

 2

Accelerating the Digital

Journey from Legacy Systems
to Modern Microservices

Zeev Avidan
Hans Otharsson

Copyright © 2019 OpenLegacy

All rights reserved.

ISBN-13: 978-1987762822

Edition 2

 3

 4

Table of Contents

Introduction ……………………………………………….. 6

One: From Application Monolith to Microservices………… 11

Two: Microservices & SOA ………………………………... 21

Three: Microservices vs. APIs ……………………………… 27

Four: Anatomy of Microservices Architecture ……………. 35

Five: Microservices Best Practices ………………………… 39

Six: Cost/Benefit of Microservices …………………………. 58

Seven: Getting Started with Microservices ……………….... 65

Eight: Business Impact of Microservices & APIs ………….. 83

 5

About the Authors

Zeev Avidan - Zeev has decades of

experience with legacy systems and legacy

system integration starting with his days as a

mainframe systems architect in 1996 where

he also designed and implemented Service

Oriented Architecture (SOA). From there Zeev worked on

mainframe integration for SRL and founded a services company

with special emphasis on integration and performance for the IBM

i series (AS/400). In 2011, Zeev began business consulting to

financial and governmental institutions on legacy systems and

integration, and also teaches courses on these subjects and uses his

deep background in the subject area to evaluate the technology and

potential of start-ups for Venture Capital firms. He joined

OpenLegacy in 2014 and is currently Chief Product Officer.

While the interest in microservices is fairly new and growing, Zeev

has been involved with the concept of microservices since the early

days of EAI and SOA. During the past 20 years he has seen first-

hand the pitfalls and challenges with integration and legacy

systems and believes microservices are a way to simplify and solve

issues from the past.

 6

Hans Otharsson - Hans is a global leader in

legacy transformation programs with decades

of experience developing, enhancing,

maintaining, troubleshooting and

transforming so called ‘legacy applications’

and associated environments. His global journey has taken him

into countless environments and business scenarios, where his

“straight to the point” approach has enabled him to bring true

change and business driven transformation to his clients. His

ability to quickly assess a situation and determine if an

organization can bring value – and offer suggestions for other

alternatives if needed - has made him a trusted advisor to

numerous global organizations. Hans has many years’ experience

with ‘legacy modernization’ in senior executive roles at Consist

Software Solutions, Ateras and also he founded ModernWiser, a

consultancy helping organizations understand their legacy

modernization options. At Software AG, Hans was responsible for

all Professional Services Sales & Delivery in North America and

Canada.

In his current role as Chief Operating Officer at OpenLegacy, Hans

is responsible for corporate operations and client success. These

dual roles truly capitalize on Hans’ strengths of quality delivery, a

customer first mentality, and solid industry experience - all of

which are truly echoed in his mantra of “we measure our success

on our client’s success.”

 7

Introduction

The question answered by this book is this: “How do you

accelerate delivery of innovative digital services from monolithic

legacy technologies in a way that doesn’t add more complexity and

layers?” In short, how can IT deliver on the demands of the

business?

To answer that question, we will describe the latest technologies

and approaches involving application programming interfaces

(APIs) and microservices, and end with many examples of how

they have worked for other organizations (chapter 8). Like the

bank that delivered a new payment processing system 50% faster

than other typical mainframe projects. Or the insurance company

who could finally compete in online price quote comparison

engines.

Our discussion is somewhat technical but mindfully written to

clarify and demystify these concepts for both the IT and business

audiences. Our goal is to facilitate meaningful conversations

around these topics, building a bridge between these groups based

on common goals and understanding.

While innovation and time-to-market have always been important,

the millennial market adds a new sense of urgency. They are

digitally impatient. They will not accept traditional banking

 8

processes. They won’t visit a branch, fill out a form, then wait for

days and check their mail. Yet in many banks in many parts of the

world, this is still the onboarding process. If you can’t offer digital

banking services via a mobile device, millennials will download an

app from a competitor and be on their way.

Demands set upon technology grow in the same escalated scale as

the capabilities of technology. When technology becomes faster,

consumers want things faster. As a result, most organizations find

their business leaders requiring faster innovation, while the

technical leaders still face many of the same technical challenges.

These days, a “modern microservice” is a fundamental aspect of

legacy system integration. It is about reducing and bypassing

layers. It is about rapidly accessing the system of record and

avoiding the unnecessary middle layer. It is the realization of what

we hoped Services Oriented Architecture (SOA) would have

brought us decades ago. And, it is what we envisioned when we

initially built those legacy back-end systems of record. In short, the

modern microservice is the right approach that finds itself in the

unique position of being in the right place at the right time.

If you can’t offer digital banking services
via a mobile device, millennials will
download an app from a competitor and
be on their way.

 9

However, these days, there seems to be a lot of confusion around

microservices. Common questions include things as basic as “how

are they different than APIs” and “wait a minute, why does that

vendor definition sound different than this one over here?”

Truth is, it’s easy to be confused. Microservices have changed a lot

over the years, and vendors refer to microservices in a wide variety

of ways. So, what are they, should you care, and, if so, what can

you do about it?

First of all, we will be talking a lot about “legacy systems,”

“legacy monoliths,” and “application monoliths”. An accurate

definition of these legacy environments would be systems

developed in the past that still provide business value. They were

built using the best available technology at the time, but often

don’t meet today’s integration requirements and business needs.

They are viewed as complex silos of tightly coupled business logic

that require numerous abstraction layers to reduce and demystify

so modern DevOps resources can simply access those business

systems.

Unlike typical application monoliths,
microservices are small independently
deployed services focused on a specific
business function.

 10

Unlike typical application monoliths (Chapter 1), microservices are

small independently deployed services focused on a specific

business function. Programs written in the microservices style are

popular because they are easy to understand, develop, and test.

Developing an application made up of individual services means

that different teams can work in parallel. This makes it faster and

easier to release a collection of related microservices.

You may find yourselves asking, “But, wait a minute—weren’t

ESBs and SOA supposed to do that?” Yes, and in many cases they

succeeded. Unfortunately, most IT departments with legacy

systems, an ESB, or SOA still struggle to be as agile as needed in

this ever-increasing global and digitized world. In many ways,

microservices provide the benefit of SOA, while also removing

many of the disadvantages (Chapter Two).

Microservices align well with agile processes that support

continuous development and delivery. These aspects are needed in

businesses where frequent data and program updates are required

(Chapter Three). They are a natural fit for DevOps.

Unfortunately, many IT departments with
legacy systems, an ESB, or SOA still
struggle to be as agile as needed in this
ever-increasing global and digitized
world.

 11

In the original use-case, microservices were an effort to push

modularity to a new level. They operated primarily as behind-the-

scenes components. Today’s modern microservices are frequently

customer-facing, highly integrated services used to create

previously impossible combinations of application functionality. In

large part, they leverage the capabilities of API contracts to

interface with a variety of back-end systems. Most importantly,

modern microservices can bypass layers of existing complexity

and be implemented far faster than earlier approaches (Chapter

Six).

This book is for any IT, DevOps, or business leader in an

organization who is considering microservices as a way to quickly

and efficiently leverage legacy data in modern technologies. May

your digital journey lead you to IT efficiency, faster cycles, greater

scalability and competitive differentiation.

May your digital journey lead you to IT
efficiency, faster cycles, greater scalability
and competitive differentiation.

 12

Chapter One:

From Application Monolith
to Microservices

If your organization can’t innovate fast enough to satisfy business

and competitive demands, consider a microservices approach to

your application monoliths. If you’re asking yourself, “what’s an

application monolith?” you’re probably running one right now.

Typically, an IT department develops an application — usually a

single core application or a number of related applications — and

combines all the elements into one system as shown in Figure 1.

Figure 1. An example of an

application monolith, where

multiple elements and functions

are combined into one

application.

For example, functionality is

mixed together in one big

application; you might have a payment application that would

include the customer information, payment transactions and

additional functions such as reporting and security. Sometimes this

 13

approach has benefits, and some applications are simpler to

develop in this way. On the other hand, monoliths create a lot of

inefficiency and code-usability challenges.

Slow Releases – The Enemy of Velocity

While this monolithic approach may have worked in the past, the

world has changed. Most organizations have numerous

development teams, all trying to create, update, and test their code

before release (Figure 2).

Figure 2. Application monoliths are mostly incompatible with

today’s Agile and DevOps environments. The build, test and

release cycles are usually far longer than what is required for

velocity and scale.

Releasing to production once or twice a year used to be the norm,

but it no longer serves most businesses in today’s fast-paced global

 14

economy. Businesses rely on Lean and Agile approaches when

they need faster release cycles — yet, the application monolith is

the enemy of such velocity.

Problems with Shared Code and Data

An application can be monolithic if you have software coupling,

such as shared code or shared data (see Figure 3).

Figure 3. In a typical application monolith, different modules may

share the same code or data. Therefore, any change to that code or

data requires testing of the entire monolith.

