

\ominus SEW INNOVATIVE 00000 EFFICIENT RELIABLE POWERFUL 6

Induction Motor Computation

Design criteria for induction motors

Design criteria for induction motors

	International Standard IEC	Harmonized European Standard	Description
	IEC 60034-1 +A1 and A2	EN 60034-1+A1, A2 and All	Rotating electric motors. Part 1: Rating and design
	IEC 60034-2+A1, A2 and IEC 60034-2A	EN 60034-2 + A1 and A2	Rotating electric motors. Part 2: Measuring methods to determine the lass and the efficiency of electric motors (except machines for traction vehicles)
-	IEC 60034-5	EN 60034-5	Ratating electric matans. Part 5: Enclosure class for ratating electric matans.
	IEC 60034-6	EN 60034-6	Rotating electric motors. Part 6: Cooling (IC code)
	IEC 60034-7+A1	EN 60034-7+A1	Rotating electric motors. Part 7: Classification of types of construction and mounting (IM code)
-	IEC 60034-8	EN 60034-8	Rotating electric matars. Part 8: Terminal marking and direction of rotation
	IEC 60034-9	EN 60034-9	Rotating electric motors. Part 9: Noise limits
	IEC 60034-11	-	Thermal protection
	IEC 60034-12	EN 60034-12	Rotating electric motors. Part 12: Start capacity of three- phase induction motors.
	IEC 60034-14	EN 60034-14	Rotating electric motors. Part 14: Mechanic vibration for machines with drive shaft heights of 56mm or more. Measuring, estimate and vibration limits
	IEC 60038	-	IEC Standard Voltages.
8	IEC 60072-1	EN 50347	Dimensions and output power for rotating electric motors. Part 1: Frame size 56 to 400 and flange size 55 to 1080.
	IEC 62114	-	Electrical insulation systems
		EN 50102	Degrees of protection for enclosures for electrical equipment against external mechanic strokes. (IK-code)
	IEC 60072-1	EN 50347	Three-phase induction motors for standard use with standard dimensions and output power. Frame size 56 to 315 and flange size 65 to 740.
		Other Standards	
	DIN 51825		Lubricant; lubricating grease k; classification and requirement (1990-08)
	DIN 44082		Thermistors; PTC sensors; thermal protection of machines; climate categorization HFF (1985 -06)
	ISO 2409	EN ISO 2409	Paints and enamels. Grid cut value.
		EN ISO 3743-2	Definition of sound power level. Minor removable sources of noise. Engineering method. Part 2: Rooms with sound control
		EN ISO 4871	Declaration and verification of noise from machines and equipment.
		EN ISO 11203	Noise from machines and equipment. Measurement of sound pressure by the operator's ear (noise emission). Calculation on the basis of sound power level.

CU2

Standardization

- Efficiency (IEC 60034-30)
- Sizing (IEC 60072-1)
- Measurement methods (IEC 60034-2-1)
- Variety / Customization
- Behaviour under grid restrictions (IEC 60034-1)
- Winding variants
- Cooling methods (IEC 60034-6)

Inverter controlled drives

- Behaviour at different setpoints (IEC 61800-9-2)
- Possible Basis: Equivalent circuit data (IEC 60034-28)

- Comply with all given constraints
- Minimize resources / costs

Design cycle for induction motors

Design cycle for induction motors

Modeling example: based on IEC 60034-28

Γ-equivalent circuit

Modeling example: based on IEC 60034-28

- No-load test, i.e. s = 0
- Measurements of Current and Power for varying Voltage at 60Hz

Γ-equivalent circuit

Measurement: no-load test

 $\dot{R}_{Fe}[\dot{\Omega}]$

Modeling example: based on IEC 60034-28

- No-load test, i.e. s = 0
- Measurements of Current and Power for varying Voltage at 60Hz
- Get machine data by IEC Standard

Measurement: no-load test

Model data derived from no-load test

I_m [ٰA]

Lts

 R_{Fe}

Modeling example: based on IEC 60034-28

- No-load test, i.e. s = 0
- Measurements of Current and Power for varying Voltage at 60Hz
- Get machine data by IEC Standard
- Fit Data to get applicable model

Measurement: no-load test

Γ-equivalent circuit

Model data derived from no-load test

- Induction machine can be described in f_R/I_S -plane (analogy to I_d/I_q -plane for PM) (see e.g. Winzer/Doppelbauer 2013)
- No-load results are for $f_R = 0$

Stator flux (absolute value) from measurement-based model in f_R/I_S -plane

- Induction machine can be described in f_R/I_S -plane (analogy to I_d/I_g -plane for PM) (see e.g. Winzer/Doppelbauer 2013)
- No-load results are for $f_R = 0$
- Load-test from IEC 60034-2-1 has constant flux

Stator flux (absolute value) from measurement-based model in f_R/I_S -plane

- Induction machine can be described in f_R/I_S -plane (analogy to I_d/I_g -plane for PM) (see e.g. Winzer/Doppelbauer 2013)
- No-load results are for $f_R = 0$
- Load-test from IEC 60034-2-1 has constant flux
- Inverter-fed motor requires to fill the plane. How to? More Measurements?

Stator flux (absolute value) from measurement-based model in f_R/I_S -plane

- Induction machine can be described in f_R/I_S -plane (analogy to I_d/I_q -plane for PM) (see e.g. Winzer/Doppelbauer 2013)
- No-load results are for $f_R = 0$
- Load-test from IEC 60034-2-1 has constant flux
- Inverter-fed motor requires to fill the plane. How to? More Measurements?
- Computation needed
- Need for Accuracy! A model must be tunable to meet the measurement results !

Stator flux (absolute value) from measurement-based model in f_R/I_S -plane

Stator flux (absolute value) from computation-based model in f_R/I_S -plane

1) Reproduction:

Accurate reproduction of (standardized) measurements

1) Reproduction:

Accurate reproduction of (standardized) measurements

2) Extension:

Accurate computation of load-points or cooling conditions that have not been measured (AEDM)

1) Reproduction:

Accurate reproduction of (standardized) measurements

2) Extension:

Accurate computation of load-points or cooling conditions that have not been measured (AEDM)

3) Extrapolation:

For Predesign: compute results under <u>small design</u> <u>changes</u> with FEM only

Reference: Calculation of Efficiency Maps of Induction Motors Using Finite Element Method - Winzer, Doppelbauer 2013