

Kelly Goetsch

APIs for Modern Commerce
Enable Rich Customer

Experiences Everywhere

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-99523-5

[LSI]

APIs for Modern Commerce
by Kelly Goetsch

Copyright © 2018 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Brian Foster
Production Editor: Justin Billing
Copyeditor: Gillian McGarvey
Proofreader: Amanda Kersey

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2017: First Edition

Revision History for the First Edition
2017-11-02: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. APIs for Modern
Commerce, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com/safari
mailto:corporate@oreilly.com

Table of Contents

Foreword. v

Acknowledgments. ix

1. The API Economy. 1
What Is an API? 2
Digitizing the World 4
APIs Are the Currency of Commerce 6
Final Thoughts 9

2. Modeling APIs. 11
The Case for REST 13
Serialization Frameworks 14
API Modeling Best Practices 16
Final Thoughts 25

3. Implementing APIs. 27
Identifying Needs of Clients 27
Applications Backing APIs 27
Handling Changes to APIs 29
Testing APIs 34
Securing APIs 38
Using an API Proxy 42
Exposing APIs Using GraphQL 44
Final Thoughts 47

iii

4. Consuming APIs. 49
Identify Clients 49
API Calling Best Practices 53
Final Thoughts 57

5. Extending APIs. 59
Extending Traditional Enterprise Commerce Platforms 60
Approaches to Extending APIs 61
Final Thoughts 67

iv | Table of Contents

Foreword

We live in a connected world where virtually every aspect of our
lives is choreographed by technology. Our mobile devices interface
with the Internet of Things to monitor our health and provide real-
time weather updates, which in turn connects us with friends to
compete against during morning runs or share information with
through crowdsourced weather networks. Businesses then access
this information to deliver more relevant offers, such as the perfect
pair of running shoes based on wear and weather conditions.
Finally, companies may share this information across their ecosys‐
tems to better inform supply chain decisions.

These interactions are enabled by application programming inter‐
faces (APIs), which have become the fabric of modern communica‐
tion and a business currency so powerful they are reshaping the
business world. Fundamentally, an API is an interface. In the same
way that most applications have user interfaces to support human
interactions, APIs are the interface that applications expose to facili‐
tate interactions with other applications. APIs have existed since the
first computer programs were developed, but the original APIs were
rigid and required strict adherence to proprietary programming
structures. In the early 2000s, web-connected APIs, including Ama‐
zon’s Store API, eBay, and Salesforce, transformed the landscape and
created a new network of open web APIs that anyone could con‐
sume. Since then, APIs have evolved from rigid interfaces to flexible
and declarative platforms, establishing the modern bedrock of appli‐
cation development and integration.

v

At Adobe, we believe that the key to thriving in today’s hyper-
competitive landscape is being agile and differentiating through
world-class experiences. As business velocity accelerates, the forces
of creative destruction, disruptive innovation, and continuous
change are reshaping every industry. APIs allow you to respond to
these forces with agility, enabling brands to connect legacy systems
and modern web applications with customers, partners, business
ecosystems, and the internet in meaningful ways that unlock new
value. They also accelerate innovation, making it easier to deliver
new capabilities, amplify them by tapping into a network of comple‐
mentary services, and expose those capabilities as omnichannel
services.

As customers embrace an increasing number of omnichannel and
mobile technologies, customer journeys are fractured into hundreds
of real-time, intent-driven micro-moments. Each moment repre‐
sents an opportunity to contextually engage customers and solve
their problems as they move through their shopping journey. APIs
provide the foundation for supporting these experiences, enabling
customers to seamlessly access real-time information such as local
store inventory, personalized offers, and updates on service requests.
Customers are now able to enjoy frictionless experiences that con‐
nect with them in the moment, personally and contextually, rather
than forcing them to interact based on how backend systems and
processes are designed. The API-first approach provides the founda‐
tion for the experience-led business wave, with over 89% of compa‐
nies expecting to compete on the basis of customer experience. This
establishes deeper customer relationships, improves business perfor‐
mance, and establishes a more durable strategic advantage.

