

WinTask x64 Quick Start Guide (Windows automation)

Introduction

Welcome to WinTask x64 - the premier Windows automation software for Windows 7 64

bit, Windows 8 and 8.1 64 bit, Windows 2008 R2 Server 64 bit and Windows 2012

Server. WinTask x64 makes it simple to automate the repetitive tasks you need to

accomplish such as periodic reports, data collections, downloads, forms filling etc.

By making these tasks automatic instead of having to do them manually all the time, you

are going to:

 save time - the tasks are done for you

 improve quality - the tasks are performed exactly correct every time with

no errors

 avoid repetitive and boring tasks - free you up for better things to do

WinTask x64 is simple to learn and use. In short, nearly all the repetitive tasks that you

do daily, weekly, and monthly can be automated using WinTask x64. For example:

 Launch an ERP program, import data from other programs, calculate

results, and print out a report.

 Extract data from websites and insert them in a spreadsheet (addresses

capture, ebay prices capture, ...).

 Automatically transfer data between two incompatible applications, or

from a Windows application to a website.

 Send routine reports with attachments via email on a regular schedule -

daily, weekly, monthly etc.

 Automatic mass data-entry.

 Automate regression web testing or software testing.

 Check the availability of applications and measure their performance.

 Install new software on thousands of PCs with your company’s unique

configurations and data already included.

 Schedule server maintenance tasks.

 Add “Macros” to any software that does not have a built-in Macro

function.

This Quick Start Guide will get you started creating your own automation scripts in just a

few minutes.

How It Works

WinTask x64 primarily works in an object-oriented record/playback mode. When you

record a task, WinTask x64 creates a Script that includes all the keystrokes, menu

selections, mouse clicks, and Window functions that you use to perform the task. To

perform that task automatically, all you have to do is playback that Script. WinTask x64

then replicates everything you did in performing that task.

To record a task:

1. Turn on the recording mode in WinTask x64.

2. Perform the task that you want to automate.

3. Turn off the recording mode, name the Script, and save the Script.

To perform a task:

1. Activate the Script.

2. WinTask x64 will perform all the elements of the task.

3. WinTask x64 will close the Script.

That’s all there is to it. Also, you can schedule WinTask x64 to perform tasks anytime

that you prefer, even when you are not present.

WinTask x64 is based upon a powerful language much like Visual Basic. Advanced users

can modify Scripts and create new Scripts directly in this programming language. We

have included a complete list of all the programming functions in Attachment 1 so you

can see that practically any repetitive task can be automated with WinTask x64.

Sample Tasks

Try these sample tasks:

Sample Task 1.

This is an elementary task just to get you familiar with the record and playback functions.

In this simple Script we will launch Wordpad 64 bit, enter data and then exit. In this first

sample, we will use "Your first Script wizard" which is displayed at WinTask x64 startup.

1. Open WinTask x64, the "Your first Script wizard" window is displayed asking

"What kind of application do you want to automate?". Press Next button.

2. In "Give a name to your script" next screen, type the name "wintask-example1" in

field Type a name for your Script, and press Next button.

3. In "Start a Windows application" next screen, type "wordpad" in field Program as

we want to launch Wordpad. Press Next button.

4. In "Record your actions" next screen, click the Rec icon to start

recording your actions in Wordpad.

5. Wordpad window opens and a small blinking icon appears in the right side of the

bottom taskbar on your screen. This shows that WinTask x64 is recording. The

WinTask toolbar is also displayed.

6. In Wordpad window, type for instance "Hello WinTask" and press Enter.

7. Exit without saving your Wordpad document by clicking the x icon on the top

right of the wordpad window. At dialog box "Do you want to save changes", press

Don’t save button.

9. Stop recording by pressing the blinking WinTask x64 icon at the bottom right of

the taskbar or by clicking the first icon in the WinTask toolbar.

10. The first Script wizard screen comes back, press Next button in "Enhance the

Script just recorded" screen as we do not need for now to edit the script generated

by Recording mode.

11. In "Run your script" next screen, click Play icon for replaying the

script that you have just created.

To replay the script later, do the following :

1. Open WinTask x64.

2. Open the script.

3. Press the Playback button (Play icon in WinTask toolbar).

4. Compilation is done in the Output window, there should be no errors and script

execution starts.

