

Windows Kernel Information Leak
Investigating Microsoft Vulnerability CVE-2019-1169 2

Prerequisite Knowledge 2

Advisory Analysis 2

Analyzing the Public Advisories 3

NULL Pointer Dereference – Causes and Effects 3

Why More Versions of Windows Are Not Vulnerable 5

Verifying the NULL Page Mitigation Was Backported 6

Target Setup 10

Environment Setup – Snapshots and Folders 10

Symbol Path Setup 11

Setting Up VirtualBox for Kernel Debugging 12

Patch Diffing and Initial Analysis 17

Diaphora Analysis 17

xxxMNDragOver() Patch Analysis 23

Conclusion 25

file:///C:/Users/cate/Desktop/versprite.com

2
 VerSprite.com

Investigating Microsoft Vulnerability CVE-2019-1169

VerSprite Security Researchers are often learning new technologies and products to perform

security testing for client. Part of this work involves researching past vulnerabilities to understand

how various products, such as Windows, can be attacked.

As part of these efforts, VerSprite’s Research practice, VS-Labs, recently investigated CVE-2019-

1169, a NULL pointer dereference vulnerability in win32k.sys that Microsoft fixed in the August 2019

patch update. This led to the creation of a working exploit which can successfully leak data from

arbitrary kernel addresses on affected Windows 7 machines.

This report will walk through how VS-Labs created this exploit, starting with setting up a testing

environment, before then moving on to analyzing the patches with Diaphora, and finally creating

the exploit using C++ code. At the end of this report, readers should have a solid understanding of

CVE-2019-1169.

Prerequisite Knowledge
Required:

● Knowledge of C/C++

● Knowledge of x86 assembly

Recommended:

● Prior experience with Windows userland exploitation.

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://versprite.com/security-offerings/research/

3
 VerSprite.com

Advisory Analysis

Analyzing the Public Advisories
To start off the analysis of CVE-2019-1169, the VS-Labs analyzed two separate advisories: one from

Microsoft and one from ZDI. Upon initial analysis, VS-Labs immediately identified discrepancies

between these two advisories.

Microsoft’s advisory page for CVE-2019-1169 listed the vulnerability as an arbitrary code execution

bug affecting Windows 7, Windows 7 SP1, Windows Server 2008, and Windows Server 2008 R2 (note

that Microsoft does not list affected operating systems which are no longer supported, such as

Windows XP, although they are likely to be affected by the same vulnerability).

On the other hand, ZDI’s advisory for ZDI-19-709 described the vulnerability as a NULL pointer

dereference vulnerability in xxxMNDragOver().

This advisory also mentioned that the vulnerability can be triggered by destroying a menu during a

callback, granting an attacker the ability to read kernel memory from user mode code.

At this point, one must wonder, “Which of these two advisories is correct?”.

By conducting further research, VS-Labs was able to determine that ZDI’s advisory was actually

correct and Microsoft’s advisory had actually bundled multiple advisories together and labeled

them by the one with the worst severity, which may have given users the false impression that CVE-

2019-1169 results in an attacker elevating their privileges.

Before discussing how VS-Labs conducted this analysis, it is necessary to provide a bit of

background on how NULL pointer dereference bugs work.

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-1169
https://www.zerodayinitiative.com/advisories/ZDI-19-709/

4
 VerSprite.com

NULL Pointer Dereference – Causes and Effects
NULL pointer dereference bugs occur because developers do not check whether a pointer is NULL

before dereferencing the pointer to retrieve the data it points to. This is usually the result of a

developer forgetting that one of the code paths within their code can alter an object or pointer into

an unexpected state. This can result in the developer making incorrect assumptions about which

checks are necessary to appropriately protect their program from malicious input.

The severity of NULL pointer dereference vulnerabilities depends on how the application uses the

pointer once it has been dereferenced. If the data pointed to by the pointer is used as the location

for a write operation, this will grant an attacker the ability to write to arbitrary memory, which can

lead to code execution.

