
1

How to Leverage Legacy Systems
at the Speed of DevOps

WHITE PAPER

openlegacy.com

2

47+53+W

How to Leverage Legacy
Systems at the Speed of
DevOps

Introduction
DevOps is Spreading Rapidly, but Selectively

The promise of DevOps is real. Needed functionality is coming online fast-
er, teams are working together better, and issues are being resolved closer
to the moment they are detected. But only where DevOps has been ap-
plied systematically. New applications and interfaces that rely upon legacy
applications can struggle as the velocity of delivery is slowed by systems
that were not designed for, and do not easily support, agile and DevOps
methodologies. Organizations in every vertical need a way to access legacy
data and business logic without creating more code and slowing down the
DevOps process.

Current Environment – Backend

Large monolithic legacy systems tend to have many interconnected pieces
and to be ‘fragile’ in an overall sense, with one application impacting sever-
al other systems, and changes needing to be validated across all of these
impacted systems.

While the stability of legacy systems and data is renowned, the hurdles to
getting changes implemented on those systems is equally infamous. As cus-
todians of key business data; legacy systems developers, admins, and DBAs
know well that they are not responding at the rate the business would like.
The problem is that attempts to deliver changes more quickly are thwarted
by the very complexity that makes these systems valuable. The architectures
of ten or twenty years ago are not suited to the type of rapid response ex-
pected today.

Current Environment – Agile

Agile development and DevOps methodology both aim to deliver software
to the business at a faster pace, one in tune with today’s constant changes in
business environment. By making shorter goals, agile allows for developers
to focus on one problem at a time, and to see test results quickly after they
check in their code. By increasing cross-functional communication and auto-
mating everything from build through deployment, DevOps aims to acceler-
ate the rate at which those changes are presented to users.

In modern application development, agile development teamed with DevOps
streamlines the development and delivery of applications. The communi-

47% lower cost
over 5 years

Amount organizations
would save running

workloads on connected
mainframes by moving
to a more distributed

environment

IDC, “The Business
Value of the Connected
Mainframe for Digital
Transformation”, 2018

3

cations changes new development methodologies
encourage keep business owners aware of the current
state and any outstanding issues.

This all works well, if the application is completely
wrapped in agile and DevOps, with rapid iterations
offering many incremental changes to the application

over time. The mantra of Silicon Valley is definitely an
adjunct to agile and DevOps – “Fail fast” means imple-
ment it, find the problems, and get to resolving them.

But that is the opposite of the view that has guarded
legacy systems forever—controlled change coupled
with thorough test environments have kept legacy
systems stable and reliable.

OpenLegacy bridges the gap between DevOps and
legacy development practices. By offering a method to
generate Java based microservices with REST accessi-
ble APIs, the system exposes legacy data to DevOps
teams. DevOps can continue to “fail fast” and “fail
small” since OpenLegacy’s microservices architecture
limits changes required on legacy systems. In this envi-
ronment, changes are made at the microservice, or by
combining microservices, just like any other API can be
enhanced or combined. No changes need to occur on
the legacy backend.

The Problem
Why Backend Work is Generally Slower

A problem occurs when a given application has de-
pendencies on older architectures that are designed
and maintained with a more robust approach. The
systems that hold all of your customer and billing data
have been built and modified for years with an eye to
stability. And systems that have been rock-solid for
years should not suddenly start having performance
and quality issues.

The complexity of systems that have grown over the
course of a decade or two can be stunning. They
were designed for one initial purpose and, as that
purpose has changed and grown, complexity has
also grown. While the data housed in these systems
is critical, and the business logic they exercise over
that data is unique to the application, this complexity
can make changes take much longer than a fresh new
agile project. Even simple changes to legacy systems
can require extensive testing as the impact of those
changes to other parts of the overall software archi-
tecture are evaluated.

Organizations want new web and/or mobile interfaces
to legacy systems. Creating such an interface seems
relatively simple on the surface, but the relationship
of UI to backend systems is symbiotic. The creation of
a UI will require new functionality or changes to the
underlying data store. This is a natural process that
occurs as an understanding of how users interact with
the new UI becomes clear.

These scenarios end up with a rapidly iterating front
end that can turn out changes in days or weeks backed
by a system that is designed with the idea that chang-
es will take months. When user feedback results in
change requests for the backend, the entire agile/
DevOps process goes on hold.

