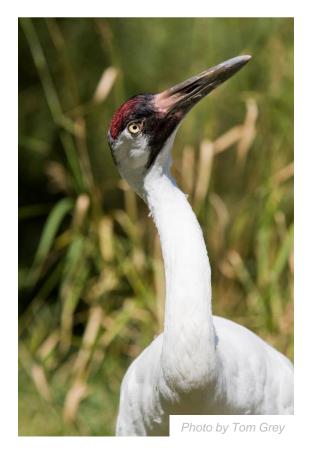
EAGLE PROTECTION OFFSET PROGRAM (EPOP)

JIM BURRUSS Burns & McDonnell

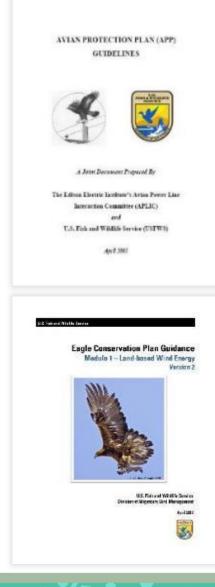
SAM MILODRAGOVICH Northwestern Energy



WILDLIFE & ENERGY

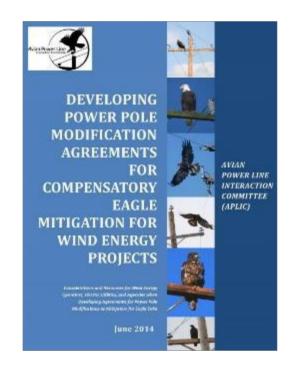
Regulations – Avian Resources

- Migratory Bird Treaty Act (MBTA)
 - Over 1,020 species covered
- Bald and Golden Eagle Protection Act (BGEPA)
- Endangered Species Act (ESA)
- State and Federal Special Status Species
- USFWS Law Enforcement Actions
 - Fines ranging from \$100,000 to \$10,000,000
 - Implementation of retrofits and Avian Protection Plans (APPs)
 - Multi-year probation period



APLIC and USFWS Guidance

- 2005 | Avian Power Line Interaction Committee (APLIC) and USFWS released Avian Protection Plan Guidelines
 - Programmatic approach focused on:
 - System wide electric utility infrastructure
 - New construction
 - Operation/maintenance activities
 - Mortality reporting and employee training
- 2013 | USFWS issued Land-Based Wind Energy Guidelines and Eagle Conservation Plan Guidance
 - Requires development of Bird and Bat Conservation Strategy (BBCS) and Eagle Conservation Plan (ECP) for individual wind projects
 - Resource Equivalency Analysis (REA)



APLIC and USFWS Guidance

- 2014 | APLIC released Developing Power Pole Modification Agreements for Compensatory Eagle Mitigation for Wind Energy Projects
 - Practical considerations
 - Planning flowchart for Wind Energy Owner (WEO), Utility, and USFWS
 - Multi-phase Permittee Initiated Mitigation (PIM) approach for power pole retrofits
 - Utility should have an APP and be able to show additive benefits of efforts
- 2016 | USFWS Final Eagle Rule
 - Incidental Take Permit (ITP) regulations (50 CFR 22.26 (d))
 - "High risk" power pole retrofits for offsetting take

Additional American Wind Wildlife Institute (AWWI) and USFWS Eagle Rule Mitigation Efforts

Eagle Rule and Mitigation

- May provide increased flexibility minimization versus offset
- Broader geographic flexibility
- Service willing to consider innovative mitigation techniques (i.e. AWWI mitigation modeling work)
- AWWI USFWS Work of Western Golden Eagle Team (WGET) Interaction
 - o Optimizing mitigation effectiveness
 - o Quantifying effectiveness

75

Other mitigation considerations being studied by AWWI are lead shot abatement, road kill removal, managing prey, deterrents and nest enhancement.

