
Tensor-Based Backpropagation in Neural

Networks with Non-Sequential Input

Hirsh R. Agarwal, Andrew Huang

University of Edinburgh, AndPlus LLC

Abstract

Neural networks have been able to achieve groundbreaking accuracy
at tasks conventionally considered only doable by humans. Using stochas-
tic gradient descent, optimization in many dimensions is made possible[1],
albeit at a relatively high computational cost. By splitting training data
into batches, networks can be distributed and trained vastly more effi-
ciently and with minimal accuracy loss. We have explored the mathemat-
ics behind efficiently implementing tensor-based batch backpropagation
algorithms. A common approach to batch training is iterating over batch
items individually. Explicitly using tensor operations to backpropagate
allows training to be performed non-linearly, increasing computational
efficiency.

1 Introduction

For a sequential data input neural network, we start with an example of forward
propagation through a sequential input model. The input is a matrix containing
two values [x1 x2]. Our neural network is constructed with one hidden layer
(L2) and an output layer (L3), each with two neurons (Figure 1).

Given the structure of the network, the first layer (L1) has a 2x3 weight ma-
trix. In order to feed the input layer through this hidden layer, we take the
dot product of the two matrices. The first values of the weight array (w0, w1)
correspond to the bias values. We include 1 as the first input value in order to
represent the bias input. Including a bias in the input matrix prevents the need
to compute an error value separately, because it is treated as an extension of
the previous layer. This bias is added in the same way for every layer in the
network. The values a1 and a2 both have a differentiable activation function
(σ) applied to them before being passed onto the next layer. Here, a sigmoid
activation function is used: (σ(x) = 1

1+e−x ).

[1 x1 x2] ·

w0 w1

w2 w3

w4 w5

 = [a1 a2]

1

ar
X

iv
:1

70
7.

04
32

4v
1 

 [
cs

.L
G

] 
 1

3 
Ju

l 2
01

7



After the input has been passed through the first hidden layer, the activation
function is applied to all of the output values (an := σ(an)). The output from
the activation function with another added bias (1) is now passed through the
next set of weights. Again, the top weight values (w6, w7) represent the weights
on the biases.

[1 a1 a2] ·

w6 w7

w8 w9

w10 w11

 = [o1 o2]

This yields the two output values, (o1, o2). After being passed through another
activation function, these are the model outputs.

Figure 1: Example Neural Network Structure

1.1 Sequential Input Error

The output values, σ(o1, o2), are defined as matrix ψ1 and our target values
as vector t̂ = [t1 t2]. As an example, we use the sum of squares error metric
to define the model error. Depending on the objective, different error metrics
might be more appropriate[2]. Each output value will have an error denoted by
matrix Ê, with a scalar value E denoting the total error for the model.

Ê =
1

2
[t̂− ψ1]2 =

1

2
[t1 − o1 t2 − o2]2

E = Σ(Ê)

2



1.2 Batch Input

The process for forward propagating batched input is much the same as se-
quential input. Because all of the operations are vectorized, each batch item
can be distributed to an independent computational system. The input matrix
contains two input pairs, one pair for each batch item. Similar to the sequential
input example, an extra 1 is added to the start of each batch item to act as the
bias value. [

1 x1 x2
1 y1 y2

]
The same network structure (displayed in Figure 1) is used, meaning the weight
matrix remains unchanged. As with the sequential input, taking the dot prod-
uct of the input vector and the weight matrix moves the data forward through
the network. The primary difference is that the output matrix has an extra
dimension, representing an output for each item in the input batch.

[
1 x1 x2
1 y1 y2

]
·

w0 w1

w2 w3

w4 w5

 =

[
a1 a2
b1 b2

]

The output from the hidden layer has the activation function applied (an :=
σ(an)) and bias values added. This value can be passed in the same manner
through the next layer to yield an output for each individual batch item.

[
1 a1 a2
1 b1 b2

]
·

w6 w7

w8 w9

w10 w11

 =

[
ox1 ox2
oy1 oy2

]

1.3 Batch Input Error

The process for computing the sum square error for a batch input is similar to
computing the sum square error for sequential input. The output from the last
layer (L3) (with activation function σ), σ(ox1 ox2; oy1 oy2), will be stored as
matrix ψ2. Target matrix t = [tx1 tx2; ty1 ty2] is a square matrix representing
the target for each output value.1 The matrix for individual output error is
defined as Ê, similar to the sequential example. This differs from the sequential
model in that the sum error (Ê) is a vector with each value corresponding to
one batch input.2

Ê =
1

2n
(t− ψ2)2 =

1

2n

[
tx1 − ox1 tx2 − ox2
ty1 − oy1 ty2 − oy2

]2
1It is only square because our batch size and input size are the same. Generalized dimension

is (batch size, input size).
2n in these equations is equal to the number of inputs.

