
Five Ways to QuickStart a Digital
Transformation Project for Your
Legacy System

www.openlegacy.com

Avoid the cost, risk, time and resources normally associated with
legacy modernization

2

Introduction
Most people think digital transformation is daunting, especially
when you start with monolithic legacy systems, but it doesn’t
have to be. Overall the process for legacy integration shouldn’t
be any tougher than building an integration between two cloud
systems. Here are five steps toward making legacy integrations
easier, including comparisons between OpenLegacy and other
approaches.

1. Get Started Quickly, Even With Limited
Resources

One common obstacle is getting the team resources approved. Everyone is
busy, and managers may be hesitant to give up team members for a perceived
big project. The good news is that the team can be small, which also aligns
well with modern methodologies (Agile, Devops) that recommend using small
cross-functional teams.

Most integration solutions require legacy team members to analyze and trans-
late arcane data types and build facades on the legacy system for communica-
tion purposes, therefore these specialized team members are usually critical
parts of a digital transformation project. However, OpenLegacy’s platform
removes the requirement for legacy team members by:

• Accessing legacy systems without making any changes

• Supporting the parsing of many different metadata types from screens to
COBOL, RPG, and many other formats

• Generating APIs in a standard format (microservices) and language (Java),
which allows teams to understand and use the APIs without specialized
knowledge

• Generating a direct connection to the legacy system, which removes the
requirement of a facade to translate the legacy data

Since rare, specialized
legacy skills are not
needed, you can
simplify the process
by using the same
team composition
as you use for cloud-
only integration
projects.

3

2. Start With a Manageable Use Case
The current trend in development is to start with a use case, build an MVP
(minimum viable product) and extend from there. However, when people think
about digital transformation, they give man-hour estimates in years for large
chunks of the project rather than estimates to build an MVP. Why? Companies
feel the need to understand the legacy system by manually translating whole
sections, making rapid progress and MVPs impossible.

Pick an easily definable issue or pain that matters to the organization. From
there, you can decide on the development style:

Contract-first:

If you use contract-first, you start with a business need, then build a con-
tract or set of contracts (APIs) representing that need. From there figure
out what assets you require to build the necessary functionality to realize
the APIs. This is a top-down development approach.

Contract-last:

This approach starts by looking at your systems to see who is using specific
functionality. From there look at requests for additional functionality and
decide to build based upon those usage patterns. It’s a bottom up way to
figure out needed functionality and the best way to build that functionality
into an MVP.

OpenLegacy’s platform handles both approaches. Simply choose the compo-
nents of the monolith you wish to expose, then OpenLegacy translates those,
and exposes functionality as APIs while connecting to the underlying code.
This allows you to quickly and easily complete the system translations and
you have deployment ready APIs.

Use
Case

Complex monolithic system where a piece of functionality is
extracted to be used for a use case

Manual translation
of entire systems isn’t
required anymore
with automatic
parsing and API
generation.

4

3. Avoid Concerns Over Building and
Running Back-End Connections

Many integrations stall out after a team decides on their APIs. Typically, teams
have concerns about things like:

• Translating legacy parameters

• Mapping the parameters to the API

• Building in methods to pass the data

• Designing a systematic way of logging into the system

• Making sure the legacy system passes information efficiently

Furthermore, at design time companies often choose ESB/SOA systems
with asynchronous queues to handle the passing of information, but then
the team needs to build a facade on the legacy system for data translation.
Designing the facade takes additional resources and makes the system more
complex. This complexity not only slows down the project, but also facades
don’t fit well with modern development paradigms (DevOps). The whole pro-
cess is time consuming and the results are less than desirable.

As mentioned, OpenLegacy’s platform parses legacy parameters directly from
the legacy system - therefore can bypass the ESB/SOA layers - and can gener-
ate Java code that handles the communication. At run-time the system is fast
because it is a direct connection to the legacy system.

OpenLegacy’s design-time and run-time processes for building
and using microservice-based APIs for legacy systems

Legacy
Systems

IDE
Cloud or
On-Prem
System

Application
Usage

Fetcher

GenerateDeploy

Microservice

API Contract

SDK

DevOps requires fast
building and testing,
but queues and
facades makes users
need to build and test
the legacy platform
every time a change
occurs.

5

4. Automate Testing—
No One Likes Building Tests

Most testing processes include both white-box and black-box testing. In the
case of legacy integrations, the white-box approach tests the call from the API
through to the legacy system. The black-box approach tests how the applica-
tions respond to data input on the API itself.