WinTask x64 does all the rest!

Sample Task 2.

Now that you are a bit more familiar with using WinTask x64, we will create a script that

demonstrates more of WinTask’s capabilities. This example launches a Windows

application (notepad), types a text, then Wintask captures the notepad window content

and inputs the captured content to a Web form.

You could use a script like this to copy data from one application to another, or from one

application to a web site.

1. Open WinTask x64, "Your first Script wizard" is displayed, check Don’t show

this wizard anymore and press Close button. The main WinTask window is

displayed with the title "WinTask - (Untitled1)". If the main WinTask window

displays a previous script, select File/New. If at any time, you prefer to use the

Script wizard again, in WinTask x64 Editor menu, select Start/New Script

wizard.

2. Press Record button (Rec icon in WinTask toolbar).

3. A dialog box will appear asking "What do you want to start before recording?".

4. Check An application and press OK button as we want to launch notepad.

5. The dialog box "Launching a program" is displayed ; type "notepad" in field

Program and press OK button.

6. Notepad window opens and a small blinking icon appears in the right side of the

bottom taskbar on your screen. This shows that WinTask x64 is recording.

7. In the notepad window, type for example “Richard SMITH”. This same text will

be typed automatically by the WinTask x64 script in a web form..

8. In the WinTask toolbar which is displayed while you are recording, press the third

left icon, the Start Capture Wizard icon.

9. Capture wizard screen is displayed. Click Spy button, the mouse pointer changes

its shape. Move the mouse to the text that you have just typed in notepad, left

click the mouse when the text part of the notepad window is surrounded by a

black rectangle. Press Next button, and on the next screen, press again Next

button. In the "Specify where to copy the captured data" dialog box, click Paste

into the script button.

10. Recording mode resumes.

11. Click within the notepad window, and close it without saving. Stop recording by

pressing the blinking WinTask x64 icon at the bottom right of the taskbar or by

clicking the first icon in the WinTask toolbar.

12. We will now use again the Recording mode in order to launch the web site where

the captured data has to be typed. Press Record button (Rec icon in

WinTask toolbar).

13. A dialog box will appear asking "What do you want to start before recording?".

Check Internet Explorer or Mozilla Firefox or Google Chrome and press OK

button as we want to launch your browser and open a Web page.

14. The dialog box "Launching Internet Explorer" or "Launching Mozilla Firefox" or

"Launching Google Chrome" is displayed ; in field Web address, type the Web

page that the browser must open : type www.wintask.com/demos/form.htm. Press

OK button.

15. The Form page is now displayed within your browser. In the Name field, type

“Your name is: “ and press Clear button.

16. Close your browser window. Stop recording by pressing the blinking WinTask

x64 icon at the bottom right of the taskbar or by clicking the first icon in the

WinTask toolbar.

17. We have now to make WinTask x64 type the “Richard SMITH” name in the

Name field of the web form. Goto line:

 WriteHTML("INPUT TEXT[NAME= 'name']", "Your name is :")

 In this line, replace the constant “Your name is:” by the text captured in notepad,

which is in variable result_capture$. This is done by changing the line as below:

 WriteHTML("INPUT TEXT[NAME= 'name']", Trim$(result_capture$))

18. Save the WinTask x64 script in any folder you like (the default folder is

c:\program files (x86)\WinTask\scripts) with the name "wintask-example2".

To replay the script, do the following:

1. Open WinTask x64.

2. Open the script.

3. Press the Playback button (Play icon in WinTask toolbar).

4. Compilation is done in the Output window, there should be no errors and script

execution starts.

WinTask x64 does all the rest!

http://www.wintask.com/demos/form.htm

Sample Task 3.

WinTask x64 includes an OCR engine (Optical Character Recognition) which can be

used to click a graphical Windows button showing a text, or to capture a data within an

image.

Here is an example of accessing a website displaying Stocks values within a Portfolio

View and capturing one data in the Flash table using OCR. In this case we will use the

Web page - www.tradingsolutions.com/products/ts/TSTour_Portfolio.html.

1. Open WinTask x64, the main WinTask x64 window is displayed with the title

"WinTask - (Untitled1)". If the window displays a previous script, select

File/New.