APIs for Modern Commerce provides the foundation you need to
take action. The book will introduce you to the power of web APIs
and will provide a framework for creating easily consumable APIs.
Mr. Goetsch guides you through each phase of the process. Starting
with modeling APIs, you will learn how to define and model state‐
less, easy-to-call APIs that are easy to integrate and extend. The
building and deploying chapters cover best practices for how to
build APIs and manage them through their life cycle. Finally, the
APIs are consumed and extended to create an agile operating model.

This book will provide you with a clear understanding of what it
takes to design, deploy, and extend your commerce environment
with an API-first approach. Through the use of real-world examples

vi | Foreword

https://blogs.gartner.com/jake-sorofman/gartner-surveys-confirm-customer-experience-new-battlefield/
https://blogs.gartner.com/jake-sorofman/gartner-surveys-confirm-customer-experience-new-battlefield/

and proven best practices, you will learn both the technical and
business principles necessary to embark upon your own API trans‐
formation.

— Errol Denger, Adobe,
Director of Commerce Strategy

October 8, 2017

Foreword | vii

Acknowledgments

Thank you to Tim Aiken, Leho Nigul, Drew Lau, Tony Moores, Eric
Halvorsen, Rohit Mishra, and Matthias Köster for reviewing my
manuscript and challenging me to write better. I sincerely appreciate
the time, energy and professionalism they all brought to reviewing
my work. Also, thank you to Dirk Hörig, Andreas Rudl, and the rest
of the team at commercetools for giving me the encouragement and
space to write.

ix

CHAPTER 1

The API Economy

The world can be seen as only connections, nothing else. We think
of a dictionary as the repository of meaning, but it defines words
only in terms of other words. I liked the idea that a piece of infor‐
mation is really defined only by what it’s related to, and how it’s
related. There really is little else to meaning. The structure is every‐
thing. There are billions of neurons in our brains, but what are neu‐
rons? Just cells. The brain has no knowledge until connections are
made between neurons. All that we know, all that we are, comes
from the way our neurons are connected.

—Tim Berners-Lee, Weaving the Web (Harper Business)

APIs facilitate today’s digital revolution, similar to how steam-
powered engines enabled the Industrial Revolution in the 1700s.
When you withdraw money from an ATM, check the weather, or
buy a new pair of shoes, you’re using hundreds of APIs behind the
scenes.

APIs are transformational because they allow for an organization’s
functionality and data to be exposed to third parties. When those
third parties discover and consume that functionality and data, they
often add more value than the sum of the APIs they consume. APIs
democratize access to functionality and data, similar to and building
on many principles of the World Wide Web.

1

Metcalfe’s law says that the value of a network is pro‐
portional to the square of the number of its users. The
classic application of this law is to fax machines. A sin‐
gle fax machine in a network offers no value, but two
fax machines facilitate communication between two
individuals, three fax machines facilitate communica‐
tion between nine individuals, and so on.
Metcafe’s law can also be applied to APIs over the
internet. Individuals building world-changing applica‐
tions can do so faster and with less cost than ever
before because of the availability of these fundamental
building blocks. When Facebook acquired WhatsApp
for $18 billion, WhatsApp only had 55 employees.
Instagram only had 13 employees when it was acquired
for $1 billion.
Modern businesses are able to build upon an enor‐
mous network of functionality and data that is often
exposed over APIs. In the past, businesses of all sizes
had to have enormous staffs of people to do what can
now be done using an API for a few pennies per mil‐
lion calls. It’s this compounding of innovations that
adds exponential value to our economy.

APIs are especially important to commerce. Consumers of all types
expect to shop where, when, and how they want, across any device.
Every day, a new device that’s capable of facilitating a commerce
transaction enters the market, whether it’s a dishwasher that’s capa‐
ble of ordering its own detergent or a wearable fitness tracker that
reorders your favorite pair of running shoes when they’re worn out.
What underpins all these devices is their ability to consume com‐
merce functionality and data over an API.