Shared code means central routine data is shared through the

application by many modules. For example, a credit card company

likely has a central digit validation routine that checks the validity

of the digits on a credit card. Nearly every module in the

 15

application can use this routine — whether it is the approval

process, the alert system, or the customer statement — because

everything needs to check that the card number is valid.

Consequently, if you make a change to this central routine, then

you have made a change to each and every function of the

application. If something goes wrong with this module, then the

application fails.

Shared data poses a similar problem. For example, customer

information is used by many components of the monolithic

application. Sharing both code and data results in very strong

coupling. Although it is simpler to maintain one code base or one

database, it is harder to make and manage changes.

Since change can be unpredictable, companies need extensive and

time-consuming testing — often taking months — to make sure

that code changes are stable enough to go into production. In fact,

this is such a huge concern that some organizations will avoid

fixing bugs because they are concerned about the aftermath.

This inter-connected ‘house of cards’ is precisely why most

organizations find it difficult to innovate with legacy systems.

This inter-connected “house of cards” is
precisely why most organizations find it
difficult to innovate with legacy systems.

 16

No Scalability

To improve scalability, companies have tried to break the monolith

into major application components that run on different server

images or platforms. However, many applications are so coupled

with code and data that they cannot easily be modernized. It is not

possible to deploy one component of application functionality in

one place and another piece of functionality somewhere else. This

puts a cap on scalability.

Scaling issues, lack of agility, long release cycles, slow innovation,

complex changes, and risk management are all well-known

challenges of the monolith (Figure 4).

Figure 4. Typical challenges of the legacy application monolith.

 17

What is a Microservice?

Microservices are an application architectural style that is a little

more than a decade old and interest and adoption has been growing

rapidly (Figure 5).

Figure 5. Interest in microservices architecture has grown rapidly

since 2012 as a way to solve common problems with application

monoliths. Source: Google Trends

The idea of microservices emerged from experiences with service-

oriented architecture (SOA). Unlike SOA, microservices structure

an application as a collection of independent services that are

narrow in scope and communicate using protocols that are very

efficient. Boiled down to their essence, microservices are a formal

architectural style for decoupling business functions from a

monolith. When you also encapsulate an Application

Programming Interface (APIs) in the microservice, you avoid

many pitfalls of monolithic designs.

For example, data and processes are often locked up in current

systems of record, such as the customer information and credit

 18

card verification process utilized in your application monoliths.

Microservices include APIs that are purposefully limited in their

functionality. For example, a payment system would not exist

inside of a microservice. Instead, the payment system would be

comprised of a mesh of microservices – one to get customer

details, one to transfer money, and so on. Each service is loosely

coupled, allowing the overall application to function even if one

service went down, allowing different services to exist on different

servers and different clouds, or allowing different components to

scale independently (Figure 6).

Figure. 6 Whereas a typical application monolith is tightly

coupled, microservices decouple independent business functions

into separate services so that changes to any one function will not

interfere with the other functions.

 19

Breaking Up Is Necessary Sometimes

Breaking up an application into different smaller microservices

improves modularity and makes the application easier to

understand, develop, and test. It also enables parallel development

by allowing small autonomous teams to develop and deploy their

services independently. Lastly, microservices allow the function of

an individual service to emerge through continuous improvement

supporting continuous delivery and deployment.

Microservices Speed Development on Legacy Applications

The major benefit of microservices isn’t just the speed of

development, it’s the concurrency of development. Developers can

work on different parts of the same application at the same time.

This has tremendous benefits for companies working with legacy

applications.

Modern application development demands a speedy pace, but

working with legacy applications is usually slow and laborious.

Microservices remove that burden. It is possible to expose business

functions via a microservice, if you consider the legacy application

as a data store, where you encapsulate the application logic

(business functions) within an API. In this manner, it’s possible to

use the COBOL output of a legacy application in a format that’s

understandable by a REST API.

 20

Developers can create other microservices representing features

related to the legacy application and connect them to the legacy

application without writing or modifying any legacy code. In this

way, it’s possible for one development team to work on speedily

adding new features to a legacy application, and another team to

work on maintaining the legacy codebase. All the while, neither

team needs to communicate or slow down their work based on the

demands on the other. Microservices enable rapid development for

projects involving legacy applications.

Monitoring Microservices

Before the microservices era, it was common for developers to

create a single monolith featuring hundreds of APIs, and then run

those APIs in a single container. The drawback to this has been

discussed above – if one single component went down, the entire

application would follow. On the other hand, one (extremely faint)

upside to this was that it was relatively easy to monitor the

condition of the application, since it was all in one place.

In the era of modern microservices, it’s possible to have an

application that’s comprised of hundreds of services. Some of

these services may not be in the same server, or in the same cloud.

The major benefit of microservices isn’t
just the speed of development, it’s the
concurrency of development.

 21

While the resulting application will be extremely fault-tolerant, it’s

worth asking how to monitor your microservices before switching

to that approach. Consider finding a software vendor or solution

provider, such as OpenLegacy, that’s equipped to do analytics and

monitoring on hundreds of microservices running in parallel.

With these benefits in mind, it is no surprise that leading industry

analysts are suggesting organizations take a closer look at

microservices. Forrester writes that microservices have an

important role in the future of solution architecture1, highlighting

faster software delivery, greater operational resilience and

scalability and better solution maintainability as the main benefits.

Gartner indicates that microservices architecture enables

unprecedented agility and scalability.2

1 Forrester, Microservices Have An Important Role In The Future Of Solution
Architecture, July 2015
2 Gartner, Innovation Insight for Microservices, January 2017

 22

Chapter Two:

Microservices & Service Oriented
Architecture (SOA)
When discussing the advantages of a microservices architecture

compared to monolithic applications, it’s easy to wonder why no

one took this approach in the first place. After all, upwards of

90% of enterprise applications in the world today are monolithic.

At the time they were created, monolithic design was simply the

best approach available to meet technology and business needs.

However, as business needs have evolved and the demand for

greater agility has intensified, developers and IT teams have been

tasked with breaking free of these monolithic architectures.

The resulting approach, at least in recent years, has been a

service-oriented architecture (SOA). However, while SOAs

solved many problems, they didn’t solve them all. The term

“microservices” is a subset of SOA terminology (Figure 1).

 23

Figure 1. Microservices and APIs can be thought of as a subset

of Service Oriented Architecture.

The SOA Integration Challenge

The promise of SOA initiatives was to extend the reach of core

business functions while reducing the internal expenses and

complexity that grew alongside monoliths. SOAs would achieve

these goals by breaking the core functions of a monolith into web

services using protocols like simple object access protocol

(SOAP) and eXtensible markup language (XML).

SOAP was built for universal application communications.

Because it’s based on XML, SOAs designed with SOAP could, in

theory, be used to create an agnostic integration layer. Rather than

struggling to piece together various proprietary systems, these

 24

protocols would open monoliths on different operating systems so

they could work together.

An agnostic integration layer would let system administrators

connect pieces of a monolith to an enterprise service bus (ESB) to

achieve an agile, plug-and-play SOA. In some cases, this

approach succeeded. There’s a great deal of so-called “legacy

SOA” out there in the world which still provides value. In these

cases, however, the value that SOA provides is in behind-the-

scenes server-to-server communication that mostly aids

developers. When it comes to serving customers – and their

rapidly changing demands – SOA isn’t always up to the task.

The problem is that the ESB oversees the messages that achieve

service integration to reach their destination. This communication

isn’t as simple as the SOA vendors may have promised.

Take, for example, an SOA integration approach with a core

banking application. This involves a message going from your

core application on your mainframe to a branch office server. If

the business logic states a message is only relevant for one

business day, administrators must decide whether it must be

When it comes to serving customers –
and their rapidly changing demands –
SOA isn’t always up to the task.

 25

moved to a queue, logged, or disregarded when the day passes.

This is a common scenario for core banking applications in an

SOA, but how well does it work?

In this example (and others like it), the ESB must know whether a

business day has passed or not to make the right decision about

where to send the message. This means the integration requires an

algorithm. Even if it’s a simple algorithm, the ESB can’t simply

rely on a universal rule for sending messages between the

monolith and external integration.

When administrators introduce new business logic into the

monolith integration, it turns what was supposed to be an agnostic

service layer into a new application layer thus increasing

complexity. Instead of simply integrating the monolith into a new

digital service, the enterprise ends up with a larger monolith —

one that includes the mainframe and all the new integration stacks

that have been added. Despite the promises of SOA, the

integration problems result in increased time spent on

maintenance, greater complexity of code and software, and the

continued growth (not elimination) of monolithic applications.

The first rule of effective integration is “smart end-points and

dumb pipes.” Building logic and layers into the service layer

breaks that rule, adds to the overall complexity, and adds another

legacy application to your portfolio.

 26

Trying to optimize the SOA approach will only result in larger

monoliths. Taking a new approach with microservices

architectures will help realize the original promise of SOAs

(Figure 2).