What is needed is a platform that grants access to the
wealth of data stored in legacy systems without requir-
ing a massive amount of new development on those
systems—a framework to give DevOps the business
logic that applications need. The framework must also
be flexible enough to serve that information where
ever DevOps teams need it. For example, OpenLegacy’s
approach builds APIs on top of microservices that are

While the stability of legacy
systems and data is renowned,
the hurdles to getting changes
implemented on those systems is
equally infamous.

4

composed of standard Java stacks. That means Java
developers can get to the data they need without having
to wait for the legacy team to develop more code.

Why Agile Work is Necessary

While the legacy systems and their development
methodologies worked in an environment where the
rate of change for all organizations was slower, and
the demands of users were restricted to a small subset
of the target market, the growth of the Internet and in-
creasing competition make faster development of new
systems and interfaces a business priority.

Agile and DevOps answer this need, allowing the busi-
ness to respond to new competitive threats or to take
advantage of a competitive opportunity in a timeframe
suited to today’s business environment. The catch is
that the speed of delivery must be systemic. If a large
portion of an organization’s product portfolio is diffi-
cult to change and requires weeks or even months of
testing after changes, the competitive business edge
can be lost.

Utilizing agile development, DevOps methodologies,
and OpenLegacy to bring legacy data into the agile and
DevOps fold, an organization can start to deliver new
functionality that utilizes legacy data and systems at the
speed expected in a modern business environment.

Past Solutions and Their Legacy

In the not-too-distant past, Service Oriented Archi-
tectures (SOA) were used to address the slow rate of
change in legacy systems. The underlying motivation
for SOA was to provide access to data in legacy sys-
tems while speeding development by moving new
development into the client/server tier. The problem is
that once the data was manipulated in the client/serv-
er environment, that environment became part of the
overall legacy infrastructure. Now some changes were
being made in the legacy environment, while other
changes were being made in the SOA environment,
and those changes needed to be available at the same
level of reliability.

The result was a complex world where not only was
there a large super-integrated legacy application sit-
ting on the backend, the middle tier was now a large
super-integrated legacy application also. Both became
slow to change, and changes often had to span both
tiers, increasing the amount of work and the number
of teams involved.

Utilizing microservices and single data access APIs,
OpenLegacy sidesteps these issues by presenting a
given application with the data it needs, when it is
needed. Developers writing in the language of their
choice can say “I need the customer number so I can

5

find their last order”, and call the customer API to grab
data. There is no mainframe coding, no middle layer of
business logic that must be maintained and inter-rela-

tionships to manage, just a call to get the needed data,
and move along.

OpenLegacy enables this ability to get the data and
move along with a system of connectors that allow
legacy data to be pulled into microservices easily.
While many backend connectors come preconfigured
(For example, CICS or DB2), others can be custom
designed if there is a need. This offers ease of use for
the common cases, and task-specific implementation
for custom cases.

No matter which type of connector is needed, in the
end, agile users are presented with an API implement-
ed in Java and residing on the edge of a microservice.
At that point, the code and resulting API fits into the
existing agile and DevOps architecture.

Making the Two Work Together
Backend Strengths

Legacy systems grew to be legacy because they get the
job done. The workhorse of most modern enterprises,
core systems hold the data that represents customer
base, sales, stock levels, and more. These systems
have reliably serviced the organization for a long time
because they’re good – or at least good enough – at
what they do.

DevOps Strengths

Both the business and customers are demanding a
faster rate of change though. The whole goal of digital
transformation is to increase the rate of change to meet
the demands of today’s environment. The ability to
rapidly improve the user experience is something that
enterprises in nearly every vertical are striving for. Agile
plus DevOps are the tools most organizations choose
to approach that goal. By offering quick iterations with
a highly automated build/test/deploy environment and
repeatable/reusable processes and artifacts, DevOps in-
creases the rate of change, and often increases stability
by removing room for human error.

The Best of Both Worlds

Those monolithic legacy applications need to contin-
ue operating as they have in the past, but agile and
DevOps teams need something that can move at the
pace of modern business.

Since replacement of backend systems is not only ex-
pensive, but also prohibitively long, it makes the most
sense to actually delivery on the promises SOA made.
Enabling access to backend data, with small, man-
ageable pieces that can be re-assembled as needed
in a more agile environment is the key to improving
productivity and delivery timelines without making
things worse.