2. Press Record button (Rec icon in WinTask toolbar).

3. A dialog box will appear asking "What do you want to start before recording?".

4. Check Internet Explorer or Mozilla Firefox or Google Chrome and press OK

button as we want to launch your browser and open the Web page.

www.tradingsolutions.com/products/ts/TSTour_Portfolio.html.

5. The dialog box "Launching Internet Explorer" or "Launching Mozilla Firefox" or

"Launching Google Chrome" is displayed ; in field Web address, type the Web

page that the browser must open : type

"www.tradingsolutions.com/products/ts/TSTour_Portfolio.html" ; press OK

button.

6. The page TradingSolutions Tour is now displayed within your browser and

WinTask x64 Recording mode is active.

7. On the Web page, in the Portfolio View table, the script has to capture the

Bellsouth Cp %Gain, the value is 65.61%.

8. Click the fifth icon in the WinTask toolbar to invoke the OCR functions.

9. It opens a sub toolbar , click CaptureAreaOCR

Wizard line.

10. The dialog box “CaptureAreaOCR$” is displayed. Click Capture button.

11. The mouse becomes a cross, draw a rectangle around the data you want to

capture, so draw a rectangle around 65.61% value.

12. The dialog box “CaptureAreaOCR$” returns to focus. You should see 65.61% in

the "Text seen by OCR engine" field. Click Insert and Resume button.

13. Stop recording by pressing the blinking WinTask x64 icon at the bottom right of

the taskbar or by clicking the first icon in the WinTask toolbar

14. The WinTask x64 Editor window comes up, it should look like :

15. In line 4, add this line : msgbox(var$). This line will display the captured data.

The final script should be as below:

16. Close manually the Web page displaying TradingSolutions Tour.

17. Click the Play icon in WinTask x64 toolbar to replay the script. Save the

WinTask x64 script in any folder you like (the default folder is c:\program files

(x86)\WinTask\scripts) with the name "wintask-example3".

To replay the script later, do the following:

1. Open WinTask x64.

2. Open the script.

3. Press the Playback button (Play icon in WinTask toolbar).

4. Compilation is done in the Output window, there should be no errors and script

execution starts.

WinTask x64 automatically opens the Web page, captures the data and displays it!

Sample Task 4.

This example shows how you can copy information from one source and paste it into

another program. In this case we will copy information from our demo website,

www.wintask.com/demos, and paste it in Notepad.

You could use a Script like this one to capture information from various sources and

combine them into one resource or program.

1. Open WinTask x64, the main WinTask x64 window is displayed with the title

"WinTask - (Untitled1)".

2. Press Record button (Rec icon in WinTask toolbar).

3. A dialog box will appear asking "What do you want to start before recording?".

4. Check Internet Explorer or Mozilla Firefox or Google Chrome and press OK

button as we want to launch your browser and open a Web page.

5. The dialog box "Launching Internet Explorer" or "Launching Mozilla Firefox" or

"Launching Google Chrome" is displayed ; in field Web address, type the Web

page that the browser must open : type www.wintask.com/demos. If you use

Chrome browser, uncheck "Open the browser maximized" checkbox. Press OK

button.

6. The WinTask Demonstration Pages page is now displayed within your browser.

7. In the WinTask toolbar which is displayed while you are recording, press the third

left icon, Capture icon with a T.

8. Capture wizard screen is displayed and we will use the Spy tool in order to select

and capture the content of one paragraph.

9. Press Spy button; the mouse pointer changes its shape. Use the mouse to point on

Web page the sentence starting at "Click the links as specified". Left click the

mouse when the pointer is on that paragraph. Press Next button.

10. The "Specify the HTML element where the data to be captured are" dialog box is

now displayed, it shows the text which will be captured at replay. Press Next

button to accept.

11. The "Take only some of the captured data" dialog box is now displayed. As we

want to extract all the captured data, press Paste into the script button.

12. Stop recording by pressing the blinking WinTask x64 icon at the bottom right of

the taskbar or by clicking the first icon in the WinTask toolbar. WinTask x64

main window comes back and you can see two more lines inserted in the script.

http://www.wintask.com/demos

13. We will now use again the Recording mode in order to launch Notepad and paste

the captured text within Notepad: Press Record button (Rec icon in WinTask

toolbar).