Figure 2. Microservices deliver on the original promise of SOA.

Improving SOAs with Microservices

For two decades, CIOs have tried to transition away from

monoliths by taking traditional approaches to integration, only to

find they’ve doubled down on legacy investments. All of these

integration stacks end up coupled to legacy systems and only

result in more work for the IT team — and a less agile

organization.

The integration step of SOA was never intended to include

business logic. Trying to force business logic into this approach

 27

leads to workarounds and extra effort just to achieve a less-than-

ideal result.

The key factor here is how to incorporate microservices without

adverse effects. Luckily, microservices architecture can be forged

from SOAs by introducing new principles.

One of these principles is context mapping. When replacing an

existing SOA, teams must consider the size and scope of the new

microservice and apply proper contextual boundaries. For

example, SOAs that typically sought broad integration with

digital services should be broken down into smaller domains to

simplify operation.

Another key principle is the idea of a shared-nothing architecture.

Too many SOA integrations create sprawling dependencies that

create complexity in the tech stack. Microservices avoid these

cross-service dependencies. For those looking to move to

microservices from an existing SOA, it’s important to look at the

list of dependencies and work toward standalone functionality.

Ultimately, the goal should be to refactor monoliths in a way that

shifts the IT stack toward microservices. If you take the right

approach, you can make the most of both microservices and APIs

within your SOA.

 28

Chapter Three:

Microservices vs. APIs

We’ve already explained how to differentiate SOAs from

microservices, but differentiating APIs from microservices is a

whole other question. Businesses are asking themselves the

question, “will microservices allow us to create more valuable

products?” They’re also asking if it’s necessary to master APIs

before pursuing a microservices approach. Perhaps that is not even

the best question. Both CEOs and technology buyers will use

microservices and API terminology interchangeably. The

difference is not simply an academic question, however (Figure 1).

Figure 1. All microservices include APIs, but not all API’s are

microservices.

 29

The difference between microservices and APIs is important for

businesses that are beginning to plan their participation in a more

digital era. You can implement microservices without exposing

APIs, and you can create APIs without using microservices. The

option you choose depends largely on your business needs.

So let’s try to be clear here on the differences and similarities of

APIs and Microservices. The fundamental concept behind a

microservices architecture is to break up your application(s) into

many small services. Each of these services will typically have its

own:

• Distinctive business-related responsibility

• Execution Process

• Database

• Versioning

• API

• UI (User Interface)

The fundamental concept behind a
microservices architecture is to break up
your application(s) into many small
services.

 30

A microservice should expose a well-defined API (Figure 2).

Figure 2. There are times when an API is sufficient – and

preferred – and times when a microservice is better. A

microservice will expose an API, but also include other elements.

 Microservices is the way you want to architect your solution,

while the API is what the consumer sees, keeping in mind you can

expose an API without a microservices architecture.

A rule of thumb to follow is to keep your services small and have

lots of small services versus building larger services. Then you

need to understand that a microservice can use a representational

state transfer (REST), message queue or any other method to

communicate with one another, so REST is orthogonal

(independent) to the topic of microservices (Table 1).

 31

Table 1. When to choose microservices, APIs or both.

API Microservices Application Status

Your application is slow to
change and difficult to
integrate with. Time to
market will be slow, and this
application is not truly an
asset to your Digital
Transformation Initiative.

Your application is still slow
to change, but it is now easy
to integrate with. Meaning
your time to market, your
ability to access this legacy
application is easy and fast.
This application now can be
an effective contributor to
your Digital Transformation
journey.

Integration nirvana – your
application is easy to change,
rapid to integrate. Most
importantly your ability to
add on top of your legacy
application new products and
services is optimal.

 32

Microservices a Streamlined Architecture for APIs

From a developer perspective, microservices are an approach that

enhances the performance, and thus the value, of the APIs and

applications they create. Remember that at its heart, an API is still

just a contract. The API receives a certain input and delivers a

certain output. Depending on whether the API is built with

microservices architecture, that output will arrive in a certain way.

Microservices impose a set of rules on APIs that make them

simpler, more modular, and more functional.

Microservice API

One function Many functions

One data store Many data stores

Simple communications Complicated pipes

One Function vs. Many Functions

A standard API might be built to behave several ways. For

instance, it might accept one kind of input, such as a customer

phone number, and it could return a customer’s ID and address. If

you give the same API a customer ID, it might return their credit

card and phone number, with further different outputs depending

on what other information it gets.

Microservices strictly limit the kind of information that an API can

return. A microservices API will only return one or two pieces of

information depending on the input. A different microservice

 33

handles anything else. The reason for this rests on the way that

microservices relate to their data stores.

One Data Store vs. Many Data Stores

For an ordinary API to return so many kinds of data, the

component implementing it might have to connect to many

different data stores. This is where APIs can begin to slow down

the development process. If one of those connected data stores is

updated, it may change the information that gets returned, and vice

versa. If more than one API is connected to the same data store,

any changes will affect both.

Microservices return only one or two kinds of data, and the best

practice is to connect them to only a single data store. This way, a

development team needs only test a single API before pushing

changes into production. This eliminates cross-functional disputes

and prevents duplication of efforts.

Simple Communications vs. Complicated Pipes

Once their information is retrieved, APIs need to do something

with it. Sometimes this means just transmitting the information to

the end user, but more often this means it’s handed off to another

automated system. In an ordinary application, the API can call any

data store or any other API as determined by the underlying

application logic. This necessarily makes the application more

tightly tied together, less modular, and more monolithic.

 34

In a microservices architecture, the application logic tied to a

particular API can only call on other APIs. This simplified

communication prevents the application from breaking when a

microservice is changed or removed. This added flexibility further

simplifies and streamlines the development process.

An ordinary API implementation stands by itself. It can accept any

commands, connect to any database, and make calls to any other

application or service. This seeming flexibility, however, can

actually make applications more monolithic, less flexible, and

more difficult to work with. By contrast, microservices encapsulate

APIs with a set of rules and components that ultimately liberates

applications from monolithic constraints.

In summary, companies are beginning to realize that simply having

APIs doesn’t make them an especially innovative or forward-

thinking organization. If it takes four months to create and

implement an API, then there’s no inherent velocity in

development. Microservices change the conversation. A simple

API in a microservices framework can be created in a day using

proven technologies.

A simple API in a microservices
framework can be created in one day
using proven technologies.

 35

Depending on their requirements, companies that adopt

microservices right now will have an enormous first-mover

advantage over companies that rely on traditional APIs.

Microservices adopters will be able to build applications with more

intrinsic value and add features faster than their competitors. In

other words, if you haven’t considered microservices already, be

prepared for that to change very soon.

 36

Chapter Four:

The Anatomy of
Microservices Architecture

A microservice is built in a specific way that incorporates three

parts: The API itself, an application logic unit, and a data store

(Figure 1). Microservices architecture allows for some variation

within this blueprint while adhering to the following precepts.

Figure 1. A microservice includes three parts: a data store,

application logic, and an API.

Microservices Anatomy: The API

Every microservice includes an API, but that API has to be written

in a specific way. The microservices architecture favors extremely

narrow and specific tasks, and so the embedded API will usually

have just one role, representing a public contract. For example, the

 37

contract for an agent desktop might involve an API that provides a

customer’s name, telephone number, and address when given their

customer ID.

Some APIs may have an expanded role – say that the customer

forgets their ID, so the agent can retrieve it by providing the

customer phone number instead. Going much beyond this usually

represents bad practice, however.

In addition, the API itself should retain past functions when given

new ones. In other words, the development team may decide to

improve the functionality of their API, but they can’t replace it.

Doing otherwise may break workflows or cause cascading failures.

Microservices Anatomy: Application Logic

In microservices, the application or business logic component adds

a measure of intelligence to the API. For example, imagine an

ecommerce platform built on microservices. A customer clicks on

“place an order”. This signals one microservice to check that the

customer creating the order has a valid account, billing

The microservices architecture favors
extremely narrow and specific tasks, and so
the embedded API will usually have just
one role, representing a public contract.

 38

information, and address. Once this is finished, the microservice

needs to pass on a certain amount of information:

o Was the application able to validate the customer?

o If no, why not?

o If yes, call the next microservice in sequence to create an

order.

Microservices Anatomy: Data Store

Best practices for microservices architecture holds that

microservices never share data – a microservice encapsulates its

data store, and other APIs will never call that data store directly.

This lets developers make changes to their data stores without

creating affecting other microservices, greatly speeding up the

development and testing process.

Another cardinal rule of data storage in microservices is to use the

database or databases which best suit the use case of the

microservice itself. This allows developers, for example, to use

both a SQL and a NoSQL database within the same application,

retaining the benefits of NoSQL without giving up ACID

(atomicity, consistency, isolation, durability) transactions and other

positive aspects of relational databases. This is mirrored on the

API side, with polyglot programming enabling application logic

and APIs to be written in whichever languages add the correct

blend of functionality and efficiency.

