

SAFE-TEST POINT[™] HIGH IMPEDANCE TECHNICAL NOTE

Safe-Test PointTM is a high impedance device with the primary purpose of indicating presence and absence of voltage. **Safe-Test Point**TM is designed with metered test points to allow for safe voltage measurement from outside the panel by inserting properly rated instrument probes into the device measuring phase-to-phase and phase-to-ground. The voltage values will read with a percentage of error that varies depending on the ratings and series of the multimeter. For example, when measuring voltage on 480VAC system Phase L1 to Phase L2, the 10M Ω multimeter voltage value will have a -2% reduction reading approximately 470V.

While combining the **Safe-Test Point™** with the R-3W voltage indicator, this adds additional indication of voltage presence or absence that can be incorporated into a facility's Lockout/Tagout (LOTO) program, increasing qualified personnel safety and productivity.

These devices enhance compliance to NFPA 70E & CSA Z462. Always follow the "live-dead-live" test procedure as mandated by OSHA & NFPA 70E (2015), Article 110.4(A)(5), 120.1, Annex G and CSA Z462. See below for a sample procedure.

SAMPLE PROCEDURE

- 1) Verify the test instrument is calibrated and properly rated for application.
- 2) Verify the test instrument to a known voltage source.
- 3) Verify there is voltage illumination on the voltage indicator.*
- 4) Open the dust cap and insert the test instrument probes into the test point and measure the voltage between phase to phase and phase to ground to verify voltage presence.
- 5) Open Isolator.
- 6) Verify there is no LED illumination on the voltage indicator.*

- Re-insert the Test Instrument probes into the test point and measure the voltage between phase to phase and phase to ground to verify voltage absence.
- 8) Re-verify test Instrument to a known voltage source.
- Upon completion of work, close the dust cap on the test point, close isolator, and verify proper operation of voltage indicator.
- *If used with a voltage indicator.

Note: The voltage accuracy of the test point is -2% and the test instrument will read small mV due to the high impedance circuit in the test points.

HOW TO CALCULATE EXPECTED READING OF VOLTAGE MEASUREMENTS WITH YOUR MULTIMETER

- Step 1 Obtain multimeter impendence, can be typically found in manufactures manual listed under Specifications Input Impendence (Grace Engineered Products recommends using CAT III/IV 10MΩ multimeter)
- Step 2 Resistance Calculation (Meter R / Sum R)
- Step 3 Calculate Reduction Voltage (Resistance Calculation * Voltage of system).
 - a) Phase to Phase
 - b) Phase to Ground

(See examples on back)

T-3MT-TN-0816-EN

© Grace Engineered Products, Inc. All rights reserved. Specifications are subject to change with/without notice.

1515 East Kimberly Road • Davenport, IA • www.graceport.com • 1.800.280.9517

CALCULATIONS

Calculated Voltage = (Meter R / Sum R) x V Where.

> Meter R = Multimeter Impedance Sum R = Internal resistance of Safe-Test Point + Meter R V = System Voltage

Example 1: (refer to Figure 1a & 1b)

Using a 10MΩ Multimeter; Measuring Voltage Phase L1 to Phase L3 and Phase to Ground on a 480Y/277V System

Example 1 Calculations:

Calculated Reduction Voltage = (Meter R / Sum R) x V

3ø 480V/277Y

Example 1 Results:

480Y/277V system measured using Safe-Test Point[™] and 10MΩ multimeter will have a -2% reduction voltage reading. Phase to Phase voltage reading will be approximately 470V, and Phase to Ground voltage reading will be approximately 271.5V

Example 2: (refer to Figure 2a & 2b)

Using a 1MΩ Multimeter; Measuring Voltage Phase L1 to Phase L3 and Phase to Ground on a 480/240V Delta System

Example 2 Calculations:

Calculated Reduction Voltage = (Meter R / Sum R) x V

Step 1 – Meter R = 1MΩ

- Step 2 Resistance Calculation (Meter R / Sum R) $=1M\Omega / (102K\Omega + 102K\Omega + 1M\Omega)$ =0.83
- Step 3a (Meter R / Sum R) x V (Where, V = 480V) = 0.83 x 480
 - = 398V

Step $3b - (Meter R / Sum R) \times V$ (Where, V = 240V) $= 0.83 \times 240$ = 199.2V

Example 2 Results:

480/240V Delta System measured using Safe-Test Point[™] and 10MΩ multimeter will have a -17% reduction voltage reading. Phase to Phase voltage reading will be approximately 398V, and Phase to Ground voltage reading will be approximately 199.2V

3 Phase Systems	10MΩ Multimeter		1MΩ Multimeter		500kMΩ Multimeter	
	-2% Voltage Reduction		-17% Voltage Reduction		-29% Voltage Reduction	
	Phase to Phase	Phase to Ground	Phase to Phase	Phase to Ground	Phase to Phase	Phase to Ground
208Y/120V	203.8	117.6	172.6	99.6	147.7	85.2
480Y/277V	470.4	271.5	398.4	229.9	340.8	196.7
600Y/374V	588.0	340.1	498.0	288.0	426.0	246.4
240/120V Delta	235.2	117.6	199.2	99.6	170.4	85.2
480/240V Delta	470.4	235.2	398.4	199.2	340.8	170.4