14. A dialog box will appear asking "What do you want to start before recording?".

Check An application and press OK button as we want to launch Notepad.

15. The dialog box "Launching a program" is displayed ; in Program field, type the

word "notepad" and press OK button.

16. Notepad window is opened and Recording mode is active. Type "The captured

text is: ".

17. Select File/Exit menu option to close Notepad window. Do not save the

document.

18. Close your browser window.

19. Stop recording by pressing the blinking WinTask x64 icon at the bottom right of

the taskbar or by clicking the first icon in the WinTask toolbar.

20. We have now to include the captured text: in WinTask x64 window, go to line:

 SendKeys("The captured text is: ")

 In this line, we have to add the captured text, which is in variable

captured_string$, to the text we have typed. This is done by changing the line as

below:

 SendKeys("The captured text is : "+captured_string$)

21. Press the Play icon in WinTask toolbar. Save the WinTask x64 script in any

folder you like (the default folder is c:\program files (x86)\WinTask\scripts) with

the name "wintask-example4".

To replay the script later, do the following :

1. Open WinTask x64.

2. Open the script.

3. Press the Playback button (Play icon in WinTask toolbar).

4. Compilation is done in the Output window, there should be no errors and script

execution starts.

WinTask x64 displays the captured paragraph within Notepad!

These short Sample Tasks just touched on the surface of WinTask x64’s capabilities. Try

out WinTask x64 on some of your repetitive tasks and see how easily it will automate

these tasks.

Assistance

As you test out WinTask x64 you may have questions or want more detailed information.

We recommend:

 Watch our Tutorial videos on youtube, for example

http://www.youtube.com/watch?v=VFdAw46SLd0

http://www.youtube.com/watch?v=VFdAw46SLd0

 Use the Tutorial - It includes detailed instructions to help you use

WinTask x64 in your applications. You can download it at

ww.wintask.com/manuals.php

 If you need immediate help, use www.wintask.com/support or ask in

WinTask’s forum, or contact us by email, info@wintask.com.

Purchase WinTask x64

When you are ready to buy WinTask x64, simply navigate to www.wintask.com/buy-

wintask.php and complete the order form. We will promptly send you the complete

WinTask program. Of course it comes with a 30-day guarantee of your satisfaction.

Attachment 1. List of all the functions in WinTask x64 that can

be used to automate tasks.

WinTask x64 includes a powerful programming language similar to Visual Basic. We

have listed all the functions in that language below with a brief description. You can see

how comprehensive they are - practically any repetitive task can be accomplished.

When you use the Recording Mode, these functions are automatically generated by

WinTask x64 and compiled into a complete Script. Advanced users can modify or create

Scripts directly in the programming language using these functions.

 Window management functions

#ActionTimeout - Specifies the number of seconds that WinTask x64 should wait before reporting an error

#ExecuteDelay - Inserts a wait for n ticks between every statement of the script

IgnoreErrors - Manages errors

#SendkeysDelay - Slows down keystrokes

#UseExact - Controls the way WinTask x64 sends its commands to the proper Window

CheckedW - Tells if the specified checkbox/radio button is checked or not

ChooseItem - Selects an item in a combobox or a listbox

ChooseMenu - Selects a menu item

Click - Clicks mouse on a button

ClickMouse - Clicks mouse button

ClickOnBitmap - Clicks mouse button on an image inside a window

ClickOnText - Clicks mouse button on a text inside a window

ClickOnTextOCR - Clicks mouse button on a text recognized by the OCR engine inside a window

ClickScrollBar et WinScrollBar - Scrolls inside a window

ClickSpin - Clicks a spin control

CloseWindow - Closes the specified window

CloseWindowRegEx - Closes the window whose name is specified by a Regular Expression

