Jopenlegacy

Integration with AWS

Overview

AWS DATA SHEET .

OpenlLegacy's APl integration platform is the fastest and most standard way for legacy applications to be part of the
AWS cloud. OpenLegacy quickly and efficiently generates APIs or serverless nodeJS functions for any legacy asset by
connecting directly to the legacy system, automating code generation. With a couple of clicks, users can generate a
consumable APIs inside containers of Lambda functions. There is no hand coding or additional configuration needed

for use with AWS.

Key Benefits of OpenLegacy
* Generates APIs as:

« Java code for flexibility to deploy in any AWS End-
point service: Beanstalk, EC2 or others

+ ECF/Fargate ready microservices
* Serverless NodeJS code Lambda functions
+ Direct Connection to almost any core system
+ Automatic code generation of APIs inside microservices

+ Parses metadata and generates SDK that includes run-
time connection to legacy system

« Easily deployed into any infrastructure (Docker, PCF,
Tomcat, Kubernetes, OpenShift)

Key Benefits of AWS

+ Manage interaction with APl consumers to optimize
performance

+ Wide deployment options for easy consumption, highly
reliable Endpoint

« Security at the API and infrastructure layer to add pro-
tection to the legacy assets

* Monitoring, Multilayer Architecture, Auto Scaling (in and
out), Load Balancing and several services are available to
manage and control the APIs

« Services to produce Analytics at the API level

How OpenLegacy Works: OpenLegacy Can Deploy APIs to AWS in 3 Different Patterns

1. Java POJO (Plain Old Java Object) API
2. As Microservice

3. Serverless Function

For this example, we are showing how to deploy on Pattern 1 Java POJO API to EC2:

1. Create an SDK project in the

OpenlLegacy IDE

2. Populate the connection
configuration (host, port,
username, pass, etc.).
This enables OpenLegacy
to build the connection

information about the backend
into the SDK project. It also can
retrieve any metadata from the

legacy system for parsing.

3. Generate Java code based
on metadata of back-end
program.

The code goes into the SDK
project for use by the APIs.

4. Create an API project in the
OpenLegacy IDE - API data
gets populated from the SDK

®0e
OpenlLegacy SDK Project Wizard

This wizard creates a new OpenLegacy SDK project which enables you to integrate and modernize your Legacy system

Project Name: ol-sdk

Default Package: com.ol_sdk.openlegacy

Use Custom Project Template

® @
OpenLegacy SDK Project Wizard

This wizard creates a new OpenLegacy SDK project which enables you to integrate and modernize your Legacy system

Host type MainFrame

Open source provider for remote program calls for MainFrame.

CICS Base URL http://192.86.32.142

|2 ITEMS.cbl
ZpuTen New >
@"a"? " Show In NEW »
[applicatio|]
» (2 src/test/java Pen . F3
> (M src/test/resol Open With >
» =\ JRE System | =
» &\ Maven Deper & Copy #C
» Cosre E= Copy Qualified Name
> (target [Paste 8BV
|=| design-time.| % Delete ®
M| pom.xml
Build Path >
Move...
Screen Preview [Rename... =
(2 Import...

. Export...

[JOK)
OpenLegacy API Project Wizard

This wizard creates a new OpenLegacy API project

Microservice Project Deployment:
Include Microservice project configurations

Project Name: ol-api

@1 IBAN-STRC.

03 IBAN-CNTRY-CD PIC X(2).
03 IBAN-CHECK-DIGITS PIC S9(2).
03 IBAN-BNK-ID PIC X(4).
03 TRAN-BRNCH-TD PTC S9(6).
03 IBAN-ACCOUNT-ID.
05 ACT-ID-SGMNTL PIC 9(2).
@5 ACT-ID-SGMNT2 PIC 9(2).
05 ACT-ID-SGMNT3 PIC 9(2).
05 ACT-ID-SGMNT4.
07 ACT-ID-SGMNT41 PIC 59(4).
07 ACT-ID-SGMNT42 PIC X.
@5 ACT-ID-SGMNT4-ALPHA REDEFINES ACT-ID-SGMNT4
PIC S9(4) SIGN TRAILING SEPARATE CHARACTER.
03 FILLER PTC X(7) VALUE SPACES.
01 SPACE-COUNT PIC S9.

LINKAGE SECTION.
@1 DFHCOMMAREA.
03 CRT-ACCOUNT-IN.