Before we get too far, let’s look at what an API actually is.

What Is an API?
API is an acronym for application programming interface. An API is
simply an interface on top of an application or library that allows
callers to execute functionality (e.g., calculate sales tax, query inven‐
tory, and add to shopping cart) or create/read/update/delete data
(products, orders, prices, etc.). Think of it as a contract between a
provider and a consumer.

2 | Chapter 1: The API Economy

https://en.wikipedia.org/wiki/Metcalfe%27s_law

APIs have been with us since the beginning of soft‐
ware. This book on web APIs, where the caller of the
API is decoupled from the producer and the transac‐
tion often occurs over a network boundary like the
internet.

An API is conceptually similar to a legal contract, where two parties
outline obligations to each other without going into too much detail
about the implementation. For example, a contract between a steel
manufacturer and a buyer calls for 100 tons of SAE grade 304L to be
delivered in 60 days but doesn’t specify which mine the iron must be
extracted from or what temperature the furnace must be set to. So
long as it’s SAE grade 304L steel and it’s delivered within 60 days, the
obligations of the contract are met.

It’s the exact same with APIs: specify the what but not the how. Pro‐
viders of functionality or data document what they’re offering in
great detail but do not describe how the functionality or data they’re
exposing is produced. Additionally, the provider can offer promises
pertaining to the uptime of the API, as well as response times,
authentication and authorization schemes, pricing (often a charge
per x number of API calls), and limits on how often the API can be
called. If the consumer agrees to the terms offered by the producer
and has the proper permissions from the provider, they’re free to
call the API.

Without an API, you’d be left to directly query databases and per‐
form other tricks that expose the caller to too many of the imple‐
mentation details of the application you’re calling. An API abstracts
away all of those details.

What Is an API? | 3

Because there’s often ambiguity, it’s important to differ‐
entiate between APIs and microservices. Think of
microservices as relating to how the application is built
below the API. Microservices are individual pieces of
business functionality that are independently devel‐
oped, deployed, and managed by a small team of peo‐
ple from different disciplines. Microservices always
expose functionality and data through APIs. APIs are
always required for microservices, but microservices
are not required for APIs.
APIs can be bolted on top of any application, whether
on the microservice or monolithic end of the spec‐
trum. For more about microservices, have a look at
Microservices for Modern Commerce, by Kelly Goetsch
(O’Reilly).
We’ll discuss this further in Chapter 3.

Now that we’ve defined APIs, let’s talk about why they are so rele‐
vant to commerce today.

Digitizing the World
With software powering the digital revolution we’re living through,
APIs have emerged as the foundational currency. APIs are great for
many different constituencies.

For end consumers, APIs allow for functionality and data to be con‐
sumed from any device, anywhere. Gone are the days when the only
way to interact with an organization was through a browser-based
website on a desktop. Consumers are now fully immersed in mobile
devices, tablets, voice, wearables, and even “smart” devices like
internet-connected refrigerators. They’re accessing functionality and
data through third parties like social media and messaging plat‐
forms, native apps accessed through proprietary app stores, and
native clients like those found in cars and appliances.

For organizations building consumer-facing experiences, it’s easier
to consume functionality and data as a service over an API rather
than downloading, installing, configuring, running, and maintain‐
ing large stacks of software and hardware. It makes a lot more sense
to pay a vendor to run multitenant copies of the software for you at
scale. You just get an API that you can code to, with the functional‐
ity delivered as a service. No need to install anything.

4 | Chapter 1: The API Economy

http://oreil.ly/2zdHv4g

Software vendors like exposing their functionality and data as APIs
because it allows outside developers to wire functionality and data
into their applications in pieces. Rather than a large one-size-fits-all
software package that must be entirely adopted and then custom‐
ized, an API-based approach allows for developers to consume
smaller, more granular pieces of functionality from specialized “best
of breed” vendors. This strategy is how the public cloud vendors
have changed the face of IT. As an example, have a look at the doz‐
ens of discrete services (all exposed as APIs) that you see when you
log in to Amazon Web Services (Figure 1-1).