 39

Microservices are Like A Mini-Application

In summary, a microservice can be thought of as incorporating the

aspects of three-tiered client-server architecture commonly used in

web applications such as ecommerce: a presentation layer, a

business layer, and a data layer.

o The Presentation layer - which is the mechanism that is

used to frame the communication in a three-tier

architecture. The API, in the Microservices paradigm, is

the contract which defines the mechanism of

communication.

o The Business Layer - functions the same within a 3-

tiered architecture and a Microservice architecture. It

coordinates the start and end of tasks and activities along

with managing the communication with other services.

o The Data Layer - manages the packaging and exposure

of the information (data) to the logic of the Business

Layer, which in turn is passed to the API (Presentation

Contract)

Although the three-tier application contains layers of horizontal

separation, microservices add vertical dividers, exposing

themselves to other microservices only through the presentation

logic layer. This is the major anatomical difference between

 40

microservices and monolithic applications. By closing themselves

off from the rest of an application, microservices can be

administered by a single team over their entire lifetime, eliminating

the possibility misplaced business logic, duplicated efforts, and

other negatives.

 41

Chapter Five:

Microservices Best Practices

Microservices approaches have evolved to become far less

complex than they were a few years ago. Instead of modules

preoccupied with connectivity and message passing, modern

microservices are data applications that can be created more easily

than in the past, then used stand-alone or combined into

applications using APIs. They make important data and processes

available in new ways without disrupting the systems of record that

they access.

When you invest in modern microservices, you should expect

scaling with ease, rapid release cycles, simpler changes, increased

agility, faster innovation and lower risk. These motivations are

behind these seven rules of microservices:

1. Bypass layers where possible

2. Access only public APIs

3. Use the right tool for the job

4. Secure all levels

5. Be good citizens yet have great police

6. This is not just about technology

7. Automate everything

 42

Rule Number 1: Bypass Layers Where Possible

Many readers may perceive or have first-hand experience of

integration microservices as being complicated to create. Whereas

in the past microservices creation required navigating through the

complex layers of your existing architecture (Figure 1), modern

microservices bypass these architectures to connect directly with

your monolithic legacy systems, such as mainframes, midrange

systems, and databases (Figure 2).

Figure 1. Typically, integration microservices have been hard to

create, largely due to complex, manual effort.

Some software (such as OpenLegacy) consumes the logic of the

legacy system so that the best method of connecting to the system

can be determined. Then at run-time, that information is used with

pre-built connectors to automatically connect with the legacy

system, and bypass as many layers as possible (see Rule Number 3

– Polyglot Back-End).

 43

Figure 2. Some vendors (such as OpenLegacy) bypass

architectural layers to connect directly with existing monolithic,

legacy systems. Furthermore, many manual processes are

automated thereby simplifying and speeding the process.

Microservices can be created very quickly and without complexity,

and without special programming skills such as COBOL or RPG,

or invasive changes to underlying systems.

Since the value of microservices can’t be achieved without first

creating them, this point can’t be overstated. In our experience, the

biggest hurdle for organizations adopting microservices or APIs

for legacy monoliths is the time and effort for creation.

Rule Number 2: Access Only Public APIs

Delivering new business applications using Public APIs is

fundamentally changing how software is created and delivered to

 44

the market. The public API, built with REST or SOAP, has a

contract governing its access, so the rule is that you must only

interact with the contract of the microservice. This is important

because for a microservice to be coupled or combined, it has to be

utilized in a specific way to preserve its modular aspect. When

using the service contract, you avoid problems that could arise

from reading the service’s database or message queue directly. If

you bypass the contract, you are dependent on the physical

attributes of the service and can run into problems when there is a

change of the code in the microservice (Figure 3).

Figure 3. Only interact with the API contract of the microservice.

Otherwise, you may run into problems if there is a change in the

microservice code.

 45

How does a microservice change and evolve? There is a process

for changing and growing the microservice. This is handled

through versions of the contract, so organizations can have some

applications that use one version of the contract whereas other

applications will use a different contract.

For example, microservices can break up an application into

functional components, which are combined with other

microservices to create an external API. By creating this kind of

“function network”, these combinations of microservices utilize a

SDK to access the legacy system like a mainframe. These

microservices are used to create new business applications. The

new contracts they use are not on the mainframe, but rather inside

the microservice itself that accesses the mainframe.

Having a function network makes it easy to change, enhance and

add new business logic. Modern microservices create a layer of

protection and abstraction on top of the legacy system. At the same

time, they give users a lot of flexibility and agility without

changing the legacy application.

Rule Number 3: Use the Right Tool for the Job

Many organizations are starting to adopt the best-tool-for-the-job

approach by developing an integrated collection of supported

products and technology. This may include a “must use” list where

there is one main tool that you must use to address a specific need.

 46

There is also an “available list”, which is a list of approved

alternative solutions. Programmers can pick and choose whichever

tools or product best fits their needs — SQL database, sequential

file system or in-memory data system. This is known as polyglot

persistence (Figure 4).

Figure 4. Polyglot persistence enables developers to choose the

right tool for the job.

Making the right choice with a programming language is just as

important as choosing the right data-management option. Choosing

the best language to complete the task is known as polyglot

programming. Just because an organization has made a

commitment to a specific programming language should not mean

that programmers must do every procedure in that language as long

as they properly invoke the microservices using its contracts. For

example, in some applications, even though Java might be the

 47

company standard, C or javascript may be the best choice (Figure

5).

Figure 5. Polyglot programming means programmers can choose

the right programming language for the job.

The polyglot backend rounds out the trifecta of polyglot

architectures. This allows microservices to flexibly access one or

more back-ends in the microservice depending on the needs of the

application being developed (as described in rule number one).

The polyglot backend does not take the form of an integration

layer, but instead is a pure microservice implementation without

microservices washing – the practice of selling a product as a

microservice when it doesn’t actually fit microservices

characteristics (Figure 6).

 48

Figure 6. Polyglot backend capability is a powerful feature

because the back-end can be a variety of sources like a mainframe,

midrange system or relational database on a distributed platform.

Support for diverse back-ends makes it possible to create

microservices with significant ability to integrate data and

processes from previously disparate sources.

Rule 4: Secure All Levels

Since microservices are separate runnable units, they do not enjoy

some of the benefits of a security framework, which are shared by

all components in a monolithic application. Because there is often

not a shared security mechanism, developers compensate for this

shortfall by running the microservice behind an API gateway1

which supplies a lot of functionality while also playing the role of

a firewall.

 49

When an API gateway is implemented, many organizations assume

that everything behind the API gateway is secure. Once a cyber

threat penetrates the gateway, there are no additional security

mechanisms to challenge it. Microservices require an in-depth

defense that is not limited to one layer of security.

Communications between microservices should be protected using

encrypted SSL.2 oAuth3 should be used for user identity and

access control. It is important to properly handle JSON.4 This

protocol replaced XML but has weak data typing capabilities.

JSON has limited features to help with data validation, which

means that JSON has vulnerabilities that must be addressed by

logic in the microservice (Figure 7).

Figure 7. Due to their unique nature, microservices require

multiple levels of security.

 50

 Another secure-all-level strategy is never to allow microservices

to run on the public network because it typically is not secure.

Additionally, programmers need to embrace certain guidelines,

such as logging every significant event, implanting automated

monitoring, and generating alerts when needed. Programmers

don’t need to reinvent the wheel in terms of their security,

development, and systems management solutions. Instead, they

should use trusted tools and frameworks with which they are

already familiar. Examples include:

o Apache Log4j - A fast, reliable, and flexible logging

framework written in Java

o oAuth - Open protocol to allow secure authorization for

REST APIs, web, mobile and desktop applications

o EhCache – Widely-used open source Java distributed

cache engine

o Angular - Open source development platform for web

applications

o Freemarker - Open source, Java-based template engine.

Templates are a structured format, created by Freemarker,

where programmers enter data when generating entities

In addition to the other security considerations discussed —

firewall, SSL, JSON, use of a public network, logging, monitoring

and alerting – some vendors (such as OpenLegacy) have a feature

called in-service security. This adds another secure layer to every

 51

microservice in an application by building upon LDAP and oAuth

authentication. That layer provides data-structure security by

restricting access to specific API fields according to the security

level. It adds data-content security by restricting access to data

values according to the security level.

Figure 8. Security needs to be implemented at the service level.

Rule 5: Be Good Citizens, Yet Have Great Police

Being a good citizen of the microservice ecosystem means that

when you write a new microservice that uses the contract of

another microservice, you should be aware of the current usage of

that microservice. You should approach the team supporting that

microservice to tell them of your plans and needs. If you plan to

use it extensively, you might impact their SLA5 and they will have

to take steps that might include increasing pool data size or

enabling caching6 (Figure 9).

 52

Figure 9. Being a good citizen means that developers should work

together when their microservices are used together as part of new

business function for the company.

