
How to Evaluate Current
Approaches to Legacy Integration

Zeev Avidan
Chief Product Officer, OpenLegacy

While many of the concepts and best-practices of integration have been around for
decades, new ways of creating applications dictate a new look at these integration
patterns. Integration is at the core of modern digital platforms and should
keep in lockstep with the innovation they bring.

www.openlegacy.com

Integration and innovation at the core of modern digital platforms

2

Introduction
Integration is the glue that makes computer applications work
together to provide meaningful outcomes. While many of the
concepts and best-practices of integration have been around for
decades, new ways of creating applications require re-evaluat-
ing these integration patterns. For example, integrating several
monolithic applications is a challenge, but the rise of micros-
ervices and other distributed deployment patterns makes this
challenge exponentially greater.

Technological Landscape
When dealing with traditional ‘pure’ integration, specifically concerning in-
tegrating monolithic legacy applications, two approaches immediately sur-
face as most common: the real-time connector and the asynchronous mes-
sage-queue.

While both of these two approaches are still viable concepts in modern archi-
tectures, they do require careful considerations when implementing them in
the real world. These considerations include topics such as:

A recent Gartner
prediction estimates
that “Through
2020 integration
will consume 60%
of the time and
cost of building a
digital platform.”
This reflects the fact
that integration is at
the core of modern
digital platforms
and should keep in
lockstep with the
innovation they bring.

Source: Gartner, Inc.

API Auth

API Gateway

API Access CTL API MGMT

JSON Modelling JSON Validations

Orchestration Flows

Data Validation Data Mapping Error Handling

Brokering

Messaging

Connectors

Core Core Core

Brokering Ops

Homegrown or Middleware Solution

• Resource and skill training
• Infrastructure complexity
• Time to market

• Development timelines
• Overall license and run-time

costs

3

Real-Time Connectors

These types of connectors have been around since the early days of enter-
prise integration. They began as point-to-point connection protocols but later
evolved into the hub-and-spoke model of EAI and the enterprise bus concept
of ESBs. In these cases they provide the last mile of connectivity to an applica-
tion and are specifically designed for a certain protocol or language.

Due to their specificity, it became common for vendors such as iWay Soft-
ware to provide suites of connectors which connect siloed applications into
the middleware. Each connector would require its own setup and skills. This
approach is still very common today with products such as IBM’s z/OS connect
which exposes a mainframe COBOL-based application in a JSON-REST proto-
col, to be consumed by API middleware.

1. Complex set-up and maintenance:
These connectors usually rely on the legacy system to run and they require
multiple other products and current OS versions to be installed.

For example, IBM z/OS Connect requires not only a very recent release of z/
OS and CTS, but in some cases also the installation of: IBM z/OS explorer,
WebSphere server, WOLA (WebSphere z/OS Optimized Local Adapters),
IBM’s API connect and Zos Connect EE server.

2. Black-boxes
Since last-mile connectors are tightly coupled with the legacy applications,
they tend to be closed and un-configurable. Changes and customizations
must be made in higher-level layers even at the expense of performance or
complexity. Dealing with dynamic message formats, request context and
stateful invocations becomes a labor-intensive and time-consuming effort.

3. Lifecycle automation
Another problem arising from the closed nature of these connectors is
their inability to support DevOps-type automation. Testing, versioning and
deployment of the APIs produced by these connectors are all proprietary

It is all too common
for organizations
to deploy a modern
state-of-the-art
microservices
architecture on top
of an old-style ESB
integration stack,
preventing them from
enjoying the benefits
of their effort.

z/OS Connect EE

HTTP
port

LLiibbeerrttyy SSeerrvveerr

zzoossCCoonnnneecctt ffeeaattuurree

API
request

API

HTTP to JSON
mapping Service DataXform

WOLA
Service

provider

WOLA

angel process

BBOC control
transaction

BBO#
Invocation task

transaction

WOLA BBO$ Link
Server Task

WOLA True

Catalog
Manager
Programs

CICS

DFHRPL WOLA
modules

4

and are hard-to-integrate with the normal development lifecycle. This leads
to prolonged development times and longer release cycles which impact
velocity and agility.

4. Heavy infrastructure needed
When using connectors which are just the last mile of the integration and
require many other layers to produce a solution, the architecture topology
and infrastructure needed will be heavy, multi-layered, slow and complex.

These architectures stand in contrast with modern, light and flat microser-
vices architectures which require almost no middleware and treat integration
as a feature rather than a hindrance. It is all too common for organizations
to deploy a modern state-of-the-art microservices architecture on top of an
old-style ESB integration stack, preventing them from enjoying the benefits of
their effort.

Asynchronous Message Queues

Again, asynchronicity is not a new integration concept. During the 1990s and
2000s it became a standard for Service Oriented Architectures (SOA) and
was ubiquitous with products like IBM’s MQ.

