
Modeling Data in TrueVault

TrueVault is a highly secure, highly available, and highly durable distributed
data store. Hosted securely in the cloud, you get all the benefits of a complex
distributed system with none of the operational burden. Simply use the
TrueVault REST API to store and retrieve data, and we take care of the rest. You
can update your data model dynamically, and selectively index the documents
and fields you want to search against.

TrueVault stores your data securely in multiple storage engines to optimize the
most common access patterns. The details are abstracted behind our API, so
the complexity is hidden. From a data modeling perspective, think of TrueVault
as a distributed, NoSQL document store. Simply send your JSON documents
to the TrueVault API, and we’ll handle the encryption, key management and
redundant storage.

Fundamentals
In Context

The TrueVault secure
BaaS is unique, but you
can use the same data

modeling techniques you
would use with:

MongoDB
DocumentDB

RavenDB

{
 “first_name”: “John”,
 “last_name”: “Smith”,
 “phone”: “555.555.5555”,
 “primary_care_nickname”: “Dr. Johannson”
 “primary_care_id”: “522090eb-0e60-11e6-af10-7831c1bb31d8
 “allergies” : [{
 “type”: “FOOD”
 “trigger”: {
 “name”: “peanut”,
 “group”: “legume”
 “exposure_type”: “INGEST”
 },
 “reaction”: {
 “severity”: “CRITICAL”,
 “type”: “ANAPHYLAXIS”,
 “treatment_window”: “5m”
 }
 },{
 “type”: “ENVIRONMENT”,
 “trigger”: {
 “name”: “grass”,
 “exposure_type”: “CONTACT”
 },
 “reaction”:: {
 “severity”: “MODERATE”,
 “type”: “HIVES”,
 “treatment_window”: “30m”
 }]
}

Design for Access
We recommend you model your data in TrueVault based on
your access patterns, not based on the inherent
relationships in your data. This often means that you need
to denormalize parts of your data model to satisfy your
specific query patterns. That is, you may store some data
multiple times to simplify your queries.

Be judicious in your denormalization decisions. Duplicate
information only where the improved query efficiency
outweighs the effort of maintaining two copies.

In the excerpt to the left, this patient record denormalizes a
nickname for their primary care physician while the details
for that physician are stored in a separate document. It also
stores all of the patient’s allergy information embedded
within the patient document. This structure would allow a
rich patient profile view to be built from a single document
request, which means an informative patient list-view could
be driven from a single search. If you plan to preview
records in a list view, this approach is crucial. The
alternative, fetching a doctor or allergy by id for each patient
in the list, results in the dreaded n+1 requests problem and
could make your application feel sluggish.

The embedded allergy structure is not inherently good or
bad; it depends entirely on the access patterns these data
experience. If a patient’s allergies are only ever displayed in
the context of that patient, this approach is ideal. One
request loads all the data you need. On the other hand, if
you plan to browse allergies first, then find the patients with
those allergies, this model would be inefficient. In that case,
normalizing the data would be more appropriate.

What if you need to support both access patterns? In that
case, store the data twice, making each access efficient.
Don’t worry about the data bloat, TrueVault can handle it!