3



Total sum error is calculated in the same way, however, rather than being the
sum of the whole matrix, it must now be explicitly defined as the sum of each
row. The per output error averaged over each of the inputs can also be com-
puted from this matrix by taking the average of each column. This error matrix
is represented slightly differently than for sequential input, given the extra di-
mension for each batch item.

E = Σ(Êij) =

[
Ex1 Ex2
Ey1 Ey2

]

2 Backpropagation

2.1 Overview

With the total error from forward propagation, the adjustment values for each
weight can be calculated. We use gradient descent to compute the weights for
the output layer (L3). In order to change the weights for the earlier layers
(L1, L2), we use backpropagation, determining the amount the weights need to
change based on how much they were contributing to the error. All of the op-
erations are generalized to tensor operations, making the underlying math for
sequential and batch training models the same. Computing the gradient of the
error will yield an n-d matrix, in which each component of the gradient equates
to an adjustment to the corresponding weight.

∇E =


∂E
∂W11

∂E
∂W12

. . . ∂E
∂W1j

∂E
∂W21

∂E
∂W22

. . . ∂E
∂W2j

...
...

. . .
...

∂E
∂Wi1

∂E
∂Wi2

. . . ∂E
∂Wij


2.2 Weight Adjustments for Last Layer

Computing the error change per weight is based on three factors: final output,
input to the activation function, and layer inputs. Each factor steps backwards
through the network until the weight that is being updated is encountered.

∇E =
∂E

∂W
=
∂Net

∂W
· (∂E
∂ψ
� ∂ψ

∂Net
)

Aside.
In this paper, the � symbol is used to describe the Hadamard product.
The standard · between two matrices represents a dot product (inner
product). The meaning of each symbol is made explicit in its context

within the paper when used.

4



The equation ∂E
∂W represents the change in error with respect to each weight

in the weight matrix, i.e. how much a weight value is contributing to the er-
ror. This ∂E

∂W value describes how to update the weight matrix. ∂E
∂ψ shows the

change in total error with respect to the output, with ψ representing the final
output after the activation function is applied. ∂ψ

∂Net is the change in output
with respect to the net output, in this case, the input to the activation function.

Part of this equation is often simplified with the representation δ = ∂E
∂ψ �

∂ψ
∂Net .

This is known as the delta rule. The delta value (δ) is useful to store as it is
used in subsequent layers of backpropagation.

2.3 Computing ∂E
∂W

For the output layer, the computation of each partial derivative is dependent
primarily on the output values from the network. ∂E

∂ψ computes to the difference

of the output and error values, represented as ψ− Ê. The error matrix is used,
rather than the total error, as it keeps information about the accuracy of each
output; this allows each of them to be adjusted individually. These matrices
are the exact same size, allowing for calculating element wise matrix difference.
Using example values from the batch forward propagation section:

Ê =

[
Ex1 Ex2
Ey1 Ey2

]
, ψ =

[
ox1 ox2
oy1 oy2

]

∂E

∂ψ
= (ψ − Ê) =

[
ox1 − Ex1 ox2 − Ex2
oy1 − Ey1 oy2 − Ey2

]
The change created by the activation function, represented by ∂ψ

∂Net , is equal to
the derivative of the same function. As previously mentioned, for this example,
a sigmoid activation function is used. Because ψ = σ(Net), ∂ψ

∂Net is the deriva-
tive of the activation function.

d

dNet
(σ) =

d

dNet

(
1

1 + e−Net

)
= ψ(1− ψ)

∂ψ

∂Net
=

[
ox1(1− ox1) ox2(1− ox2)
oy1(1− oy1) oy2(1− oy2)

]

With the values of ∂E
∂ψ and ∂ψ

∂Net , the δ value can be calculated. Because the
two matrices are of identical shape, the Hadamard product of the two matrices
can be taken.

δ =
∂E

∂ψ
� ∂ψ

∂Net

5



For this layer (L3), ∂Net∂W can be calculated as the output weights from the pre-
vious layer (L2) with a 1 included as the bias value. This matrix is exactly what
is fed to the weights during forward propagation, except transposed.