You need to be a good citizen, but you also need great policing

tools. You need to measure SLAs, collect logs & traces and

throttle7 unruly workloads. It is also important to collect both

internal metrics (‘which services were involved and what is their

response times?’) and user-experience metrics (‘how long from

click to data?’).

When your microservice interfaces with mainframe applications

and data, you should take actions to protect the monolith. Not only

does each microservice keep logs and provide tracing ability, but

also there is a caching mechanism that improves the performance

 53

of searches by keeping the most frequently used data in memory.

When too many requests are sent to a host, some software can

specifically throttle access to the monolith. The throttling feature

can limit the number of requests that a single client can send to the

application APIs per time unit (Figure 10).

Figure 10. Both caching and throttling are tools used to minimize

the impact of the microservice on the monolith.

Rule 6: It’s Not Just About Technology

Before developing microservices, consider the organization of your

team. Microservices thrive when you organize as a cross-

functional team8 where each team has any number of different

skills and these teams are as self-sufficient as possible. Martin

Fowler says that “siloed functional teams lead to siloed application

architectures” (Figure 11). Cross-functional teams work better with

microservices APIs because they are organized around the

capabilities they are creating and managing (Figure 12).

 54

Figure 11. Siloed functional teams lead to siloed application

architectures.

Before developing microservices APIs, consider the skill set of

your team. Java is an important skill to have on the team, but other

language and middleware skills are also needed. For example,

some tools automatically generate microservices in Java, and Java

skills are required only when you want to change the standard

output of a microservices API. Surprisingly, because the legacy

application and data access are handled automatically, the

microservices implementation team does not have to include

legacy skills. This means that the number of cross-functional teams

is not limited to the number of legacy-skilled people and the labor

pool is therefore much bigger.

 55

Figure 12. It is important to organize teams around business

functions they develop and deploy as microservices so the

development can be fast and responsive.

Agile approaches9 to development are a natural fit for

microservices. The cross-functional team can rapidly create the

public APIs that result from their microservices. DevOps10 is also a

good fit for microservices as both developers and support

technicians belong to the same cross-functional team. Being on one

team also breaks down any organizational barriers that inhibit the

use of common tools and procedures.

Rule 7: Automate Everything

Automation is a proven way to improve quality and lower risk in

IT. Gartner11 writes that automation is the next IT frontier. Testing

is a good candidate for automation because, during microservice

development, manually repeating the necessary tests is costly and

time-consuming. Automated software testing can reduce the time

 56

to run repetitive tests from days to hours, providing more

comprehensive and consistent results.

Automation leads to a much more robust IT environment as well as

a greater opportunity to change software in a low-risk way. Some

microservices vendors are inherently more automated than others.

For example, some vendors make it possible for the deployable

units - the actual microservices themselves - to be standard Java

entities. There is nothing proprietary about them — they are

exactly what an experienced Java programmer would create.

Additionally, with these types of microservices, solutions like

Jenkins and Maven are available for you to use. With Jenkins, you

can automate many parts of the software development process by

making use of continuous integration and continuous delivery

steps. With Maven you can manage a project's build, reporting, and

documentation. Jenkins and Maven are just examples. When

choosing a microservices vendor or tool, look for a solution where

no proprietary deployment, testing, or versioning solutions are

needed, and you are encouraged to use whatever best-practices

open-source solution you find best (Table 1).

Table 1. Sample of the Technology Stack of the Tools that are used

to create, manage and deploy microservices (using OpenLegacy as

an example).

 57

Tool Description

Spring Spring is an application framework used

to build simple, portable, fast and flexible

JVM-based systems and applications.

SonarQube SonarQube, a continuous code quality

tool, provides the capability to show the

health of an application as well as to

highlight issues that may have been

newly introduced.

Jenkins Jenkins is an open source automation

server that provides hundreds of plugins

to support building, deploying and

automating any project.

Maven Apache Maven is a software project

management and comprehension tool that

can be used for building and managing

any Java-based project.

Git Git is an open source distributed version

control system designed to handle

everything from small to very large

projects with speed and efficiency.

 58

Sonatype

Nexus

Sonatype Nexus is a tool to organize,

store, and distribute software

components.

Cloud

Foundry

Cloud Foundry is an open source cloud

application platform for developing and

deploying enterprise cloud applications.

It automates, scales and manages cloud

apps throughout their lifecycle.

It is important to use a standard technology stack because the

technologies are tested. There is also a good deal of expertise and

documentation available on how to set them up properly to ensure

security and high performance. Certain development situations

may call for a faster or more robust database. Or there may be

contractual or regulatory requirements for certain types of

hardware, operating systems, and server software. These cases are

rare, and most microservices function well on a standard

technology stack.

The best practices in this chapter are common sense measure, but

some will require cultural and technology changes in the IT

organization. “Access only public APIs” and “secure all levels”

focus on prudent measures to protect data resources. “Using the

right tool for the job” and “this is not just about technology” likely

require organizational change to be impactful. “Be good citizens

 59

yet have great police” and “automate everything” focus on a mix

of organization and technology measures that are easy to

implement by following IT procedures.

1 API gateway – API management, Wikipedia
2 SSL – What is SSL?, SSL.com
3 oAuth – oAuth, TechTarget.com
4 JSON – JSON, JSON.org
5 SLAs – Service-Level Agreement, Wikipedia
6 Caching _ Cache (Computing, Wikipedia
7 Throttle – Throttling Process (Computing), Wikipedia
8 Cross functional team – Want to Develop Great Microservices? Reorganize

Your Team, TechBeacon
9 Agile approaches – Agile In a Nutshell
10 DevOps – The AgileAdmin, What is DevOps
11 Gartner – Automation: The Next Frontier for IT, May 2016

 60

Chapter Six:

Microservices Cost/Benefit

We are focusing on how microservices can better enable legacy

applications to be assets -- not speed bumps -- in your digital

journey. As such, microservices can benefit both the IT and

business organizations.

Despite the benefits of a microservices strategy, it’s important to

be sober-minded about pursuing it, because adopting a

microservices architecture is similar to the adoption of any

relatively new software discipline. If you are building and

deploying microservices, you will need the appropriate

environment and staff. By no means is this an extensive or

surprising list, but, here are a few things to consider when

considering microservices, similar to any new technology or

methodology.

Development of Microservices Architecture

Determining the cost & value of microservices projects isn’t wildly

different from other projects, but there are unique factors to

consider. Here, for example, are just a few of the “getting started”

expenses that might be incurred:

1. Personnel Costs: Not all developers will be familiar with

the microservices architecture.

 61

2. Organizational Expenses: Microservices architecture

performs best when administered by small, cross-functional

teams.

3. Tools: Containerization and other supporting technologies.

Rule of Thumb – Depending on where you are starting from, the

“Getting Started” costs might be budget concern, but the

downstream benefits will be significant. Adoption of a

microservices architecture will quickly defray those costs by

returning large amounts of business and technical value.

Maintainability & Ongoing Operational Costs

The first part of value generation comes in the form of

maintenance advantages. Let’s assume that you’re starting out by

running application monoliths, as opposed to green-field

development. Maintaining these applications takes time, because

they are built out of interlocking dependencies.

For example, imagine that there’s an outage in a monolithic

application – the login manager fails. Every other part of the

application hangs on the login manager, so when it is down, it’s all

down. It’s difficult to support a growing number of customers with

an application that behaves like this, and while there are

workarounds, such as failover services and instancing, they tend to

be expensive.

 62

The time it takes to test, update, and maintain application

monoliths means that maintenance has become a huge part of the

traditional IT budget. A sample healthcare IT budget from Gartner

shows that 70% of budget expenditures1 come from simply

running the business – increasing to 73% in 2017. This leaves

little left over for innovation.

Rule of Thumb – A microservices architecture with fewer

application dependencies and simple APIs, will immediately

reduce the time and money spent on application maintenance.

Application maintenance expense savings has proven to be more

than enough to cover the “getting started” costs within a few years.

The Marriage of Quality and Speed

The dependencies (speed bumps) inherent in any monolithic

application will inhibit innovation. Application monoliths don’t

tend to play well with newer development techniques – such as

Agile and DevOps – that emphasize speed. Any update that’s made

to one part of the application will be reflected in other parts, so any

update will need to be tested thoroughly.

The reductions in maintenance expenses
alone should be enough to pay for the up-
front cost of microservices within a few
years.

 63

There are automated testing tools designed to mitigate this

problem, but like the solutions designed to mitigate failures in

monoliths, they’re expensive and hard to scale.

Microservices, on the other hand, let developers increase the speed

of their development without sacrificing quality. This results in a

competitive advantage – they will be able to refine their

application faster than those who haven’t yet adopted a

microservices strategy. External customers and vendors will build

up loyalty to these applications, while internal end users will

become more productive.

QUALITY

Here’s how it works: DevOps, Agile, and other modern

development practices rely heavily on automated testing. The idea

is to give developers or QA personnel the ability to set up several

test environments in just a few clicks, and then let an automated

testing program (e.g. Jenkins) handle most of the effort. Done

correctly, microservices should require zero change to your legacy

applications, thereby limiting the need for the time consuming and

costly exercise of monolithic application testing.