Similarly, if the pointer is used to determine where to read data from, an attacker may only be able

to conduct an arbitrary read, which would make the only potential attack an information leak. In

both these cases, an attacker needs to allocate the NULL page so that when the pointer is

dereferenced, the affected program will reference attacker-controlled data within the allocated

NULL page. This data will then be used within the affected application, which can allow an attacker

to control program behavior.

When crafting the NULL page, the attacker must ensure the contents of the NULL page match the

structure of the data that is being pointed to by the NULL pointer, or else they won’t be able to

control the application’s data. It should be noted that this means that there is no generic approach

to crafting the data for the NULL page; each affected application will likely require the NULL page to

be populated with data unique to that application.

Finally, it is important to note that in this blog post only kernel mode NULL pointer dereference

vulnerabilities will be discussed, however the same concepts apply to user mode NULL pointer

dereference vulnerabilities. Of these two, the only difference is that kernel mode NULL pointer

dereference vulnerabilities have a higher chance of allowing privilege escalation, as kernel mode

code can read and write to any address on the system, whereas with user mode NULL pointer

dereference bugs, it is only possible to read from or write to addresses within the user mode

address space.

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

5
 VerSprite.com

Why More Versions of Windows Are Not Vulnerable

An interesting observation can be made by reading the Microsoft advisory again: the bug doesn’t

affect Windows 8, Windows 8.1, or Windows 10.

The reason why these versions are not affected can be found on page 33 of a 2012 presentation by

Matt Miller of MSRC, which notes that on Windows 8 and later prevent users from being able to

utilize the first 64KB of memory (0x00000000 to 0x0000FFFF), in an attempt to prevent NULL pointer

dereference vulnerabilities from being exploitable.

This mitigation works as if kernel mode tries to allocate memory in this region, an access violation

will be raised which will result in a BSOD, which can easily alert system administrators to the

presence of an attacker within their networks.

Similarly, user mode applications will not be able to allocate memory in these regions and will

instead just return an error.

A very important point to note here is that this mitigation was backported to 64-bit versions of

Windows Vista and later. Therefore, it is only possible to exploit NULL pointer dereferences on the 32-

bit versions of most Windows operating systems. But how does one verify whether this is indeed the

case? With a little bit of programming of course!

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
https://seclists.org/fulldisclosure/2014/May/112

6
 VerSprite.com

Verifying the NULL Page Mitigation Was Backported
To test whether the NULL page mitigation had been backported to Windows 7 x64, VS-Labs used the

following program, which attempts to allocate the NULL page by using ZwVirtualAllocMemory().

NULLPageAllocation.cpp

// NULLPageAllocation.cpp: This file contains the 'main' function.

// Program execution begins and ends there.

#include <stdio.h>

#include <Windows.h>

#include <bcrypt.h> // Needed to solve the issue "Function returning function

 // is not allowed”. Might be because it defines

 // NTSTATUS and some other data structures.

// Definition taken from NtAllocateVirtualMemory function (ntifs.h) - Windows

drivers

typedef NTSTATUS(WINAPI* ZwAllocateVirtualMemory)(HANDLE ProcessHandle, PVOID*

BaseAddress, ULONG_PTR ZeroBits, PSIZE_T RegionSize, ULONG AllocationType, ULONG

Protect);

#define STATUS_SUCCESS 0

int main()

{

 // Get the address of NtAllocateVirtualMemory()

 // which is exported from ntdll.dll

 ZwAllocateVirtualMemory pZwAllocateVirtualMemory =

(ZwAllocateVirtualMemory)GetProcAddress(GetModuleHandle(L"ntdll.dll"),

"ZwAllocateVirtualMemory");

 DWORD baseAddress = 0x1;

 SIZE_T sizeOfAllocation = 1024;