Figure 1-1. Amazon Web Services console

Some customers only use AWS for DNS. Some use it just for storage.
It’s entirely up to the customer. This is increasingly how organiza‐

Digitizing the World | 5

tions and individual developers want to buy software. And it makes
so much sense.

Perhaps the most important advantage of APIs is time to market for
all parties involved, which is arguably the most important competi‐
tive differentiator in today’s digital revolution. Developers can sim‐
ply consume little building blocks of functionality, similar to the
Amazon Web Services model. Organizations don’t have to down‐
load, install, configure, run, or maintain anything. Software vendors
can release new functionality to APIs many times a day, provided
each API is backed by a separate microservice with its own team,
application, infrastructure, and release cycle. Unless the change was
big enough that it necessitated a breaking change to the API, the
consumer of the API can start using the new functionality immedi‐
ately without having to do anything.

APIs Are the Currency of Commerce
The fundamentals of retail (whether B2C or B2B) remain
unchanged: get the right product to the right person at the right
time for the right price. How this occurs in today’s technology-
driven retail environment is completely different than ever before.
For example, a 2016 study by Harvard Business School showed that
73% of consumers used multiple channels during their shopping
journeys.

Technology and habits are quickly changing on the consumer side
(the “C” in B2C), with the clear trend being toward mediation
through consumer-focused platforms and electronics. This started
with B2C commerce, but brands and B2B commerce are seeing
these changes as well. Most consumers now engage with businesses
through a handful of social media apps on consumer electronic
devices, like smartphones. Even many of today’s B2B transactions
are now occurring over mobile devices. With all this change on the
consumer side, the notion of what constitutes a channel has funda‐
mentally changed as well.

Defining a Channel
A channel used to be a discrete physical or virtual interaction with a
customer, such as physical stores, websites, mobile applications, and
kiosks. It was clear when your customer engaged with your brand. If
your customer opened up your app on their smartphone, they were

6 | Chapter 1: The API Economy

http://bit.ly/2gYuSQk

engaging with you directly through your mobile channel, with no
other parties involved.

Things are different today. You now have to reach customers using
dozens of smaller touchpoints. Social media (Instagram, Facebook,
Pinterest, Twitter, Snapchat, YouTube, etc.), wearable devices, mar‐
ketplaces (e.g., eBay, Amazon, and physical malls, which are begin‐
ning to have shoppable applications), smaller embedded “micro”
applications on mobile devices (iMessage apps, etc.), and so on are
now the primary means of interacting with retailers and brands. You
have to be part of your customers’ everyday lives in order to remain
relevant. You have to give them contextual content in the location of
their choosing. Very few brands have enough value that a consumer
will consume an entire channel, like a mobile application.

To further complicate matters, there’s a revolution in consumer elec‐
tronics that’s allowing customers to interface with devices in ways
that were previously never possible. Voice, for example, is rising in
prominence. Apple’s Siri handles over two billion commands a
week. An incredible 20% of Google searches on Android-powered
handsets in the US are input by voice. Amazon Echo’ was one of
2016’s hottest holiday gifts. Commerce is now as simple as saying,
“Alexa, buy me some AAA batteries.”

Beginning in 2007, consumer engagement started to be mediated by
new gatekeepers. Prior to the iPhone being introduced in 2007, con‐
sumers more or less directly interfaced with your website. Perhaps
as important as the iPhone itself was the concept of the app store,
where customers could download trusted apps from a walled gar‐
den. By setting standards for, reviewing, and approving apps, Apple
became a mediator between you and your customer. Android adop‐
ted the same model. Social media’s rise to prominence in 2010
brought even more mediation. In 2017, you have to reach customers
where they are, on their own terms and through the platform of
their choice. Experiences are now more and more mediated.