φ =
∂Net

∂W
=

[
1 a1 a2
1 b1 b2

]T
=

 1 1
a1 b1
a2 b2


Now, all three values have been computed. The dimensions of

[
∂Net
∂W

]T
(φ) and

δ should match along their inner axes. For example, φ = (m, b) and δ = (b, n),
where b will always be equal to the batch size. In order to compute the weight
change values, we take the inner tensor product of the two matrices.

∂E

∂W
= φ · δ =

 1 1
a1 b1
a2 b2

 · [δx1 δx2
δy1 δy2

]
=

 δx1 + δy1 δx2 + δy2
δx1a1 + δy1b1 δx2a1 + δy2b1
δx1a2 + δy1b2 δx2a2 + δy2b2


2.4 Updating Weights

With the ∂E
∂W value computed, we can find ∆W value by multiplying ∂E

∂W by a
learning rate (η). This learning rate determines how quickly the weights will
change in each iteration. Because the learning rate is a scalar value, the multi-
plication operation used is element-wise multiplication.

W = W − (
∂E

∂W
· η)

2.5 Modifying Subsequent Layers

The modification process for the rest of the layers is similar to the last layer
(L3). ∂Net

∂W and ∂ψ
∂Net are computed in the exact same way. There is no direct

target value, so ∂E
∂ψ must be computed by taking the dot product of the δ value

from the last layer used in the algorithm (e.g. L3) and the weights on the cur-
rent layer (e.g. L2).
For the first layer of the network, ∂Net

∂W is the raw input vector, as there are no
weights attached to it. Otherwise, the values are computed using the procedure
shown in 2.3.

∂E

∂ψ
= δL−1 ·WT

The weights are modified by repeating this process for the rest of the layers
until the original input is reached.

6



3 Implementation

Weights do not need to be updated after every iteration during batch training,
making it well suited to parallelization. Information is not shared between the
calculations for each batch input, so they can each be run in isolation. The in-
put vector for batch training is of dimension (b, n) rather than explicitly (1, n),
where n is the input size and b is the number of inputs per batch. Distribution
on multiple targets can be implemented by segmenting the input vector into
a number of small batches, each of which can be trained in isolation and the
resulting ∆W values can be combined afterwards.

A significant drawback to batch training is that a larger batch size leads to
lower network accuracy. Each ∆W is not influenced by the updates from any
other sample in its batch meaning large batch sizes can easily overshoot an opti-
mal error value. The effect is similar to having a learning rate that is too large.
These effects can be mitigated through adaptive optimization algorithms such
as Adagrad or Adam[3], but ultimately, accuracy will still decrease with large
batches.

There is no quantitative way to determine the optimal batch size for any training
set. The most common batch sizes range between 16 and 64[4]. Smaller batch
sizes are more complex to distribute over large systems, leading to a lower effi-
ciency advantage. Large batch sizes tend to degrade accuracy by overadjusting
due to the accumulation of ∆W values.

7



References

[1] 1A. Agarwal, S. N. Negahban and M. J. Wainwright, ”Stochastic optimization and sparse
statistical recovery: An optimal algorithm for high dimensions,” 2014 48th Annual Conference
on Information Sciences and Systems (CISS), Princeton, NJ, 2014, pp. 1-2.

[2] Pavel Golik, Patrick Doetsch, Hermann Ney, ”Cross-Entropy vs. Squared Error Train-
ing: a Theoretical and Experimental Comparison”, 2013

[3] Sebastian Ruder, ”An overview of gradient descent optimisation algorithms”, arXiv preprint
arXiv:1609.04747 [cs.LG], 2016

[4] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, Ping
Tak Peter Tang, ”On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima”, arXiv preprint arXiv:1609.04836 [cs.LG], 2016

Michael A. Nielsen, ”Neural Network and Deep Learning”, Determination Press, 2015

Matt Mazur, ”A Step by Step Backpropagation Example”, 2015

Raul Rojas, ”Neural Networks”, Springer-Verlab, Berlin, 1996

Acknowledgements

This research was supported by AndPlus LLC and administered by
Abdul Dremali and Vincent Morin.

8

http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04836

	1 Introduction
	1.1 Sequential Input Error
	1.2 Batch Input
	1.3 Batch Input Error

	2 Backpropagation
	2.1 Overview
	2.2 Weight Adjustments for Last Layer
	2.3 Computing EW
	2.4 Updating Weights
	2.5 Modifying Subsequent Layers

	3 Implementation