 NTSTATUS result = pZwAllocateVirtualMemory(GetCurrentProcess(),

(PVOID*)&baseAddress, 0, &sizeOfAllocation, MEM_COMMIT | MEM_RESERVE,

PAGE_READWRITE);

 if (result == STATUS_SUCCESS) {

 printf("[*] Successfully allocated the NULL page!\r\n");

 }

 else {

 printf("[!] Could not allocate the NULL page...\r\n");

 }

}

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntallocatevirtualmemory

7
 VerSprite.com

In this example, 0x1 is used as the base address because ZwVirtualAllocMemory() does not allow

the address parameter to be 0x0. However, if 0x1 is provided, ZwVirtualAllocMemory() will

internally round 0x1 down to the next page aligned address, which is 0x0. As a result, an attacker

can request ZwVirtualAllocMemory() to try to allocate the NULL page without violating

ZwVirtualAllocMemory()’s parameter requirements.

Note that attempting to do this trick with other memory allocation functions will not work as

ZwVirtualAllocMemory() and its NT equivalent, NtVirtualAllocMemory(), have the unique ability

to allocate memory at the NULL page, whereas other calls, like VirtualAlloc(), will reject

addresses smaller than a certain address even after rounding them down to the nearest page

boundary. Figure 1 shows the results of VS-Lab attempting to run this program on a Windows 7 SP1

x64 machine.

Figure 1

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
http://www.ivanlef0u.tuxfamily.org/?p=355
http://www.ivanlef0u.tuxfamily.org/?p=355

8
 VerSprite.com

Note that the error code which was returned, which was saved in the result variable, was

0xC00000F0, or STATUS_INVALID_PARAMETER_2. By referring to Microsoft’s NTSTATUS page, VS-Labs

determined that this error code means that the second parameter passed to

ZwAllocateVirtualMemory(), which was the base address of the memory to be allocated, was

invalid.

Some readers may wonder what would happen if one attempted to allocate memory outside of the

NULL page itself, but still within the first 64KB of memory. Such attempts will also fail, albeit with a

somewhat different error code. In the example shown below, an attempt is made to allocate

memory at the address 0xF80C which resides within the first 64KB of memory.

This results in ZwAllocateVirtualMemory() returning the same error code, 0xC00000F0, or

STATUS_INVALID_PARAMETER_2, to indicate that the memory address specified is invalid, as can be

seen in Figure 2.

Figure 2

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-erref/596a1078-e883-4972-9bbc-49e60bebca55

9
 VerSprite.com

Finally, if a user attempts to allocate memory at a low-valued memory address that is not within

the first 64KBs of memory, ZwAllocateVirtualMemory() will succeed, as can be seen in Figure 3.

Figure 3

From the outcome of the last three tests, it was possible to confirm that

ZwAllocateVirtualMemory() was changed internally, but only to ensure that it cannot allocate

memory in the NULL page or within the first 64KB of memory.

Conducting the same tests on NtVirtualAllocateMemory() revealed similar results, indicating

that it was also patched in an identical manner. This allowed VS-Labs to confirm that CVE-2019-1169

would only affect Windows 7 x86 and prior, and not Windows 8 and later or Windows 7 x64.

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

10
 VerSprite.com

Target Setup

Environment Setup – Snapshots and Folders
Now that VS-Labs knew which systems were impacted by CVE-2019-1169, it was time to set up an

environment to analyze the patches. For this task, VS-Labs used a VirtualBox VM running Windows 7

SP1 x86. Two snapshots were then taken on top of this clean image.

The first snapshot that was taken, named “Windows 7 July 2019 Patches”, was taken after all the

patches prior to the CVE-2019-1169 patch were installed on a clean Windows 7 SP1 image. This was

achieved by installing the July 2019 Monthly Rollup patch (known as KB4507449).

Monthly Rollup patches include all the patches for a given month and the months prior, which

makes it very easy for researchers to set up a system with the correct set of patches applied.

