at which you
want to receive alerts in the environment
dashboard.

 2 Knock off work early for a round of golf—
you’re done.

252426

Setting up external monitoring is quite a bit easier as it usually involves purchasing
a monthly service from a third party, such as pingdom or siteuptime.com. However,
depending on your choices, you may have additional fees vs. what’s already built into
the Engine Yard platform.

In addition to the monitoring available to you by default with Engine Yard, you can
use the AppFirst and/or New Relic addons to obtain metrics about your application(s)
and servers. Enabling these on Engine Yard takes a matter of minutes, whereas doing
so by hand may take hours to days, depending on how billing accounts need to be
set up and departmental approval that may be needed.

https://www.engineyard.com/partner/228
https://support.cloud.engineyard.com/entries/21694706-monitor-applications-with-the-new-relic-add-on
https://www.engineyard.com/partner/228
https://support.cloud.engineyard.com/entries/21694706-monitor-applications-with-the-new-relic-add-on

Expect and Respond to the Unexpected
Every production system at one point or another experiences an unexpected event.
Hardware failure is far from unheard of on systems like Amazon EC2, weather events
can impact operations, user load can spike unexpectedly, a multitude of security
vulnerabilities could be published or exploited, and so on. Unfortunately, these
things have a tendency to happen at the worst possible times. Murphy’s law
applies: the least opportune time for a system to go down is when it will.
So the question then becomes: how fast can you respond?

do it yoursElf

Time Estimate: 1–2 days

EnginE yard

Time Estimate: None. Built-in to
the product.

 1 Receive an alert at an inopportune time.
 2 Drop what you’re doing; race home, get

up in the middle of the night, or get to
your office.

 3 Assess the situation: how urgent is it? Is
the site down or just sluggish?

 4 Diagnose the problem.
 5 Call in whatever assets you need to ad-

dress the problem; other developers if
needed, for example.

 6 Begin work to repair the issue, possibly
pushing new code to address the problem,
or potentially restarting services, moving
IP addresses, conducting failovers, and
other items as needed.

There are two possible ways these situations
are handled with Engine Yard.

Standard support customers:
 1 Receive alert
 2 File ticket with support team
 3 Let them handle it

Premium support customers:
 1 Receive the alert
 2 Roll over and go

back to sleep
because the
support team
will automatically
handle it for you and
contact you if they need
your compliance (e.g. push new code)
to fix the problem.

252426

13

Summary
In summary, running your own application cluster at scale can be a very time

consuming process to get set up properly. Even when “finished,” one still has to

manually respond to issues and events, apply security patches and upgrades, and

keep software versions up to date. A Platform as a Service offering like Engine Yard

automates the vast majority of that process without sacrificing flexibility or control,

allowing a development team to focus purely on their application.

At the end of the day, for any small to medium sized business, and for departments

within the enterprise, it’s about budget and money. You’re going to spend money on

hardware (physical or virtual) one way or another. The question therefore becomes,

is the cost of a PaaS less than, or greater than, that of a systems administrator, and

do you necessarily *need* a full time systems administrator for your application?

In some cases you absolutely will need a dedicated systems administrator, but in

most cases, a PaaS can provide agility, capabilities, and access to expertise

otherwise not attainable at such a low cost.

14

15

Engine Yard, 500 Third Street, Suite 510, San Francisco, CA 94107
www.engineyard.com • sales@engineyard.com • 1-866-518-9273 • 1-415-624-8380

Copyright©2013 Engine Yard, Inc. All rights reserved. Engine Yard is a trademark of Engine Yard, Inc. in the United States and/or other
juriscictions. All other marks and names mentioned may be trademarks of their repsective companies. Cloud is a registered trademark or
trademark of Engine Yard Inc. In the United States and/or other jurisdictions.