Many companies have moved to tools like Jenkins to automate their testing
process, but you still need to create the tests. Open source testing platforms
have gained popularity over the years: JUnit is a popular choice for white box
testing for Java and Swagger is the de-facto standard for black box testing
of APIs.

OpenLegacy’s platform handles the test creation and automates the testing
process by generating:

• JUnit tests for the underlying code

• Swagger code for easy testing of APIs

The platform allows you to focus on design while still knowing the test is gen-
erated. If you change the API, the tests reflect that immediately.

API Contract

SDK

API Contract

SDK

White Box Test Black Box Test

The white-box approach tests
the call from the API through

to the legacy system.

The black-box approach tests
how the applications respond
to data input on the API itself.

OpenLegacy’s
platform simplifies
the process by
automating the
generation of tests
at the same time it
generates the code
for the APIs and calls
to the legacy system.

6

5. Make Deploying APIs Simple and Easy
After building and testing the legacy system APIs, the question is how do you
deploy the APIs? APIs by themselves are a contract with which applications have
to comply in order to get data and complete business processes. In order to
deploy an API, you also need the code, which fulfills the contract itself.

Microservices are a popular, flexible deployment method. A microservice is
defined as a self-contained entity of limited scope. It also has a public interface
and a representation of the business logic and data, while leaving the original
system unchanged. The public interface is the API and the rest of the microser-
vice is designed to fulfill the functionality of servicing the API.

For an API interfacing to a legacy system, the business logic converts the data
between the API and legacy parameters. It also can include additional business
logic for security and orchestration between multiple legacy data elements.
Private methods inside the microservice contact the legacy system. This makes
the system self-contained. Containers make microservices easy to deploy and
maintain no matter where the services are needed.

OpenLegacy’s platform generates the microservices including APIs and code to
call the legacy system. The platform also includes Docker and configures any
gateway to allow for easy loading into any system. Your company can choose
to use microservices for the rest of the system or not. OpenLegacy’s system still
will work for you. The diagram below shows just some of the options for tools
that can be integrated with OpenLegacy.

API
Gateway

Cloud

EJB
Private Cloud, Public Cloud, or On-Prem System

Management Console

Automatic Generation of Microservice based APIs

Templates

Communicate Fetch Parse Automate

Mobile

Web

REST APIMainframe

IBM i

Databases

SOAP

JSON

OpenLegacy platform’s overall architecture showing its major functionality, the
potential inputs, and how it outputs to a number of different types of systems.

The platform
simplifies the whole
deployment process
and allows you to
focus on adding
value to the data
coming from the
legacy system.

WP_FiveWaystoQuickStart_17Sept2019

About OpenLegacy

OpenLegacy accelerates delivery of innovative digital services from legacy systems in days or
weeks versus months. Our microservices-based API integration and management software
reduces manual effort by automating API creation, simplifies the process by avoiding layers of
complexity, and improves staff efficiency and API performance. Our software directly accesses and
extends business logic to web, mobile, or cloud innovations in the form of Java objects, REST APIs
or SOAP. Most importantly, this process is not only fast, easy and secure, but also does not require
special staff skills or changes to existing systems or architecture. Together, business and IT teams
can quickly, easily and securely meet consumer, partner or employee demands for digital services
without modernizing or replacing core systems. Learn why leading companies choose OpenLegacy
at www.openlegacy.com.

Headquarters
103 Carnegie Center
Suite 300
Princeton, NJ 08540

www.openlegacy.com
sales@openlegacy.com

Israel
3 Mota Gur,
Olympia Park,
Petah Tikva, Israel

Chicago
541 N. Fairbanks Ct.
Suite 2200
Chicago, IL 60611

Dallas
Lewisville Vista Point North
405 State Hwy 121, Suite A250
Lewisville, TX 75067

Mexico
Torre Anseli
Av. Revolucion No 1267, Piso 19
Col. Los Alpes
Del. Alvaro Obregon, C.P. 01010
Ciudad de México, México

Switzerland
Rue Etienne
Dumont 1
Geneva, 1204
Switzerland

© 2019 OpenLegacy Inc. All Rights Reserved

Conclusion
OpenLegacy’s approach combines a highly automated platform with optional
professional services as needed to help you quickly modernize your legacy ap-
plications, while starting with one project and one priority. We help you create
and implement a digital transformation strategy that avoids the typical cost,
risk and resources.

At no cost, you can see a demo of OpenLegacy using your code. You can also
opt for a proof of concept, which typically takes a few days and not only creates
some APIs, but also documents the results to help you build a business case.

Regardless of the reason you are looking to do a digital transformation,
OpenLegacy can help you achieve it.