The second snapshot that was taken was after KB4512486 was installed, which contains the patch

for CVE-2019-1169. This snapshot was named “Windows 7 August 2019 Patches”.

To confirm that this was the correct update package, VS-Labs looked at the Microsoft CVE-2019-

1169 advisory page which specified that the Security Only update package for August 2019, the

month CVE-2019-1169 was fixed, is KB4512486. Figure 4 shows VirtualBox’s snapshot view after these

actions were performed.

Figure 4

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://www.catalog.update.microsoft.com/Search.aspx?q=KB4507449
https://www.catalog.update.microsoft.com/Search.aspx?q=KB4512486
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-1169
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-1169
https://www.catalog.update.microsoft.com/Search.aspx?q=KB4512486

11
 VerSprite.com

Once the patches were installed and the snapshots had been taken, VS-Labs extracted the

win32k.sys files from both snapshots and copied them to the host machine.

The unpatched win32k.sys was placed into a folder named Old and the patched win32k.sys was

placed into a folder named New. This folder structure is shown in Figure 5:

Figure 5

VS-Labs then loaded the two win32k.sys files into IDA Pro for analysis and saved the resulting IDA

Pro database files (.i64 files) in the corresponding local folders (New for the patched win32k.sys,

Old for the non-patched win32k.sys).

Symbol Path Setup
The next step VS-Labs needed to perform to investigate CVE-2019-1169 was to configure the symbol

path on the host. The symbol path is an environment variable named _NT_SYMBOL_PATH, which

usually contains two parts: the path to a local folder on your system that is used as a cache for

downloaded PDB files, and a URL that points to a server to download PDB files that don’t already

exist in the cache. For most users, the path will point to C:\Symbols and the URL will point to

Microsoft’s symbol server.

VS-Labs needed to set this environment variable as without it Windows programs such as WinDBG

that rely on this variable to locate the corresponding PDB files for various binaries won’t be able to

locate the appropriate PDB files. PDBs are Microsoft’s version of the Unix symbol files, trying to debug

programs without the information about the corresponding function names, arguments, return

values, data types and structure layouts associated with a given binary would have been very

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

12
 VerSprite.com

difficult. This is especially true when it comes to doing kernel research as often components are not

documented and the only place to locate the corresponding information is within the PDB files.

To set up the symbol path, VS-Labs utilized the following command lines in an administrator-level

PowerShell command prompt.

PowerShell Symbol Path Setup Script

mkdir c:\MySymbols\

[Environment]::SetEnvironmentVariable("_NT_SYMBOL_PATH",

"cache*c:\MySymbols;srv*https://msdl.microsoft.com/download/symbols", "Machine")

The first command created the folder C:\MySymbols\. After this folder was created, the second

command created a system environment variable named _NT_SYMBOL_PATH with the value

cache*c:\MySymbols;srv*https://msdl.microsoft.com/download/symbols to specify that the

system should store PDB files in C:\MySymbols\ and that any PDB files which are not stored locally

should be downloaded from the Microsoft Symbol Server before being saved into C:\MySymbols\.

Setting Up VirtualBox for Kernel Debugging
Once the symbol path was set up, the next step for VS-Labs was to configure VirtualBox for kernel

debugging.

There are several options to do this; the most popular methods are COM and KDNET. KDNET, which

allows kernel debugging over a compatible network adapter, allows for must faster debugging than

COM (refer to MSDN for more info) with less setup and lag, however it only works when the machine

being debugged is running Windows 8 or later.

Unfortunately, since CVE-2019-1169 doesn’t work on Windows 8, VS-Labs was forced to use normal

COM communications over named pipes to kernel debug the Windows 7 machine chosen for

testing.