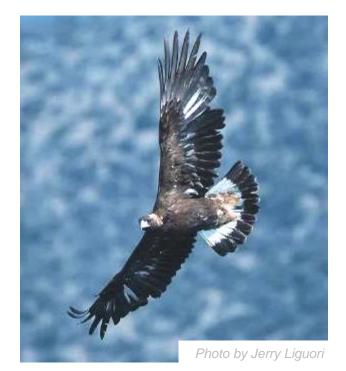
WILDLIFE & ENERGY

How Electrocution Occurs

- Phase-to-phase contact
- Phase-to-ground contact
- Horizontal phase separation less than 60"
- Vertical separation less than 40"
- APLIC recommended minimization measures
 - Isolate: separation of phases
 - Insulate: covering materials

Various Types of Power Pole Retrofit Programs

- Permittee Initiated Mitigation (PIM)
 - Agreement between WEO or ETP holder and electric utility
 - Focused on long-term fixes, 30-year credit
 - Requires significant commitment
- In-Lieu Fee Program (ILF) | Eagle Electrocution Solutions, LLC
 - Focused only on equipment pole fixes using covering materials
 - Short-term fix, 10-year credit
 - Responsible for pole risk assessments, reporting, and program management
- Eagle Protection and Offset Program (EPOP)
 - Long-term fix, re-frame or rebuild, 30-year credits
 - Circuit-wide approach with priority criteria
 - Partnership with Utility to retrofit poles within one year



Eagle Protection and Offset Program (EPOP)

- Program Sponsor: Burns & McDonnell
- Infrastructure Sponsor (IS): electric utility partner
 - Committed to perform work within 12 months
- ETP Permittee: purchaser of credits
- Risk Assessment
 - Identify and prioritize "high risk" circuits and pole retrofits
- Retrofit Action Plan
 - Developed with IS and USFWS
 - Identification of Program Credit Area (PCA)
 - Identify high risk circuits and number of poles/credits in Retrofit Pool
- Credit Tracking, Payments and Reporting
 - Retrofit verification
 - Issue credits/payments
 - Annual reporting

EPOP Risk Assessment Method

- Circuit-wide (all poles on a circuit) approach
- Identifies High-Risk circuits with an average Relative Risk Index (RRI) of 0.40 or greater
- Located within high-quality eagle habitat
- Additional environmental indicators will be used to prioritize circuits
 - APLIC conformance
 - Mortality data from IS
 - Prey or food sources
- Retrofits will:
 - Be reframed or rebuilt
 - Provide 30-year credit
 - Completed in one year

Structure Design	RRI ²
Single phase with high neutral	0.44
Flat top three phase with neutral on crossarm or pole and close to phases ¹	0.51
Flat top three phase on 6-8-foot crossarm ¹	0.38
Double circuit post mount 35 to 69- kV insulators with high neutral ¹	0.62
Post mount three phase 35 to 69-kV insulators with ground wire bonding and high neutral or running along side of pole ¹	0.51

¹Less than 60" separation phase to phase or phase to second point of contact ²Dwyer et al. (2014) Predictive Model of Avian Electrocution Risk on Overhead Power Lines.

Non-Equipment High Risk Poles

69-kV, 3-phase on crossarm with neutral along side of pole


3-phase on flat top design with no neutral

Short post-mounted insulators with ground wire bonding

WILDLIFE & ENERGY

Non-Equipment High Risk Poles

3-phase on flat top design with neutral on crossarm

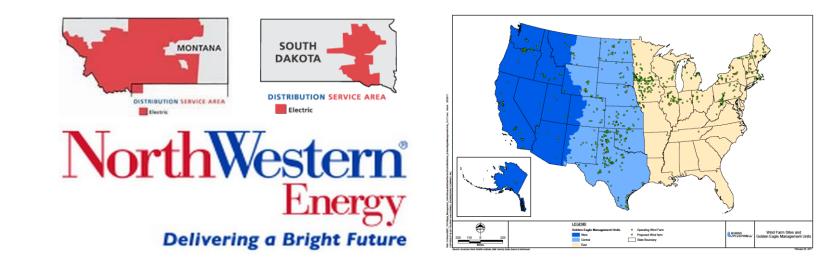
Single phase with ground wire at top of pole