Utilizing microservices and single
data access APIs, OpenLegacy
sidesteps these issues by
presenting a given application
with the data it needs, when it is
needed.

6

While the legacy systems continue to store and protect
mission-critical data, OpenLegacy extends those core
systems for access by agile teams. Using a microser-
vices architecture with APIs that are both easily gener-
ated and customizable by Java developers, monolithic
legacy applications can serve data where and when it
is needed. OpenLegacy uses connectors to tie backend
systems into the microservice, and API generation to
generate the frontend API, relieving the need to devel-
op access code in the most common access scenarios.
Even in a highly flexible environment requiring support
for platforms like cloud and mobile. OpenLegacy’s
integration with standard agile and DevOps tools such
as Jenkins means that it is truly part of the DevOps
solution architecture.

OpenLegacy helps teams adapt backend access with
microservices and DevOps outside the monolith. Part
of this solution is integration with modern develop-
ment and DevOps tools. Based in Java, with Eclipse
support, Jenkins integration, and targeting for Docker,
developers will find existing skill-sets extend to legacy
applications and data. This integration helps DevOps
teams gain the benefits of stable, secure datasets and
procedures while making application delivery faster.

Make Use of the Most Prevalent Skills

Most new developers entering the workforce are
trained in modern languages like Java, Node.js and
Python. They are not equipped to handle the environ-
ments in which legacy applications were developed
and are maintained. OpenLegacy generates APIs that
can be called from any language that supports SOAP or
REST API calls.

That means developers and teams can use the tool-
set that best fits the goals of agile and DevOps, taking
advantage of the languages they are already familiar
with, but gaining access to legacy systems and data
that power the enterprise.

Importantly, development on the legacy systems is not
required. Since the pool of available developers for
many legacy platforms – most notably the mainframe
– is on a downward trend, not creating new source to
be maintained for integration is important, as available
legacy system staff will have enough to do.

With OpenLegacy, agile developers can generate the
APIs, make changes required, and keep their project
moving forward. With the development shifted to
agile teams and platforms integrated into the DevOps
lifecycle, the need for legacy changes is reduced or
eliminated. This allows projects to use the data and
subsystems that have worked for years, while getting
the benefits of agile and DevOps development speeds.

OpenLegacy accelerates development utilizing legacy systems by automating otherwise manual steps, and
reducing the number of steps.

OpenLegacy Reduces Implementation Steps to Accelerate Your Time-to-Market

7

Get More Benefits Than Time To Market
Security with DevOps

One of the issues with exposing the mainframe
more directly to corporate systems is implementing
sufficient data security. Most companies would be
hesitant to provide an API that can modify customer
data. A strong security model is needed that will allow
access while restricting it to those users and apps that
should be touching the data.

OpenLegacy meets these needs with OAuth2 support
and data masking to offer only data an application
needs, and not the entire table/file structure to be
picked through.

Since OpenLegacy is integrated with standard DevOps
toolsets, existing security infrastructure applies to gen-
erated microservices. Policies and standards that are
enforced through the test environment can be applied
directly to generated source, resolving the need for an-
other set of security tools to be deployed. What works
for the legacy system will still be there, and what
works for agile teams will work for the microservices.

Repeatability/Portability for DevOps

DevOps requires the ability to repeat processes easily
with predictable and consistent results. This is be-
cause automation depends upon the ability to know
the final state, and the speed of iteration does not
leave room for massive customization for each indi-
vidual release. Increasingly, portability of systems is
an imperative also. Choosing where to deploy an ap-
plication based upon today’s needs, with the flexibility
to move the application at a later date, is becoming
the standard.

However, this is not how IT has traditionally operated;
taking the same steps is not guaranteed to get the
same results. And moving an application has been a
choice of last resort. Traditional application develop-
ment targets an architecture, and releases become
customized to take into account an array of variables
(like installed packages) present on the target platform.

With OpenLegacy’s approach, microservices address
these needs. The ability to create a brand new copy of
the microservice to replace the one being upgraded
makes deployments predictable and results readily
testable. The resulting microservices can be target-

ed where they are needed. Today’s environment
might have them deployed to an internal server,
while tomorrow’s might need the microservices in a
cloud-hosted container. The ability to place microser-
vices where they are needed offers both deployment
flexibility and the largest pool of re-use options.