 64

Microservices make for a much cleaner testing process. They’re

built simpler, so it’s easier to review their code. As a result, it’s

also simpler to perform unit tests. By definition, microservices are

small and simple and quick and easy to write, therefore they are

equally easy to test.

SPEED

The value of speed is different for every organization, but one can

easily appreciate the benefit of a 90% increase in delivered

services per year, or being able to push out 20 new services every

five weeks.

Rule of Thumb: Speed of Development + Quality of Development

= Competitive Advantage. For example:

• When an insurance organization leverages microservices to

compete in the large insurance quote comparison engines,

you’re part of a fast-growing digital channel used by millions

of shoppers.

• A bank that can offer mobile bill-pay and mobile deposits as a

result of microservices is now able to capture younger

generations of new banking clients who can offer lifelong

value and add millions in deposits.

 65

Walk, Then Run

Find a partner that will work with you on a pressing and

compelling business use case, where a microservice architecture

can bring immediate value. Define the success criteria of a low-

risk proof of concept that will give you the ability to envision

“what is possible”, and the data points to confidently assess the

potential and cost/value benchmarks necessary for you to begin

your digital journey.

1 Gartner IT Budget: Enterprise Comparison Tool, March 2017

 66

Chapter Seven:

Tips for Getting
Started with Microservices

The primary thing to take into consideration is to avoid diving into

a “silver bullet” scenario - there is no one answer or approach for

all. With any microservices strategy, there are countless options

and alternatives. You need first to assess the business problems

you are looking to solve, where you see your market going, how do

your clients want to interact with you, what might be the

operational issues, and what are the support issue impacts, and so

on.

Based on this walkthrough, you might realize that your best

approach to Digital Transformation might be evolutionary or

revolutionary - either track will most likely require a combination

of in-house resources/development, open source technology,

service providers, and technology vendors.

It is inadvisable to begin a microservices project – or indeed any

software development project – without first having a detailed plan

as to how it should be accomplished. Microservices, however,

might represent a greater departure from development norms than

other forms of software architecture. This is because developing

microservices doesn’t just mean learning new programing

 67

frameworks – it means fundamentally reorganizing the functional

units of development within an organization.

Let’s cover two major microservice focus areas: The first is

foundational – how to lay the groundwork for microservices within

an organization. The second is procedural – the best ways that we

have found for companies to create, build, and implement specific

microservices from the ground up. With these blueprints in hand,

companies will have a much bigger chance to bring their

microservices approach off the drawing board and into reality.

Before You Get Started: Preconditions for Microservices

Research shows that many companies who attempt to replace

entrenched legacy architectures with modern digital infrastructure

will fail – usually after having spent a large amount of money over

a long period of time. Microservices, on the other hand, are

supposed to be the exact opposite – quick, cheap, and successful.

To guarantee success, however, companies need to fulfill several

preconditions:

First Precondition: Technological Enablement

One key challenge for organizations is the imperative to take the

output from legacy software infrastructure built in the 1980s and

translate it into an input that the latest model of mobile phone can

understand. Microservices can help facilitate this process, but one

key to this puzzle is knowing that making the legacy backend more

 68

available to mobile and browser-based users will increase the

workload on an already sensitive infrastructure.

Another question concerns the future. Microservices – and the

technologies that support them – aren’t static. Creating a

microservices infrastructure means anticipating ongoing trends in

information technology while avoiding mission creep. In other

words, developers should create a microservices architecture that’s

upgradable, but one that also sidesteps the inevitability of a

complex middleware stack.

Second Precondition: Standards-Based Approach

The idea that all microservices should be designed with a common

set of standards goes hand-in-hand with the idea that all

microservices should be future-proof. Many third-party developers

(which are commonly employed to create microservices

architecture) don’t value this approach, and as a result, they create

frameworks which are blind to the realities of programming for

legacy infrastructure. When no standards are applied to a

The idea that all microservices should be
designed with a common set of standards
goes hand-in-hand with the idea that all
microservices should be future-proof.

 69

microservice, it will be difficult, if not impossible, to re-use and

maintain them in additional applications.

Third Precondition: Gearing for Speed

It’s easy for a development team to create a microservice quickly,

but the fact that it’s easy depends mostly on the team, not the

microservice itself. A team that can create microservices quickly

needs to be armed with the right technology and an appropriate set

of standards, but that’s not all.

Conway’s Law says that organizations create software that aids the

structure of their organization. Microservices are discrete and

independently deployable, so an organization that creates

microservices must be comprised of small teams that can work on

independent projects with loose organization from the top down.

Therefore, a microservices architecture complements an Agile or

DevOps framework.

Agile, DevOps and Microservices

Approximately 66% of companies use Agile already as of 2016,

but the usage of Agile is far from comprehensive on an industry-

by-industry basis. Organizations that regularly grapple with legacy

hardware and software will often have difficulty adapting the swift

pace of Agile to the slow reality of developing for legacy systems.

• J.P. Morgan Chase – the world’s 10th largest bank – only

began Agile adoption as of 2015.

 70

• Many healthcare organizations still consider Agile as an

equivalent to Waterfall.

• Large government organizations still wrestle with the

concept of adopting Agile methods to legacy hardware.

Many of the organizations that use Agile in theory may not

actually be using Agile in actual practice. Agile is best defined

simply as an organization’s ability to achieve a high rate of change.

If an organization still deploys releases only once every four

months, then they’re not actually Agile.

Adding microservices can help organizations achieve Agile in full.

Microservices are designed to be small and flexible, so when Agile

teams start working on microservices projects, their overall

velocity increases. This can be enough to take a development

organization from a monthly release cadence to a weekly release

cadence – in other words, to transform an organization into one

that achieves Agile in practice, as opposed to in name only.

Microservices/API software vendors that enable an organization to

achieve scale and velocity with legacy-based applications can be

considered a DevOps enabler. For example, OpenLegacy:

1) Automatically generate APIs/microservices from legacy

applications in a fraction of the time, and with open

standards

 71

2) Generate standard Java objects that can be deployed as

digital services for mobile, the Web, or in the cloud

3) Compatible with all standard DevOps tools and are easily

incorporated into the DevOps ecosystem

4) Accommodate test-driven design by generating automated

test units

5) Enable deployment by generating code that can be

deployed like any other – nothing proprietary

6) Management console can be used to control both APIs and

microservices, scale up or down, which aligns well with

DevOps processes

Actualizing Microservices Once Preconditions are Met

Once an organization has the technological and structural

prerequisites that can support a much faster development cycle, it’s

time to begin to create microservices in earnest. This is a three-

phase process – discovering a need for a microservice, creating the

microservice, and putting it into production. For example, at

OpenLegacy, this can be summarized as Discover, Build, and

Realize (Figure 1).

 72

Figure 1. Once preconditions are met, one approach to getting

started involves the Discover, Build and Realize approach.

Stage One: Discover

“Discover,” in this case means documentation. Work doesn’t begin

until developers can articulate the detailed logic that underpins

their microservice in a text document, describing what it’s for, how

it works, and whether there are any loopholes.

As one example, imagine a microservice that queries hospital

records when patients and doctors want to look up their test results.

The discovery document might include:

• Users: In this case, patients who wish to look up their own

records, and doctors who wish to do the same.

• Description: This application lets users look up their

hospital records. To do so, it must tie together a number of

systems, such as a web portal, a record library, and/or a

mainframe.

• Sequence: User authenticates via the web portal, navigates

to the records page, and selects a record, which triggers the

 73

microservices and provides a response back to the

customer.

• Precondition: User must authenticate as a patient or a

doctor, must be authorized to view records, and must have

records to view.

• Postcondition: The application serves a medical record,

which is downloaded as a PDF. If the microservice is

unable to do so, it supplies error codes for the edification of

the user.

The discovery document is the lynchpin of the microservice itself.

Many errors, inconsistencies, and shortcomings of applications can

be traced to their origins on paper, independent of their code. The

bullet points above represent the briefest sketch of an actual

discovery document – the real version should be thoroughly

checked for loopholes.

Stage Two: Build

The “Build” phase of microservices development encompasses

both writing and testing code. By their nature, microservices are

mean to be created quickly and tested quickly, often using

automated testing tools. Testing a microservice will generally be

more complicated than writing it. Once the microservice is

written, at least three phases of testing are required:

1. Development and Build-Time Testing

Development testing is performed by a developer during

 74

and immediately after the microservice is written. For

microservices, these typically take the form of unit tests.

Build time tests, on the other hand, will take the form of

static analysis, with different test tools aimed at different

parts of the microservice.

2. QA Testing

QA testing for microservices involves positive/negative

testing several areas. For example, there’s functionality –

does the application work as intended? There’s also

security and authorization – who can use the microservice,

and how does it react to unauthorized users? Lastly, testing

is performed on the business logic of the application to

gauge application performance under a number of use-case

scenarios.