Mediated experiences require the use of APIs, which is why APIs are
now the primary currency of commerce. Rather than build a single
website or mobile app with its own stack, you should instead offer a
suite of dozens, hundreds, or even thousands of discrete features as
APIs. Some of those APIs can be built in-house, some can be out‐
sourced to a partner, and some can be purchased from third parties.
What matters is that the APIs are available and easily consumable

APIs Are the Currency of Commerce | 7

http://econ.st/2zriQu5
http://econ.st/2zriQu5
http://econ.st/2zriQu5
http://econ.st/2zriQu5

from anywhere. Frontends can then consume those APIs to build
compelling experiences for customers, without any synchronization
required. Each piece of functionality (add to cart, claim coupon,
etc.) or piece of data (product, category, customer, etc.) is accessed
only through one API, rather than having to access multiple back‐
end systems (ERP, CRM, OMS, etc.), as is often the case for enterpri‐
ses.

For example, Best Buy is openly courting developers to integrate its
APIs (Figure 1-2).

Figure 1-2. Best Buy’s public API catalog

Additionally, Amazon.com, Walmart, Tesco, eBay, Target, and most
of the world’s other leading retailers are on board with offering
functionality and data as APIs. Developers are then free to integrate
the APIs wherever they see fit, often earning a commission on sales.

Jeff Bezos famously directed his staff at Amazon to adopt an API-
first approach in a 2002 memo, which went something along these
lines:

1. All teams will henceforth expose their data and functionality
through service interfaces.

2. Teams must communicate with each other through these inter‐
faces.

8 | Chapter 1: The API Economy

http://developer.amazon.com/
http://developer.walmartlabs.com/
http://devportal.tescolabs.com/docs/services
http://developer.ebay.com/
https://developer.target.com/
http://plus.google.com/+RipRowan/posts/eVeouesvaVX

3. There will be no other form of interprocess communication
allowed: no direct linking, no direct reads of another team’s data
store, no shared-memory model, no back doors whatsoever.
The only communication allowed is via service interface calls
over the network.

4. It doesn’t matter what technology they use. HTTP, Corba, Pub‐
sub, custom protocols—it doesn’t matter.

5. All service interfaces, without exception, must be designed from
the ground up to be externalizable. That is to say, the team must
plan and design so that interfaces that can be exposed to devel‐
opers in the outside world. No exceptions.

Today, Amazon famously has thousands of APIs that it uses to
“inject” Amazon.com into thousands of different social media and
consumer electronics clients.

Gartner, the research and advisory company, states the following in
its Hype Cycle for Digital Commerce, 2017 report:

API-based commerce will be critical for the future of commerce that
comes to you, whereby commerce functions occur in the customer’s
context wherever and using whatever channels are most convenient
to them. Commerce journeys will become more fragmented and an
API-based approach is a fundamental enabler for cross-channel
experiences.
API-based commerce will need to be available as a set of discrete
services that can be utilized independently (with an appropriate
cost model), and these capabilities should no longer require a whole
platform purchase or subscription.

—Gartner, Hype Cycle for Digital Commerce 2017, Mike Low‐
ndes, July 2017

Today’s commerce platforms are expected to be API-first because
APIs are the only way of injecting commerce into mediated experi‐
ences. APIs are faster to integrate, offer more flexibility, and—if
implemented using a microservices approach—support all of your
future commerce initiatives.

Final Thoughts
Now that we’ve discussed APIs and how transformational they are,
let’s look at how to model them.

Final Thoughts | 9

http://bit.ly/2h8eLUf
http://gtnr.it/2z9uSri

CHAPTER 2

Modeling APIs

When building applications, start by first modeling your APIs. Then
write the application(s) to back those APIs. Modeling APIs involves
selecting the representation format (typically JSON or XML), defin‐
ing the various resources (objects like /Product, /StoreLocator,
etc.), modeling each resource’s attributes (e.g., key/value pairs like
productId="12345"), and finally modeling relationships to other
resources (e.g., <link rel = "customer" uri = "/Customer/

c12345" />) It’s similar to defining an entity relationship diagram
(ERD) for your database before writing a monolithic application.