Short standoff insulators on jumper wires of angle steel pole

WILDLIFE & ENERGY

30-Year Fixes for High Risk Poles

- Implement 60-inch horizontal and 40-inch vertical separation between phases
 - Lower crossarm or replace with longer 10-foot crossarm- wood or fiberglass
 - Rebuild and replace with taller pole and lowered crossarm design
 - Remove covers and rebuild with post-mount insulators using at least 115-kV or use suspension design



Northwestern Energy Electrical Operations

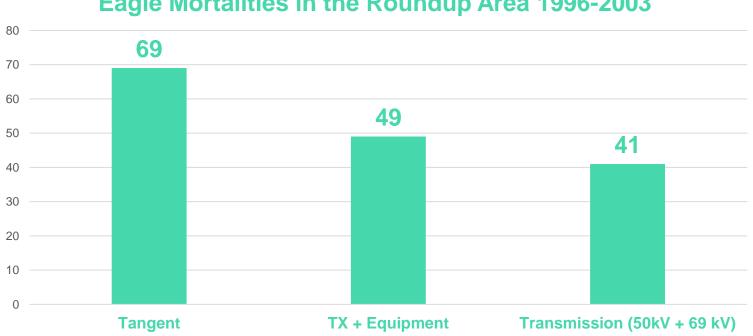
- Electrical operations and customers in portions of MT, SD and WY
- Overlaps Central and Pacific USFWS GOEA Management Units
- Expressed interest in partnering as the first Infrastructure Sponsor

Remote Western Utility Circuits

Roundup Case Study

WILDLIFE & ENERGY

Rabbit Populations Peaked Late 1990s to 2003



Roundup Area Case Study

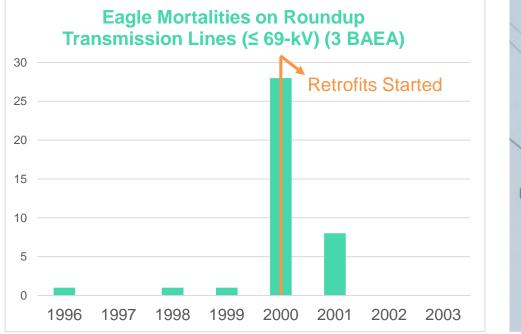
Three categories of offending poles

Eagle Mortalities in the Roundup Area 1996-2003

Tangent Poles

Equipment Poles

Equipment poles include jumper wires and may also include, transformers, cutouts, lightening arrestors, or other equipment presenting increased risk to raptors.

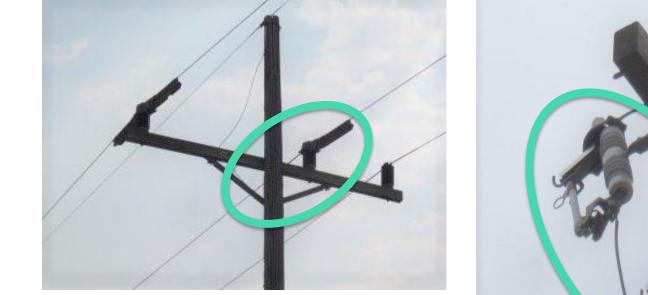

Transmission Poles (≤69-kV)

WILDLIFE & ENERGY

Tangent and ≤ 69-kV Retrofits

Initial Montana Fish Wildlife and Parks aerial survey identified the 69-kV line as the deadliest and initial retrofitting focused on this line

Equipment Retrofits



Products Used 20 Years Ago Are Failing

Anything was better than no covers

Reasons for Participating in EPOP

NorthWestern is committed to sound environmental stewardship while delivering reliable service.

- Raptor electrocutions also may cause power outages, equipment damage and start fires.
- Installing covering materials is a short-term fix. Reframing is permanent and preferred.
- Complete circuit solutions in rural areas will protect a higher percentage of eagles.
- EPOP will provide opportunity to increase our proactive raptor protection efforts

WILDLIFE & ENERGY