3. PTE Testing

Public Test Environment (PTE) Testing simulates the

performance of a microservice in a production

environment. Essential questions include how the

application performs under normal traffic, whether it can

perform well under unusual traffic loads, and how its

performance translates into an SLA.

Stage 3: Realize

Once discovery and building have been completed, all that’s left to

do is put the microservice into production. This is very easy to do –

possibly the easiest step in the discover-build-realize loop.

 75

Microservices are designed to be easy to deploy by their very

nature.

Because microservices are mini-applications, they can be designed

and put into production without extensive collaboration between

teams. Putting a new microservice into production doesn’t run the

risk of breaking another part of the application.

Therefore, the realization of a microservice is about more than just

production. Rather, it asks developers to reflect on the lessons

learned from building and testing an application. Incorporating

these lessons is an aspect of continuous improvement. Creating

your first microservice may have been an unexpectedly easy

process. Incorporating the lessons from building it means that your

second microservice will be even faster and easier still.

Put It All Together: Start Small & Think Big

For microservices evangelists within large organizations, the

challenge isn’t laying the groundwork, committing to institutional

change, or programming new services. Rather, the challenge is

getting buy-in from principals in order to get those changes started.

Microservices are designed to be easy to
deploy by their very nature.

 76

From the perspective of a single individual, this task can seem

daunting, but there are a number of concrete steps that even just

one person can take to move the needle.

Without proof – proof that the microservices concept is workable –

there’s no way that decision makers will commit to large-scale

institutional change. Therefore, the evangelist’s job is to create

proof, ideally by committing to a successful small-scale

microservices project. Fortunately, in a large organization with a

lot of legacy infrastructure, there’s ample opportunity for one

person or a small team of people to pilot a workable microservice.

Imagine a specific function – something small, convenient, and

preferably not mission-critical – that could be improved if it were

augmented with a microservice. Take that function through the

design, build, and realize process above. This will represent the

test case for a microservices approach. If it works, that

achievement will serve as a toehold: you can scale from there.

In most organizations, creating the culture that can support

microservices – and then microservices themselves – is iterative.

The best approach is to start with a small success and grow from

there. Although the starting point is small, and the journey is long,

the result will be a more streamlined and focused business unit that

can finally meet the demands of an increasingly digitized

economy.

 77

One Last Thing: Choosing a Microservices Vendor

A monolith to microservices strategy is going to involve

technology impacts, process impacts and corporate culture impacts

- it is easy to state that one is Agile and flexible versus actually

being Agile and flexible. So pick a vendor who will be a partner,

one that has a proven track record of understanding where you are,

what you have and where you want to go.

Vendor Technology

Not every microservices product is created equal, and some don’t

even fulfill the strict requirements of being a microservice. This is

what Gartner calls “microservices washing” – the act of selling a

product with superficial microservices labeling that doesn’t

conform to the definition of a microservice.

Up until fairly recently, SOAs and ESBs were the primary

integration strategies for customer-facing applications. As this

architecture lost some momentum, many vendors felt the need to

pivot to a new architecture such as microservices.

In theory, this pivot is supposed to look like an idealized

microservices strategy – a layer of microservices that exposes

features to customers and partners, a layer that connects these

features to business units, and a third layer that connects business

units to legacy applications (Figure 1).

 78

In practice, however, these companies never quite figured out how

to get rid of the SOA architecture underlying their products. The

result is usually something that looks like an ESB encapsulated by

a microservices wrapper.

For example, imagine a microservice that exposes customer

information as an API. The API needs to transmit all customer

data, but only to some agents, due to compliance rules. This

microservice contains an ESB. When it receives a request for

customer data, the ESB contacts the mainframe, but not directly.

First it needs to contact another microservice that will check

whether or not the requesting agent is authorized to receive that

data.

This violates good architectural design principles for

microservices. It produces a multi-layer of dependency due to its

integration, essentially creating a monolith. If one part breaks, the

entire service goes down (Figure 2).

APIs need to connect to legacy mainframes in ways that are

simple, intelligent, and modern. For example, OpenLegacy makes

this possible by creating prebuilt connectors that interface with

legacy applications in order to create a Java Object, with output

that’s readable by a standard REST API, a browser-based web-

page, or even an SOA web service (Figure 3).

 79

The result is a tool that any developer can use without needing to

learn or modify the legacy source code (e.g. COBOL). Instead of

worrying about lengthy integration periods or legacy code,

developers can create APIs and implement robust new features in

just hours – more than fast enough to meet the increasing pace of

customer demand.

Figure 1. According to Gartner, organizations who over-state how

their microservices work are engaged in so-called “microservices

washing.” The diagram above often represents how they say it

works.

 80

Figure 2. In a “microservices washing” scenario, the actual

microservices architecture is far more complicated than described.

This diagram is often how it really works.

 81

Figure 3. For example, OpenLegacy’s “modern microservices”

remove layers and complexity to accelerate innovation with legacy

monoliths. This is how it actually works.

Vendor Checklist & Considerations

Partner or a
Vendor

A partner should understand more than one
aspect of your business challenges. A partner
cares about what you care about. You will
have issues, but a measure of a partner is
how you resolve and walk through those
issues together.
A partner is transparent with their clients and
quick to respond to questions. A partner will
own their mistake if they make a mistake.

Subscription
Model

It is all about flexibility, minimizing upfront
risk and minimal capital investment. In a
subscription model, subscribers are always
up to date or can access the latest versions,
are in line with the steady adoption towards
cloud computing and software as a service,
and can be time-boxed to accommodate
current project timeframes and usage needs.

Support Look for a defined support process and

 82

Model methodology. Understand the standard and
premium terms around Response Time,
Mitigation Time, and Resolution
Time. Look into the enhancement request
process, developer’s community, knowledge
center, user groups and primary point of
contact philosophy.

Onboarding How do you adopt this new technology, what
is the training curriculum and can it be
customized to your specific needs? What is
available from a self-learning process, access
and content within the Knowledge
Center? Does your partner provide Quick
Starts and On the Job Mentoring Services?

Open
Standards

Why Open Standards? One could also ask
why should you re-invent the wheel. Open
Standards enable broader adoption with the
community along with reducing the biggest
barrier to adoption which is cost. Open
Standards eliminate unnecessary barriers,
implementation assumptions are reduced,
and open standards increase adoption and
cooperation amongst teams. Open Standards
invites cooperation and thinking outside the
box -- all pushing toward innovation.

Underlying
Architecture

Does your partner practice what they preach
-- are they using industry standard tools
within their architecture? Are they flexible
and adaptable to new or other
technologies? Do they provide you with
access to the people that can explain their
underlying architecture and why they
selected certain standards? Most importantly
do they provide you with a clear and
definitive Platform Roadmap?

 83

Core Focus Identify a partner who understands your

business/technical problem. It might not be
all your problems, but be sure they at least
understand a specific business pain point,
and are capable of solving that pain and do it
very well. The ideal partner won’t pretend to
do more than what they can actually do, but
are honest and eager to do the thing they do
very well.

1Gartner Blog Network, What A Microservice is Not, January, 2017

 84

Chapter Eight:

The Business Impact
of Microservices & APIs

The benefits of microservices and APIs extend far beyond the IT

department, and it’s important to keep the business side of the

organization more involved in the conversation.

The bottom line is that if you need to innovate faster yet your IT

teams say that a project is “complex, expensive and time-

consuming” because of your organization’s “legacy systems,” then

microservices may be the answer.

The irony of legacy systems is that they tend to impact some of the

oldest, most successful companies in the world. Legacy monoliths,

like IBM, UNISYS, HP, Digital, Siemens, Honeywell, Tandem,

Stratus and others began positively impacting business operations

in the 1950’s. Data storage and access methods, like VSAM,

IDMS, IMS, DB2, Oracle, and ADABAS proved to be

revolutionary in the ability to store and facilitate rapid access to

data through mission and business-critical applications written in

COBOL, Assembler, Fortran, ADS, RPG, and Natural.

 85

Therefore, it is often the most established companies - the big

brand names - that have the greatest difficulties remaining on the

“cutting edge” within their industries unless they have found ways

to accelerate innovation with their legacy monoliths. Some

organizations have become so accustomed to the status quo, that

they do not even think it is possible to reduce the backlog and

speed delivery of innovative digital channels and applications.

When you have legacy systems and must cater to customers and

prospects that are heavily reliant on digital services delivered via

mobile or Web, you need to find a way to close that gap between

old technology and modern demands.

We don’t intend to sound too promotional, but we can speak most

confidently about the business use-cases we have personally been

involved in over the years in our roles at OpenLegacy.

When you have legacy systems and must
cater to customers and prospects that are
heavily reliant on digital services
delivered via mobile or Web, you need to
find a way to close that gap between old
technology and modern demands.