When you model APIs first, you’ll find that it’s easier to write the
application. Often, individual resources (e.g., /Product) map back
neatly to individual microservices. If you start by writing your appli‐
cation and then retroactively expose functionality and data through
APIs, you’ll end up with APIs that mirror your application’s idiosyn‐
crasies rather than a well-thought-out API that is easy for developers
to consume.

11

How granular should your APIs be? Check out Eric
Evans’ iconic 2003 book, Domain-Driven Design: Tack‐
ling Complexity in the Heart of Software (Addison-
Wesley Professional). In it, he makes the case for a
pattern called Bounded Contexts whereby APIs and
the underlying applications should be modeled as
closely as possible to mirror the data and behavior of
your business domain. For example, Eric would call for
separate product and pricing APIs, as the two are dis‐
tinct business domains, even though the two have a
direct relationship to each other and could be modeled
as one API.

A perpetual issue in software development is parallelizing develop‐
ment. If you get all of the stakeholders in a room and have them
centrally plan the APIs, you can then parcel out the development of
the APIs to internal teams and systems integrators. A clearly docu‐
mented API is easier for a team to implement when compared to an
application whose API is unknown.

Your end goal should be to have an enterprise-wide catalog of APIs
that anyone can consume, inside or outside your organization
(Figure 2-1). A single API could be used by dozens, hundreds, or
even thousands of different clients. Your API is your product.

Figure 2-1. A vision of the future: a catalog of independently developed
and consumed APIs

This catalog of APIs can then be handed to a systems integrator or
creative agency to build a new experience for the latest consumer
electronic device, for example.

12 | Chapter 2: Modeling APIs

https://www.amazon.com/gp/product/0321125215
https://www.amazon.com/gp/product/0321125215
https://martinfowler.com/bliki/BoundedContext.html

Now that we’ve discussed why it’s important to model your APIs
first, let’s step back a little and discuss REST.

The Case for REST
REST is assumed to be the default style because of its universality,
flexibility, large supporting ecosystem of technology, and friendli‐
ness to both producers and consumers of APIs.

Why? Fundamentally, REST APIs are analogous to the web itself.
REST was defined by Roy Fielding (one of the principal authors of
the HTTP specification) in his 2000 PhD dissertation, “Architectural
Styles and the Design of Network-Based Software Architectures,” at
UC Irvine. In it, he stated:

Representational State Transfer (REST) is intended to evoke an
image of how a well-designed Web application behaves: a network
of web pages (a virtual state-machine), where the user progresses
through an application by selecting links (state transitions), result‐
ing in the next page (representing the next state of the application)
being transferred to the user and rendered for their use.

What Roy describes could easily be equated to the World Wide Web
Tim Berners-Lee conceived of in the early 1990s.

Let’s clarify some terms before we go any further:

Resource
Is an entity that can be interacted with using HTTP verbs, like
GET, POST, DELETE, etc. It can be singular (/Product/{id}) or
plural (/Products). Roy describes it in his dissertation as “the
intended conceptual target of a hypertext reference.”

Resource identifier
A URL used to access the resource. https://api.<yourcom‐
pany>.com/Product or /Product would be the resource identifi‐
ers.

Representation
The format of the data returned when an API is called. Often,
it’s XML or JSON.

Resource operation
Maps back to HTTP verbs, like GET, POST, DELETE, etc.

The Case for REST | 13

http://bit.ly/2h555to
http://bit.ly/2h555to
http://bit.ly/2h555to

Client
Refers to whoever is calling the API, whether it’s another enter‐
prise application or a mobile application belonging to the end
consumer.

The web has proven to be an extremely successful model for APIs to
follow. It’s only natural for APIs to adopt the principles from the
web that work and to build on top of its infrastructure (HTTP, TCP,
XML/JSON, etc.). The use of HTTP specifically is crucial because
our digital world is built on top of it. Content delivery networks,
web application firewalls, API gateways, and authorization and
authentication frameworks all rely on the HTTP infrastructure.
There’s a prescribed set of verbs (GET, DELETE, etc.) for dealing with
resources. As a principal author of the HTTP specification, REST
was a natural next step for Roy.