While there might be many reasons to use the asynchronous messaging mod-
el, there were two factors that contributed to its past success:

1. Asynchronous messaging correlated well with SOA’s orchestration
concepts such as pub-sub.

2. Asynchronous messaging provided fault-tolerance using guaranteed-
delivery capabilities which were required in regulated industries and
played an especially important role in a world where hardware availability
and scalability was limited compared to today.

The price to pay for these asynchronous solutions was mainly in complexity
and performance (not considering the actual price tag on middleware (e.g.
MQ) products which might be substantial). This price seemed relatively small
in a world driven by limited, internal data-consumers, already complex archi-
tectures and limited velocity needs.

Today’s requirements pose a difficult challenge to these assumptions:
fault-tolerance can be achieved using new approaches, consumers of data are
much greater in numbers and variety, architectures are reduced in complexity
and the need for velocity in deploying changes is greater than ever.

This, of course, does not mean that asynchronous messaging is not relevant
or should not be used in modern architectures, but it does change the calcula-
tions on where and when it should be deployed. Simply put, message-queuing
should not be the default anymore, but instead a thoughtful decision.

The price to pay for
these asynchronous
solutions was mainly
in complexity and
performance (not
considering the
actual price tag on
middleware (e.g. MQ)
products which might
be substantial).

OpenLegacy’s Solution
OpenLegacy provides a solution to many of these issues and represents a
new, modern and unique approach to integration. By leveraging concepts like
code-gens, microservices and standard open-source frameworks,
OpenLegacy provides the next generation of integration platforms.

Instead of black-box connectors hidden behind layer after layer of integra-
tion, OpenLegacy automatically generates a single deployable unit which is
a microservice ready-to-run. This microservice consists of an API interface, a
business logic payload and a Java SDK which wraps a legacy functionality. The
entirety of this artifact is visible and changeable with readable standard Java
code using annotations.

With this approach, no set-up or additional infrastructure is needed. The mi-
croservice is deployable anywhere and communicates natively with the legacy
system. No third party products, additional installations or legacy skills are
needed.

Since the entire code-base is available and visible, any change in business logic,
integration logic, channel logic or connector logic can be made either directly to
a specific microservice or, using a template, to all generated microservices. This
also allows for a seamless integration with DevOps and automation processes
using standard tools such as Git, Jenkins etc.

The nature of the solution allows for a flat integration architecture by match-
ing the application architecture and essentially enabling integration without
middleware. Fault-tolerance is managed using circuit-breakers and horizontal
scalability, as well as log-analysis for recoverability.

Core Core Core

Analytics CI/CD

API Gateway

OOppeennLLeeggaaccyy

OpenLegacy automatically generates a single deployable unit which is a
microservice ready-to-run.

OpenLegacy provides
a solution to many
of these issues
and represent a
new, modern and
unique approach to
integration.

Approaches_WP_8Apr2019

About OpenLegacy

OpenLegacy accelerates delivery of innovative digital services from legacy systems in days or
weeks versus months. Our microservices-based API integration and management software
reduces manual effort by automating API creation, simplifies the process by avoiding layers of
complexity, and improves staff efficiency and API performance. Our software directly accesses and
extends business logic to web, mobile our cloud innovations in the form of Java objects, REST APIs
or SOAP. Most importantly, this process is not only fast, easy and secure, but also does not require
special staff skills or changes to existing systems or architecture. Together, business and IT teams
can quickly, easily and securely meet consumer, partner or employee demands for digital services
without modernizing or replacing core systems. Learn why leading companies choose OpenLegacy
at www.openlegacy.com.

Headquarters
12110 Sunset Hills Rd.
Suite 100
Reston, Virginia, 20190

www.openlegacy.com
sales@openlegacy.com

Israel
3 Mota Gur,
Olympia Park,
Petah Tikva, Israel

Chicago
541 N. Fairbanks Ct.
Suite 2200
Chicago, IL 60611

Dallas
Lewisville Vista Point North
405 State Hwy 121, Suite A250
Lewisville, TX 75067

Mexico
Torre Anseli
Av. Revolucion No 1267, Piso 19
Col. Los Alpes
Del. Alvaro Obregon, C.P. 01010
Ciudad de México, México

Switzerland
Rue Etienne
Dumont 1
Geneva, 1204
Switzerland

© 2019 OpenLegacy Inc. All Rights Reserved

Summary
The increasing importance of integration and changing needs requires new
and modern approaches. Traditional approaches such as real-time connec-
tors fall short because of their closed, proprietary and limited nature. They
require a large complex middleware infrastructure to support them. While
still viable for certain cases, message-queuing approaches should not be the
default way of integrating. OpenLegacy provides a solution which solves the
challenges of traditional integration while providing a way to rapidly generate
microservices delivering core functionality.