CursorX, CursorY - Returns the position ot the cursor

EnabledW - Tests if the specified window is active and can receive actions

ExistW - Tells if the specified window exists

Focus$ - Returns window name which is in focus

GetFocusWindowHandle - Returns the handle of focused window

GetTopWindowHandle - Returns the handle of the window on top

GetWindowHandle - Returns the handle of specified window

GetWindowName$ - Returns the name of the window specified by its handle

ListItem$ - Returns the specified item in the listbox or combobox

MaximizeWindow - Maximizes the specified window

MinimizeWindow - Minimizes the specified window

MouseShape - Returns the mouse cursor shape as an integer

MouseX , MouseY - Returns the X,Y position of the mouse

MoveMouse - Moves the mouse to the specified X

MoveWindow - Moves the specified window

RestoreWindow - Restores the specified window

SelectedItem$ - Returns the item selected in the specified listbox or combobox

SendKeys - Sends keystrokes to the window specified by the last UseWindow

SendKeysEncrypted - Sends encrypted keystrokes to the window specified by the last UseWindow

SizeWindow - Modifies the size of the specified window

Top$ - Returns the name of the main window which has focus

TopInstance - Returns the instance number of the main window in focus

UseWindow - Specifies the window where the script will now send its keystrokes

UseWindowHandle - Specifies the window (through the window handle) to which subsequent keyboard,

mouse and menu actions are directed

UseWindowRegEx - Using a Regular Expression, specifies the window where the script sends keys

WinScrollBar et ClickScrollBar - Scrolls inside a window

WriteCombo - Writes text in the edit zone of a listbox

WriteEdit - Writes text in the specified edit zone

WriteEditEncrypted - Writes encrypted text in the specified edit zone

 Capture functions

#UsePageExact - Controls the html pages finding method

Capture$ - Captures the text in the specified window

CaptureArea$ - Captures the text in the specified window area

CaptureAreaOCR$ - Using OCR, captures the text in the specified window area

CaptureBitmap - Captures an image and stores it in a .BMP file

CaptureHTML - Captures the text of a specified html element

CaptureOCR$ - Using OCR, captures the text in the specified window

CaptureTableHTML - Captures a range of cells in a specified html table

CopyLink – Copies the link associated with the specified html element into a string

GetHTMLEditText - Captures the text of the specified html Edit element

HardCopy - Saves a screenshot

UseOCREngine - Specifies the OCR engine to use (WinTask or MODI OCR engine)

 Synchronization functions

#BitmapPrecision - Specifies how closely the found image must match the input image in Pause on

Bitmap and ClickOnBitmap functions

#ErrorCode$ - Gives the error code for the error that triggered OnAction Error procedure

#ErrorFunction$ - Gives the function where the error triggering OnAction Error procedure occurred

#ErrorLine$ - Gives the script line where the timeout has occured

#ErrorMsg$ - Gives the error message for the error that triggered OnAction Error prcedure

#ErrorScript$ - Gives script name where the error triggering OnAction Error procedure occurred

 #PauseTimeout - Specifies the maximum delay for a Pause statement

Disable - Disables the management of a specified event

 Enable - Reactivates the management of a specified event

 OnAction ... EndAction - Manages events

 OnAction Error … EndAction - Inserts and manages error events

 Pause - Waits for a specified amount of time

 Pause ... Until - Waits for an action

 Sleep - Makes the current script sleep whereas the events are still managed

 User dialog

 BeginDialog...EndDialog - Defines a dialog box with its controls

 CallDialog - Displays a dialog box defined previously

 Inputbox$ - Displays a simple dialog box where the user can type a value

 InputboxSecret$ - Displays a simple dialog box where the user can type a hidden value

 MsgBox - Displays a Windows standard message box

 MsgFrame - Displays a message

 MsgFrameTitle - Displays a message with a title

 RemoveFrame - Removes the message displayed by MsgFrame

 SelectDir - Returns the name of the directory selected by the user in the standard Browse

 for Folder dialog

 SelectFile - Returns the name of the file selected by the user in the standard dialog box File Open

 SelectMultipleFile - Returns the name of the files selected in the standard dialog box File Open

 File management functions

 AppendXMLNode - Adds a node in the specified XML file

 ChDir - Sets the current working directory

 CloseExcelCom – Closes the background Excel instance loaded by WriteExcel or ReadExcel

 Create - Creates a file

 CreateExcelFile - Creates an Excel worksheet

 CreateUnicodeFile - Creates a Unicode file

 CurDir$ - Returns the current working directory

 DelTree – Deletes all the files and sub-directories below the specified directory