Which format is preferred—JSON or XML?
JSON is more compact but also more difficult to read,
especially when data is complex and hierarchical. XML
is best for structured data, but it’s more verbose than
JSON. All modern tooling will work with JSON and
XML. The XML ecosystem tends to be richer but is
suffering from a lack of investment as JSON becomes
dominant.
Either will work just fine. Don’t get pulled into endless
debates. Use whichever you feel comfortable with and
what works best for your organization. What matters is
that you pick a format and use it consistently across
your organization.

Serialization Frameworks
While REST is the default, its primary drawback is performance.
The HTTP stack is well known for not being efficient. The docu‐
ments must be parsed in their entirety and sometimes validated
before data they contain can be accessed. Field names are stored in
the documents. There are many “filler” characters, such as tabs,
spaces, and special characters such as < and }. In short, REST is uni‐
versally understood by humans and easy to work with, but the per‐
formance is sometimes lacking.

14 | Chapter 2: Modeling APIs

There are situations where high performance is an absolute require‐
ment, including:

• Special use cases, like high-frequency trading
• Retrieval of a large amounts of data, like retrieving all orders

placed in the past week
• Architecture that forces synchronous calls between microservi‐

ces

It’s important to note that you should rarely if ever make synchro‐
nous HTTP calls between microservices, especially if the client is
waiting on the response. However, there are situations when syn‐
chronous calls are necessary. For example, your shopping cart may
need to make a real-time call to validate inventory for a given prod‐
uct before checkout is initiated. In that case, your shopping cart now
needs to call your inventory synchronously.

For the absolute best performance, you can use binary-level seriali‐
zation frameworks. Examples include Apache Thrift, Apache Avro,
and Google Protocol Buffers. These bypass the entire HTTP stack
(including TCP), don’t rely on text and therefore parsing, don’t store
field names, don’t have extemporaneous characters, and don’t need
intermediary SDKs. These stacks are built for speed and they deliver
on that promise. For example, Protocol Buffers from Google are 3 to
10 times smaller and 20 to 100 times faster than XML. Most of the
time, the performance bottleneck is with the application you’re call‐
ing as opposed to the overhead that REST introduces.

If you’re a provider of APIs, you’ll generally want to expose REST
APIs publicly. These binary-level serialization frameworks offer very
little support for security, readability, or a larger ecosystem, though
these areas are improving over time. Binary is meant to be used
when speed is your primary requirement.

Google has estimated that 74% of all publicly accessible
APIs are REST. Given its popularity, consider rest as
the default when APIs are discussed henceforth.

Serialization Frameworks | 15

http://bit.ly/1kOjQVS
http://bit.ly/1kOjQVS
https://cloud.google.com/apis/design/resources

API Modeling Best Practices
When modeling an API, look at who your consumers are. Are they
internal or external? How technical are they? Who are your clients,
and where are they making API calls from? These are all important
considerations which we will cover next and in future chapters.

Here are some best practices that should be followed regardless of
who your consumers and clients are.

Documented Using a Specification
All APIs require documentation. Documentation includes:

• Resources
• Attributes
• Relationships between resources
• Representation formats
• Supported verbs
• Error response codes

APIs also require an application that does what the API promises.
They can optionally offer an SDK or some other form of client-side
code to make it easier for clients to call the API. The problem for
those building APIs is that the API documentation, server-side
implementation and client-side SDKs must match at all times. If a
“currency” attribute is added to your pricing resource, it must be
available in the documentation, the server-side implementation, and
any client-side SDKs.

There are a number of standards available that allow you to model
your APIs using a high-level markup language like YAML. OpenAPI
(formerly known as Swagger) and RAML have emerged as the two
most commonly used standards for documenting REST APIs
(Figure 2-2).