@5 ACTT-CUSTOMER-TD PTC X(16).
@5 ACTI-CUSTOMER-NAME PIC X(16).
B8 ACTT_TYDCD pTC X

iblems B Console 3% Junit

2gacy

:104.489 [Worker-9] DEBUG o.
:104.489 [Worker-9] DEBUG o.
Generate Model Jg -
104.489 [Worker-9] DEBUG o.
104.489 |[Worker-9] DEBUG o.
:104.489 [Worker-9] DEBUG o.

.AbstractCustomizablelifecycleMapping
.AbstractCustomizablelifecycleMapping
.AbstractCustomizablelifecycleMapping

c
(-
c
.c.AbstractCustomizablelifecycleMapping
(o
c
c

.AbstractCustomizablelifecycleMapping
.AbstractCustomizablelifecycleMapping
.AbstractCustomizablelifecycleMapping

comoo 0D
annonon

TTTTTTT

Default Package: ‘}om.oLapLopenlegacy

Use Custom Project Template

5. Create APl inputs and outputs © Generate API
based on the back-end asset Servicenames: [NEHSSTIiS Parallel execution Create pool
. [¢] te JUnit
generated into the SDK enerate

Input:
= ol-api
e . New name Original name Type
V¥ (= ol-sdk
X crtAccountin crtAccountin unknown
¥ {; 90pnact31
¥ {3 dfhcommarea (Opnact31Dfhcomn + T
[2 Q:J crtAccountin (Opnact31CrtAcc
» P accountOut (Opnact31Accoun 2
<
Output:
New name Original name Type
X accountOut accountOut unknown
+
A
Ll v
<
6. Put the microservice-based @ Paste =V
% Delete ®
APl into a JAR file by choosing
Build Path >
“Maven Install” Refactor X®T >
Import >
Export »>
Refresh F5
Close Project
Close Unrelated Projects
ci OpenLegacy >
Validate
»3 1 Run on Server X¢XR
ebug As > [7]2 Java Application N#XJ
Profile As i > Ju3JUnit Test X®XT
?estoEr: ;_ron: Local History... m2 4 Maven build NOXM
v Lt " m2 5 Maven build...
Maven > &M '
TypeSoript ” m2 6 Maven clean
T ~ m2 7 Maven generate-sources
Compare With [A 8 Maven install
Configure » m2 9 Maven test
Source »> & Spring Boot App X4XB
Spring Tools > & Spring Devtools Client
Properties Ed| Run Configurations...

7. Goto AWS and conf|gu re and Eoitmy eretis o o e
Launch an EC2 Instance to Onnezcoeee [T cormect | Actons © Ao %0
EC2 Dashboard Filter by tags and attributes or search by ke, 2] 1to10f1
deploy
@ Name Instance ID + Instance Type Avallabliity Zone ~ Instance State Status Checks - Alarm Status Public DNS (IPv4) 1Pv4 Public IP 1Pyt
Tag:
e |] 1-0Bafc3158ftbbcdtc t2micro us-east-1b @ running & 22 checks None Y ec2-184-73-143-104.co. 184.73.143.104
Reports

Limits

¥ INSTANCES

8. Copy the Java POJO Jar file £ eco-user@ip-172-31-41-182~ - o X
you created in OpenLegacy
into the EC2 Instance

ZP 100t@1p-172-31-41-182:/home/ec2-user

9. Execute the APl inside the
EC2 instance

10. Test the APl using the - —
OpenLegacy generated
Swagger page

e

@

OpenlLegacy accelerates delivery of innovative digital services from legacy systems in days or weeks versus
months. Our microservices-based APl integration and management software reduces manual effort by
automating API creation, simplifies the process by avoiding layers of complexity, and improves staff efficiency
and API performance. Our software directly accesses and extends business logic to web, mobile or cloud
innovations in the form of Java objects, REST APIs, ODATA APIs, or SOAP. Most importantly, this process is

not only fast, easy and secure, but also does not require special staff skills or changes to existing systems

or architecture. Together, business and IT teams can quickly, easily and securely meet consumer, partner

or employee demands for digital services without altering or replacing core systems. Learn why leading
companies choose OpenlLegacy at www.openlegacy.com.

D Opeﬂ legacy www.openlegacy.com © 2019 Openlegacy Inc. All Rights Reserved

OPEN INNOVATION sales@openlegacy.com

DS_AWS_17Dec2019