 Dir - Puts file names from a directory into arrays

 DiskFree - Returns the available space on the specified resource

 EnumXMLAttributes - Retrieves the attribute names and values for the specified XML node

 EnumXMLChildren - Enumerates the child node descriptors for the specified XML node

 Eof - End of file

 Exist - Tells if specified file exists

 ExistDir - Checks for the existence of the specified directory

 FileAttr$ - Gives the attributes of the specified file

 FileCopy - Copies a file to an other file

 FileDate$ - Date of last modification of the specified file

 FileSize - Size of the specified file

 FileTime$ - Time of last modification of the specified file

 FileVersion$ - Version number of the specified file

 GetReadPos - Value of the reading pointer of the specified file

 GetXMLAttribute - Retrieves the content of an attribute in the specified XML file

 Kill - Deletes one or several files

 MkDir - Creates a directory

 Name - Renames or moves one or several files

 Read - Reads data from a file

 ReadExcel - Reads a range from an Excel workbook

 ReadIni$ - Reads a parameter in the specified INI file

 RmDir - Deletes a directory

 SetAttr - Sets the attributes of one or several files

 SetReadPos - Sets the reading pointer to the specified value

 SetXMLAttribute - Modifies or adds an attribute in the specified XML file

 WinDir$ - Returns the name of the directory where Windows is installed

 Write - Writes data in a file

 WriteExcel - Writes in an Excel workbook

 WriteIni - Writes to the specified INI file

 Flow control functions

 #ErrorLine$ - Gives the script line where the timeout has occured

 #ExecTimeout – Sets the maximum delay before stopping script execution

 #ExecuteDelay - Slows down a running script by inserting a wait for n ticks between

 every statement

 #IgnoreErrors - Manages errors

 #LastErrorLine - Gives the line number where the error triggering OnAction Error procedure occured

 #ScriptAfterTimeout - Specifies the script to run after execution timeout has elapsed

 Command$ - Allows a calling script to use the parameters from the called script

 End - Stops the current running script

 Function ... ExitFunction ... EndFunction - Defines a function

 Goto ou Go to - Makes the execution of the script continue at another line

 If ... Then ... Else ... Endif - Decision making statement

 Repeat ... until ... - Loop wtih test at the end of the loop

 Run - Launches a compiled script as a sub-program

 Select Case ... EndSelect - Multiple decision making statement

 Shell - Executes a program (.exe, .com, .bat, .doc, .txt, ...)

 Stop - Stops all the scripts

 Sub ... Exitsub ... EndSub - Defines a procedure

 While ... Wend - Loop statement with test at the beginning

 String management functions

 Asc - Returns the numeric ASCII code of the first character in a specified string

 Chr$ - Converts an ASCII value in its equivalent ASCII character

 Encrypt - Encrypts the specified string

 ExtractBetween$ - Extracts a string between two strings

 Instr - Returns the position of one string within another

 InstrRev - Returns the position of one string within another, searching backward through the string

 Lcase$ - Converts all uppercase characters in the specified string to lowercase

 Left$ - Extracts the specified number of characters from the left hand portion of the specified string

 Len - Returns the length of the specified string

 Ltrim$ - Returns the specified string minus its leading spaces and tabulations

 Mid$ - Retrieves a substring from the specified string

 Replace$ - Finds and replaces some or all occurrences of a substring within the specified string

 Right$ - Returns the rightmost portion of the specified string for the numbers of characters specified

 Rtrim$ - Returns the specified string minus its trailing spaces and tabulations

 SplitIntoArray – Converts the specified string into an array of strings

 Str$ - Transforms the specified numeric value in a string

 Trim$ - Returns the specified string minus its trailing spaces and leading spaces

 Ucase$ - Converts all lowercase characters in the specified string to uppercase

 Val - Returns the numeric value of a string

 Date/time functions

 Date$ - Returns the current date

 DateBetween$ - Returns the number of specified time intervals between two dates

 DateToDate$ - Returns a new datetime based on adding an interval to the specified date