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-network-debugging-connection-automatically
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-network-debugging-connection

13
 VerSprite.com

To set up named pipes in VirtualBox, VS-Labs started by navigating to the VirtualBox Manager. After

selecting the Windows 7 VM, VS-Labs selected the settings icon, which should show up as a yellow

gear. The screen shown in Figure 6 was then displayed:

Figure 6

VS-Labs then selected the Serial Ports option and under the Port 1 menu option, selected the

Enable Serial Port checkbox along with the following options:

● Port: COM1

● Port Mode: Host Pipe

● Unchecked the Connect to Existing Pipe/Socket so that VirtualBox will create the pipe

rather than connecting to an existing one.

● Path/Address: \\.\pipe\Win7Kernel

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

14
 VerSprite.com

Figure 7 shows how these settings appeared once they had been entered correctly.

Figure 7

These settings will ask VirtualBox to create a COM pipe named \\.\pipe\Win7Kernel when the

machine is started. This COM pipe will be associated with the serial port COM1.

Once this is done, VS-Labs booted up the snapshot to be debugged (which in this case was the

machine with the July 2019 patches installed) and entered the following commands into an

Administrator-level command prompt:

bcdedit Commands to Enable Kernel Debugging on the Target

bcdedit /debug on
bcdedit /dbgsettings serial debugport:1 baudrate:115200

These commands enabled debug mode on the target machine, which allows a remote machine to

kernel debug the target machine, and sets the debug settings so that it will use serial port 1 (COM1),

with a signal/baud rate of 115200, a commonly used signal/baud rate.

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

15
 VerSprite.com

Once this was complete, VS-Labs shut the guest machine down normally (not via VirtualBox) and

then launched WinDBG Preview and selected Attach to Kernel. VS-Labs then checked the Pipe,

Reconnect, and Initial Break buttons, set the Baud Rate to 115200, and set the Port to

\\.\pipe\Win7Kernel. Figure 8 shows what WinDBG Preview looked like once these settings had

been entered correctly.

Figure 8

VS-Labs then pressed the OK button and WinDBG Preview displayed a window showing that it was

waiting for the target machine to reconnect to the debugger. This can be seen in Figure 9.

Figure 9

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

16
 VerSprite.com

Once this message appeared, VS-Labs booted up the target machine in VirtualBox and was

greeted with a confirmation from WinDBG Preview that the client had connected and that the

symbols had been set up correctly. This can be seen in Figure 10.

Figure 10

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

17
 VerSprite.com

Patch Diffing and Initial Analysis

Diaphora Analysis
Once the environment was set up and the IDA Pro 64-bit (.i64) files were created, VS-Labs’ next step

was to perform patch diffing to see what had changed between the two versions of win32k.sys.

For this step, a diffing program was required. VS-Labs favorite tool for performing patch analysis is

Diaphora. Diaphora is a well-known patch diffing tool which has a variety of heuristics and

algorithms which make it much more accurate at identifying changes in Windows binaries than

most of its competitors. It is available for free on GitHub at the Diaphora repository although users

can also quickly acquire the current version of the repository as a ZIP file by using this link and

unzipping its contents to a directory.

Once Diaphora had been cloned from GitHub, VS-Labs opened up the .i64 file corresponding to

the patched win32k.sys file in IDA Pro and ran Diaphora on it by selecting File→Run Script and

navigating to the location of the file diaphora.py, which was located in the root of the folder the

Diaphora repository was cloned to. Once this was done, the dialog shown in Figure 11 appeared.

Figure 11

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://github.com/joxeankoret/diaphora
https://github.com/joxeankoret/diaphora/archive/master.zip

18
 VerSprite.com

In most scenarios, analysts can safely accept the defaults that Diaphora provides. Note that the

option Ignore automatically generated names will cause IDA to ignore any functions starting with

sub_, which will be the case for functions without a supplied name.

This is acceptable for win32k.sys since symbols exist for Windows 7 SP1 x86, which will populate all

the functions IDA Pro detects with function names. However, when symbols are not available or are

incomplete, it is advisable to disable this option to ensure that all functions are appropriately

analyzed.