 86

One of the most amazing aspects of our work is that even the

largest organizations in the world haven’t been able to solve their

legacy system challenges using in-house development, middleware

technology, or SOA/ESB initiatives. All of these investments,

while excellent choices at the time, are often not able to keep up

with the demands of the new “digital economy” -- even after

throwing hundreds of people, millions of dollars and years into the

effort.

The business side of the organization may not care one bit about

how the technology works: they just want to be competitive,

nimble and build new or enhanced revenue channels. The IT side

of the organization cares about reducing the complexity of

accessing and leveraging their systems. Somewhere in the

intersection of these two goals is where “modern microservices”

become part of the conversation.

Very often, our approach to microservices reduces microservice

creation from weeks to minutes or hours, and project deployment

from months to weeks.

Although microservices can benefit any business with legacy

systems, we have highlighted a few examples here.

A Modern, Streamlined HR Portal

Telecommunications company Bezeq was starting to see the age of

 87

their HR portal, developed in .NET. Used by thousands of

employees for everything from vacation requests and expense

reports to travel approval and meeting room reservations, the portal

no longer provided the most up-to-date interface and functionality,

and developing new features took a long time and involved

multiple development teams.

With OpenLegacy, a new set of APIs supports mobile applications

used by technicians in the field to quickly and easily submit

expense reports by uploading photos from the employee’s phone.

In addition, the microservices solution was able to accommodate

the changing needs of the company’s cost reporting system. In

three days, OpenLegacy developed 8 REST APIs on top of the

SAP Human Capital Management module for expense reporting,

providing much-needed flexibility.

Onboarding Customers 3X Faster

A leading Mexican investment advisory group with tens of billions

of dollars under management wanted to adapt their customer

onboarding process to meet shifting customer expectations. The

challenge was incorporating features such as customer self-service

and mobile access, while complying with all government

regulations. The plan was to leverage their existing SAP CRM

backend, augmented with new API technology – so they turned to

OpenLegacy.

 88

A simple API took 15 minutes to create, while the more complex

transactions took less than a week to fully implement.

Implementing all APIs for the project will take about a month,

compared to nine months without OpenLegacy. The result? Faster

time-to-market, fully-implemented self-service, a streamlined

customer onboarding process—and up to an estimated 10%

incremental revenue increase.

Delivering Microservices In The Cloud In Days Instead of

Months

A Netherlands-based premier bank was on an ongoing mission to

embrace new technologies in order to help customers bank faster,

easier, and smarter. Partnering with FinTech startups, they’re

exploring areas such as open banking, artificial intelligence,

blockchain, circular economy, all in conjunction with their

activities around PSD2 compliance.

The bank outsourced almost all of its IT activities to three

vendors—one for application development, another for application

support and maintenance, and another for IT infrastructure. The

outsourced workforce consisted of hundreds of external developers

and IT people, across continents. This meant that introducing any

change or new functionality was costly and time-consuming – with

new software, services and even microservice-based APIs taking

up to three months to release.

 89

With our IMS DC Connector, OpenLegacy helped the bank to

directly expose APIs from the core z/OS Main- frame system; and

created and deployed new microservice APIs encapsulating three

core mainframe workflows within a day.

Ultimately, OpenLegacy helped deploy microservice APIs in days

versus months, facilitated agile development and enabled cultural

change across the organization. This unparalleled speed enables

open banking, multi-channel presence, and digital transformation.

Improving Internal Staff Efficiencies

Before: Although an insurance company was able to modernize

most of their offerings, their auto insurance offering was left as a

legacy application. As a result, agents were forced to switch

between a web browser and an antiquated “green screen,” which

impacted productivity and responsiveness.

After: This insurance company was able to expose a service from

their AS/400 claim management system that presented all the

reports related to a specific claim within the main auto insurance

web applications. The initial proof-of-concept was completed in

just five days. In production mode, insurance agents were able to

realize time-savings of up to 30%.

 90

“OpenLegacy let us connect our IBM i and AS/400 applications to

our insurance agent portal without changing our COBOL

applications, which would have been a huge, expensive headache.

We couldn’t believe OpenLegacy was able to conform to all of our

security, performance, and design constraints - and do so within

days.” Insurance Services IT Director

Accelerating Bank Innovation By 50%

Before: Despite wanting to be an innovative, “FinTech-ready”

bank, A major bank in Latin America was stifled by post-merger

legacy systems spread across two countries and some of the

highest operating costs of any bank in the region. Mainframe

programming using COBOL was done in Columbia, Java

programming was done Panama, and the infrastructure was

maintained by a third-party global systems integrator. Excessive

“OpenLegacy let us connect our IBM i and
AS/400 applications to our insurance agent
portal without changing our COBOL
applications, which would have been a
huge, expensive headache. We couldn’t
believe OpenLegacy was able to conform to
all of our security, performance, and design
constraints - and do so within days.”

 91

complexity delayed time-to-market for new mainframe-based

products and services, often requiring six months or more for

deployment. Among their top priorities was a Payment Processing

service for their commercial clients.

After: The bank’s “digital journey” is based on OpenLegacy’s

microservice-enabled API integration and management software.

The first project included training, creation, and deployment of 12

new APIs in just 8-9 weeks by only four Java developers. Total

time for deployment of their new Payment Processing service was

90 days, 50% faster than typical mainframe projects. The bank

considered these timeframes exceptional considering they also

switched from IBM BlueMix to Amazon Lambda mid-way

through then project. Furthermore, the service runs about 20-30%

faster than those previously built without microservices, and a

DevOps stress-test concluded that, together, OpenLegacy and

Lambda far exceeded their goals by handling 60,000 concurrent

requests.

Bank Creates Six Global APIs in Two Weeks

Before: A top ten global bank’s demand for digital, global services

led to a backlog of 100+ foundational APIs necessary to build new

applications and customer experiences.

 92

Nearly 200 developers have been working on the project for over a

year, using a popular product for API gateway and orchestration.

The product did not specialize in legacy (core) applications

running on AS/400 and mainframe platforms, and despite its

popularity, came short of addressing the bank’s needs.

Specifically, the product could not generate APIs exposing RPG

programs, but could only manage and expose existing APIs.

Hence, the bank’s developers had to write additional AS/400 code

in RPG in order to expose functionality. In other cases, they had to

change existing code, an invasive practice for applications that

have been in place, tried and tested, for many years. Beyond just

coding new features, there was substantial time invested in testing

and regional certification and customization which slowed things

down even further. Ironically, a tool that was supposed to shorten

development time and reduce efforts ended up creating additional

manual effort.

Another critical requirement for the success of the API project was

creating a Global API: A unified API with the same end-user

experience no matter the country, region, or underlying technical

environment. From a business standpoint, this would require the

extraction of common logic and functionality that can serve as a

single launch point for new products and services that can be built

and consistently rolled out in a unified, global manner.

 93

After: OpenLegacy’s API integration consultants worked out an

alternative architecture, showing it was possible to eliminate all the

intermediate layers and the AS/400 channel logic. Instead, the

bank could directly expose the AS/400 transactions and move it to

a Java application where the bank develops new applications and

new logic. Now the bank can run and orchestrate transactions

outside their legacy environment. This was made possible thanks

to OpenLegacy’s simplified product architecture with a minimal

number of layers, and direct (straight-line) connectivity to the CBS

transaction.

As a result, six key global APIs were created in just two weeks,

and the new approach enabled the bank to accelerate

“omnichannel” innovations for mobile Web or cloud to serve

customers wherever, and whenever they choose. Furthermore, the

simplicity and automation enabled the APIs to impressive 7X

performance improvements.

“Within two days, OpenLegacy created APIs for standard CBS

transactions, including payments and other financial products,

compared to the previous 5-7 weeks using the prior API

orchestration product and existing IT architecture.” Executive, Top

Ten Bank

 94

These are a few examples of just a few industries, and there are

many more (www.openlegacy.com/case-studies). As established

organizations all over the world face the growing digital economy

and the growing influence of the millennials and their digital

impatience, there has never been a better time to consider

microservices and APIs.

Regardless of the vendor and approach you choose, may your

digital journey lead you to IT efficiency, faster cycles, greater

scalability and competitive differentiation.

“Within two days, OpenLegacy created
APIs for standard CBS transactions,
including payments and other financial
products, compared to the previous 5-7
weeks using the prior API orchestration
product and existing IT architecture.”

 95

About OpenLegacy

OpenLegacy helps organizations accelerate their speed of

innovation with legacy systems by quickly launching digital

services for the web, mobile and cloud in days or weeks versus

months. Our microservice-enabled API software accelerates

innovation with legacy systems. We automate API creation,

deployment, testing and management from core applications,

mainframes and databases. We simplify projects by avoiding

complex architectures, and we improve both staff efficiency and

digital service performance. Together, business and IT teams can

quickly, easily and securely meet consumer, partner or employee

demands for digital services without modernizing or replacing core

systems, and without special programming skills or invasive

changes to existing systems and architectures. Learn more at

OpenLegacy at www.openlegacy.com