 Day$ - Returns the current day number within the current month

 Hour$ - Returns the current hour as a two-character string

 Hundreds$ - Returns hundredth seconds of sytem time as an integer from 0 to 99

 Min$ - Returns the minutes of the current hour as a two character string

 Month$ - Number of the current month as a string

 Sec$ - Returns the seconds of the current hour as a two character string

 Time$ - Returns the system clock as a string

 WeekDay - Returns the current day of the week

 Year$ - Returns the current year as a string

 System functions

 #HideIcon - Hides the WinTask x64 icon in the taskbar

 #HideTrayIcon - Hides the WinTask x64 icon in the system tray

 #IgnoreErrors - Manages errors

 Allocate - Reserves a memory area for data used by external DLL

 Beep - Forces the PC to emit a sound through the PC speaker

 CapsLock - Forces the capslock key to the specified state

 ChDir - Specifies the current working directory

 Curdir$ - Returns the current working directory

 DeleteRegKey - Deletes the specified key in Registry

 DeleteRegValue - Deletes a value in Registry

 Dir - Puts in arrays all or some files present in a directory

 DirTree - Puts file names and directory names into arrays

 DiskFree - Returns the available space on the specified resource

 Envir$ - Returns the value of an environment variable

 ExecExcelMacro – Executes an Excel macro in the specified Excel book

 Exist - Checks for the existence of the specified file

 External - Calls an external DLL

 External$ - Calls a Windows DLL

 GetCpuLoad - Returns the CPU load percentage

 GetMemUsage - Returns the memory used percentage

 GetProcessCpuLoad - Returns the CPU percentage used by a process

 GetProcessList - Gives the list of active process and their attributes

 GetWindowsList - Gives the list of parent window names present on desktop

IsRunning - Tells whether a program is loaded in memory or not

 KillApp - Kills the specified application

 KillAppChildren - Kills the specified application and its associated children

 KillProcess - Kills the specified process

 LockKbd - Locks the keyboard

 LockMouse - Locks the mouse

 MkDir - Creates a directory

 NumLock - Forces the numlock key to the specified state

 OsVersion$ - Returns Windows version

 PeekInteger - Reads one or several bytes in memory and returns an integer

 PeekString$ - Reads a string in memory

 PokeInteger - Writes in memory a value of type integer or Unsigned

 PokeString - Writes in memory a string

 Random - Returns a random integer

 ReadIni$ - Reads a parameter in the specified .INI file

 ReadReg - Reads an integer or a string from Registry

 Reboot - Reboots the PC or Windows

RmDir - Deletes a directory

 SendEmail – Sends an email using the SMTP outgoing mail server defined in WinTask x64 Scheduler

 Shell - Executes a program

 ShellWait - Executes a program (.exe, .com, .bat, .doc, .txt, ...) and waits for its

 termination before running next statement

 UnlockKbd - Unlocks the keyboard

 UnlockMouse - Unlocks the mouse

 WinDir$ - Returns the directory where Windows is installed

 WriteIni - Writes in the specified .INI file

 WriteReg - Creates or modifies a string or numeric value in Registry

 Clipboard and log functions

 #Current line - Returns the current executed line in the script

 Comment - Writes a comment in the log file

 GetClipboard$ - Returns the text contained in Clipboard

 LogFile - Forces the script to log its actions in the specified logfile

 SetClipboard - Puts the specified string into the Clipboard

 StopLog - Stops recording in the logfile

 Compilation

 Dim - Defines an array

 Include - Includes the specified source file in the current script

 Local - Defines a local variable

 Rem - Inserts a comment

 Unsigned - Defines an Unsigned variable

Services management

 IsServiceStarted - Tells if the specified service is started or not

 StartService - Starts the specified service

 StopService - Stops the specified service

 Web functions

#HTMLBrowser$ - Specifies the browser to use in the subsequent Web functions

#HTMLPosRetry - Controls the way HTML element coordinates are found

#IgnoreHTMLCase – Enables/disables character case in HTML descriptors

#PageSynchroLevel – Allows a more loose synchronization for Web functions

#UsePageExact - Controls the html pages finding method

CaptureHTML - Captures the text of a specified html element

CaptureIE$ - Captures in text mode what appears in a HTML window

CaptureTableHTML - Captures a range of cells in a specified html table

CheckedHTML – Gives the check state of an HTML check box or radio button

ClickHTMLElement - Clicks the specified html element in the current page

CloseBrowser - Closes the opened instance of Internet Explorer browser

CopyLink - Copies the link associated with the specified html element into a string