For the sake of completeness however, VS-Labs decided to uncheck the Ignore automatically

generated names option to ensure that all functions, regardless of their name, would be analyzed.

Once this was done, VS-Labs hit the OK button and Diaphora started to export function information

corresponding to the currently loaded .i64 file into an .sqlite file. This can be seen in Figure 12.

Figure 12

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

19
 VerSprite.com

Once the analysis was complete, Diaphora closed this dialog to indicate that the export process

was complete and output some information into the output log confirming that it had successfully

exported the database information to an .sqlite database file.

Once this happens, VS-Labs closed IDA Pro, and reopened it with the.i64 file corresponding to the

patched version of win32k.sys. Diaphora was once again run against this file using the same

settings, as can be seen in Figure 13.

Figure 13

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

20
 VerSprite.com

Once Diaphora had finished analyzing both files, VS-Labs was left with two .sqlite files: one for the

non-patched win32k.sys file and one for the patched win32k.sys file. At this point, VS-Labs then

closed IDA Pro down and then reopened IDA Pro and loaded the .i64 file corresponding to the

unpatched version of win32k.sys.

Diaphora was then run once more, however this time VS-Labs changed the SQLite database to

diff against option so that it pointed to the path of the .sqlite file corresponding to the patched

win32k.sys file as shown in Figure 14.

Figure 14

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

21
 VerSprite.com

Once this was done, the OK button was pressed, and a popup menu was displayed asking if the

existing .sqlite file should be overwritten. At this point VS-Labs clicked No on this prompt as

Diaphora had already exported the required information for both versions of win32k.sys to

.sqlite files; there was no reason to repeat this work again.

Diaphora then started running multiple threads to analyze the differences between the two files,

applying various heuristics and algorithms along the way.

After roughly 20 minutes, the analysis completed, and a popup appeared asking if VS-Labs wanted

to save the results straight away. Since VS-Labs did not know at this point what results were

relevant, the OK button was pressed to ignore this popup and continue to the results.

From here the Partial Matches tab was selected. This resulted in the output shown in Figure 15.

Figure 15

VS-Labs immediately realized that Diaphora may have detected some extra functions as having

been changed, as several sub_XXX functions that appeared were marked as having been changed,

yet the ratio of code changed was very small.

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

22
 VerSprite.com

The reason this happens is because Diaphora can occasionally flag functions as being different

even though they may have functionally similar code, such as when a function uses different

registers to perform the same operations, or when code is altered so that it performs the same set

of operations with more efficient instructions.

As Diaphora currently is not able to automatically detect these types of changes, reverse engineers

must manually mark invalid functions as false positives.

After some quick analysis, VS-Labs determined that the sub_XXX functions in Diaphora’s Partial

Matches tab were false positives since each function was functionally the same, however the two

win32k.sys files both referenced the same global variable using different methods.

VS-Labs then proceeded to remove these erroneous differences from the results, by selecting each

sub_XXX function so that it was highlighted in blue, and then pressing DEL to remove it.

Note that due to a slight bug, the updates may not be shown immediately. If no updates occur after

hitting Delete, it is recommended to right-click and select Refresh to update the results and see

the changes.

Once all the sub_XXX functions were removed VS-Labs had a clean Partial Matches tab in

Diaphora, as shown in Figure 16.

Figure 16

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

23
 VerSprite.com

xxxMNDragOver() Patch Analysis
Upon reviewing the ZDI advisory, VS-Labs noted that it mentioned the affected function was

xxxMNDragOver(), which is listed in Figure 16 as one of the functions that Diaphora detected as

being partially changed. By right clicking on the xxxMNDragOver(), entry within shown in Figure 16

and selecting Diff assembly in a graph, VS-Labs was able to obtain the graph shown in Figure 17.

Figure 17

Note that the output shown in Figure 17 shows comments that were added by VS-Labs after several

iterations of analysis; these were not added automatically by IDA Pro or Diaphora.