Performance

Traditional SOA based approaches suffered from per-
formance lag due to the layers of processing occur-
ring at different steps in a request. The legacy system
would perform all of its business processing, return
results, and the SOA would perform all of its process-
ing. Solutions that used queues such as MQ would
end up with additional lag as several legacy systems
were invoked and processed then more processing
was done on the “client” side (actually the server in
the client-server world).

By making use of microservices and allowing fine-
grained access, OpenLegacy greatly reduces this
performance hit. Data and smaller subsystems on
the legacy system can be accessed directly, leaving
the bulk of the processing to the application being
developed. Think in the case of a database – ACID
processes would occur, but the business validations
required in most mainframe applications would only
be necessary on an Insert or Update statement. For
inserts and updates, validation is required that might
need those extensive backend subsystems. For access
of data, simple retrieval is normally sufficient.

These smaller, easier to utilize pieces of data are simi-
lar to other data used in the client application, making
processing uniform and fast. Uniform processing is
useful in agile environments, and fast application
processing is desired in every environment.

By offering a method to generate
Java based microservices with
REST accessible APIs, the system
exposes legacy data to DevOps
teams.

8

About OpenLegacy

OpenLegacy accelerates delivery of innovative digital services from legacy systems in days or
weeks versus months. Our microservices-based API integration and management software
reduces manual effort by automating API creation, simplifies the process by avoiding layers of
complexity, and improves staff efficiency and API performance. Our software directly accesses and
extends business logic to web, mobile our cloud innovations in the form of Java objects, REST APIs
or SOAP. Most importantly, this process is not only fast, easy and secure, but also does not require
special staff skills or changes to existing systems or architecture. Together, business and IT teams
can quickly, easily and securely meet consumer, partner or employee demands for digital services
without modernizing or replacing core systems. Learn why leading companies choose OpenLegacy
at www.openlegacy.com.

Headquarters
11921 Freedom Drive,
Suite 550
Reston, Virginia, 20190

www.openlegacy.com
sales@openlegacy.com

Israel
3 Mota Gur,
Olympia Park,
Petah Tikva, Israel

Chicago
541 N. Fairbanks Ct.
Suite 2200
Chicago, IL 60611

Dallas
Lewisville Vista Point North
405 State Hwy 121, Suite A250
Lewisville, TX 75067

Mexico
Av. Insurgentes Sur #730,
Col. Del Valle,
Delegación Benito Juárez,
Piso 2 México, DF. CP 03104

Switzerland
Rue Etienne
Dumont 1
Geneva, 1204
Switzerland

© 2018 OpenLegacy Inc. All Rights Reserved WP_Legacy_Speed_of_Devops_2May2018

Conclusion
Take Your DevOps to the Next Level

When implementing DevOps, whether across an appli-
cation portfolio or across the entire organization, it’s
not an option to leave legacy systems and data behind.
Likewise, putting legacy systems into the process flow
without improving traditional development/deployment
methods will slow agile and DevOps. Since speed and
adaptability are the primary benefits of DevOps and
agile, this slow process reduces their effectiveness.

Different methods have been used in the past to make
legacy systems more accessible to new applications, but
all have suffered from weaknesses, some even fit the
age-old phrase “The cure is worse than the disease”.

Using microservices to access legacy data from mod-
ern development environments is an important part
of modernizing an application infrastructure. Micro-
services make the applications more portable, while
modern environments bring applications into the agile
and DevOps worlds. Incorporating modern security
mechanisms into the new environment extends legacy
data protection to this new platform. The net result

is new applications coming online that do not require
legacy development efforts. Legacy systems become
“just another data source”, just like any other the agile
system accesses.

The ability to generate APIs that reside in microser-
vices and serve up data from legacy systems offers the
best of both worlds. Agile development with modern
DevOps tools, and access to core corporate data from
legacy systems will bring legacy systems into the rapid
development fold. Organizations like OpenLegacy have
developed a software solution to help you achieve agil-
ity in the last bastion of long release cycles.

When implementing DevOps,
whether across an application
portfolio or across the entire
organization, it’s not an option
to leave legacy systems and data
behind.