CurrentPage$ - Gives the title of the current Web page

EnabledHTMLElement – Checks if the specified html element is enable or disable

ExistHTMLElement – Checks for the existence of the specified html element

ExtractLink - Returns all the links of the child elements of the specified html element

GetFrameSource$ - Returns the source code of the specified frame in the current Web page

GetHTMLEditText – Captures the content of an html Edit field within a Web form

GetPageSource$ - Returns the source of the current Web page

ListHTMLItem$ - Returns the specified item from the specified html listbox or combobox

Navigate - Navigates to the specified url

OverHTMLElement – Moves the mouse over the specified html element

PreviousPage – Presses Back button in the current browser

SavePictureAs – Saves an html element referring to a picture

SaveTargetAs – Simulates a right click on an html element and selection of Save Target As option

SelectedHTMLItem$ - Returns the item selected in the specified combobox/listbox html element

SelectHTMLItem – Selects an item in a combobox/listbox within a Web page

StartBrowser - Starts Internet Explorer browser

UsePage - Specifies the html page used by web functions

WriteHTML – Types a string in a html edit zone

WriteHTMLEncrypted - Types an encrypted string in a html edit zone

WriteHTMLPaste – Pastes a string in a html edit zone

FTP functions

#FTPTimeout - Specifies the number of seconds which WinTask x64 should wait before reporting a

runtime error when it tries to execute a FTP function

FTPChDir - Specifies the new FTP current folder

FTPConnect - Makes a connection to the specified FTP server

FTPCurrentDir - Returns the FTP current folder

FTPDisconnect - Terminates the connection to a FTP server

FTPExistDir - Checks if the specified FTP folder exists or not

FTPExistFile - Checks if the specified FTP file exists or not

FTPGetFile - Downloads one or several files to the local PC from the FTP server

FTPKill - Deletes one or several files from the FTP server

FTPMkDir – Creates a folder on the FTP server

FTPName - Renames one or several files in the FTP server

FTPPutFile - Uploads one or several files from the local PC to a FTP folder

FTPRmDir - Deletes a folder and its contents on the FTP server

 Real calculation functions

 #DecimalSeparator - Specifies the decimal separator character used for floating point

 numbers

 #Precision - Specifies the number of decimal places for floating point calculation

 functions

 Add$ - Adds two strings representing floating point numbers

 Divide$ - Divides two strings representing floating point numbers

 Multiply$ - Multiplies two strings representing floating point numbers

 Subtract$ - Subtracts two strings representing floating point numbers

 Response time functions

 ResetTimer - Resets the specified clock

 StartTimer - Starts the specified clock

 StopTimer - Stops the specified clock

 Timer - Returns the value of the specified clock

 ODBC functions

 #DbDateFormat - Controls the date fields format

 DbBof - Tells if recordset contains no records

 DbClose - Closes the recordset

 DbConnect - Establishes the data source connection through the odbc driver

 DbDisconnect - Closes the data source connection

 DbEof - Tells if pointer is at the end of the recordset

 DbExecute - Executes a sql command on the opened data source

 DbGetFieldNumeric - Retrieves the value of a numeric field in a recordset

 DbGetfieldString - Retrieves the value of a string field in a recordset

 DbMove - Moves the current record pointer within the recordset at specified position

 DbMoveFirst - Positions the current record on the first record in the recordset

 DbMoveLast - Positions the current record on the last record in the recordset

 DbMoveNext - Positions the current record on the next record in the recordset

 DbMovePrev - Positions the current record on the previous record in the recordset

 DbRecordCount - Returns the number or records in the recordset

 DbSelect - Fills the recordset by retrieving in the table the records matching the sql query

UI Automation functions

 ClickUIA - Waits until the specified uia element is ready and clicks it

 GetUIAProperty - Returns the content of the specified property for the specified UIA descriptor

SelectUIAItem - Selects the specified item in a list/combo/tree specified by its UIA descriptor

 WriteUIA - Waits until the field specified by its UIA descriptor is ready for use and then writes text into it