The right side of the image shows the unpatched code, whilst the left side of the image shows the

updated code. By inspecting the code on the right side of the graph, VS-Labs noticed that there

was a call to _safe_cast_fnid_to_PMENUWND().

The result of this call was then compared to EDI, which was found to be set to 0x0 during testing.

This code had not been changed between the two versions, however there were several lines of

code that operated on the result of _safe_cast_fnid_to_PMENUWND() which appeared to have

been altered by the patch.

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

24
 VerSprite.com

Since the function name is _safe_cast_fnid_to_PMENUWND() VS-Labs reasoned that the output of

_safe_cast_fnid_to_PMENUWND() would be a PMENUWND structure. The definition for a PMENUWND

structure is defined on GitHub and can be seen below.

tagMENUWND Structure

typedef struct tagMENUWND {

 WND wnd;

 PPOPUPMENU ppopupmenu;

} MENUWND, *PMENUWND;

With some idea about what data the function might be operating on, VS-Labs reexamined the old

version of the code once more, which is in red in the graph on the right of Figure 17.

This code first sets ECX to the value of the ppopupmenu pointer within the PMENUWND object returned

by _safe_cast_fnid_to_PMENUWND().

Once this is done, the following instruction will set EAX to the value spmenu field within the

POPUPMENU structure that ppopupmenu points to. EAX is then compared to EDI, which will hold a

value of 0x0, thereby ensuring that the spmenu field is not NULL. The location of the spmenu field

within PPOPUPMENU was confirmed by VS-Labs by looking at the tagPOPUPMENU structure in WinDBG:

tagMENU Location Within tagPOPUPMENU

1: kd> dt win32k!tagPOPUPMENU

 ...

 +0x014 spmenu : Ptr32 tagMENU

 ...

Observant readers may have noticed that there is an issue with this code however, as no checks

are made to ensure that the PMENUWND object returned by _safe_cast_fnid_to_PMENUWND()

contains a ppopupmenu field which is not NULL.

Therefore, it is possible that ppopupmenu could be a NULL pointer, which would result in EAX being

set to the value of the 32 bits at location 0x14 in memory. As a result, the attacker could control the

value of EAX, which would allow them to potentially alter xxxMNDragOver()’s execution.

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://github.com/pustladi/Windows-2000/blob/661d000d50637ed6fab2329d30e31775046588a9/private/ntos/w32/ntuser/kernel/userk.h#L2917

25
 VerSprite.com

All the attacker would need to do is be able to allocate the NULL page in memory, which users can

do on Windows 7 x86 by calling function such as ZwAllocateVirtualMemory() or

NtAllocateVirtualMemory(), and then set offset 0x14 of this page to a value of their choice. This

would then allow them to control EAX when EAX is set to the value of the spmenu field of
ppopupmenu.

The patched code, shown in the graph on the left half of Figure 17, fixed this vulnerability by ensuring

that the PMENUWND object returned by _safe_cast_fnid_to_PMENUWND() contains a ppopupmenu

field that is not NULL. If the ppopupmenu field is NULL, xxxMNDragOver() will stop processing the

object and will prematurely terminate, preventing the attacker from being able to control the

program’s behavior.

Conclusion
By now, it should be clear that an attacker can exploit CVE-2019-1169 to gain at least some level of

control over how xxxMNDragOver() executes.

However, some questions remain, such as “What exactly can the attacker control?” and “Does this

lead to a useful information leak?”

In part two we will investigate these questions and examine exactly how VerSprite’s Research

practice, VS-Labs, was able to determine the usefulness of CVE-2019-1169 and verify that it can be

exploited by an attacker to leak kernel address. Subscribe to our resource library to stay tuned.

http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://versprite.com/security-offerings/research/
https://versprite.com/security-offerings/research/
https://versprite.com/subscribe-cybersecurity-blog/