16 | Chapter 2: Modeling APIs

https://www.openapis.org/
http://raml.org/

Figure 2-2. Inventory API modeled using OpenAPI

Once APIs are modeled using the specification, you can then auto‐
matically generate client and server stubs in the language of your
choice (Figure 2-3).

Figure 2-3. Client and server auto-generation

API Modeling Best Practices | 17

Being able to auto-generate documentation, server stubs, and client
stubs dramatically simplifies the development of APIs because all
three pieces are generated simultaneously from the same high-level
markup language. These definitions should be checked in and
treated as source code.

Though the technology and architecture backing each API can
change, you should pick a specification and use it across your com‐
pany. What matters most is that you use it consistently.

Independently Callable
APIs should be independently callable, meaning you shouldn’t have
to call one API before you call another. For example, many 2000s-
era commerce APIs required that clients authenticate and authorize
a customer (often as two separate calls) before an action was per‐
formed against that user’s account, like adding an item to their
shopping cart. While it does make sense that the client authenticate
and authorize the user, requiring one or two API calls as a pre-
condition doesn’t make a lot of sense. It requires putting too much
intelligence into the client. Imagine having to maintain that business
logic across 10 different clients managed by 10 different develop‐
ment teams.

These hard dependencies between APIs are often introduced due to
idiosyncrasies in the monolithic application because APIs were bol‐
ted on after the application was built. That’s why it’s best to start by
modeling your APIs first, and then writing individual microservices
to back each API.

Stateless
The applications backing each API should be stateless, meaning that
no single client request is dependent on the server-side state of a
previous request. This allows a call to the API to be served by any
instance of the application. You could implement a round-robin
load balancing strategy, for example.

As an example of why it’s best to be stateless, consider that many top
celebrities have more than 100 million followers on social media
platforms. Individuals with large followings regularly pitch products
to their followers (see Figure 2-4).

18 | Chapter 2: Modeling APIs

Figure 2-4. Celebrity-driven product endorsements

If someone with 100 million followers posts a link to your product
detail page, your auto-scaling should kick in and create a few thou‐
sand instances of the applications that back your product, inventory,
pricing, and other microservices used to render that page. If you
have stateful sessions, you’ll have to slowly wait for your application
instances to be free of sessions, which could take many hours. If
your instances are stateless, your auto-scaling mechanism can sim‐
ply kill off the unnecessary instances following the rush.

Easy to Call
APIs should be written so that they are easily callable by any client.
This primarily means modeling the APIs at the outset, offering
SDKs in a variety of languages, and making the APIs as performant
as possible. Let’s look at all three.

First, as we’ve discussed, ensure that the APIs are modeled first,
before any code is written. Then write your application to back the
API you’ve modeled, preferably with a 1:1 relationship between the
API and a backing application/microservice. This will help to ensure
that your APIs are intuitively modeled and free of the idiosyncrasies
of the implementation of your application. As we’ve also discussed,
it’s best to use a formal specification like OpenAPI or RAML

API Modeling Best Practices | 19

(Figure 2-5). This ensures that your clients can leverage the specifi‐
cation’s large ecosystem of tooling.

Figure 2-5. RAML ecosystem

But you can only leverage all that tooling if your API conforms to a
specification.

Next, offer SDKs to make it easier for clients to access your APIs.
While REST is a necessary common denominator, it’s not very easy
or performant to work with large JSON or XML documents.

For example, here’s how you’d retrieve the products from the prod‐
uct service using raw JSON:

URL url = new URL("https://api.yourcompany.com/Product");
 try (InputStream is = url.openStream();
 JsonReader rdr = Json.createReader(is)) {

 JsonObject obj = rdr.readObject();
 JsonArray results = obj.getJsonArray("products");
 for (JsonObject result : results.getValuesAs(
 JsonObject.class)) {
 System.out.println("Product Name="
 + result.getJsonObject("product").getString("name"));

20 | Chapter 2: Modeling APIs

 }
}

There are a few issues with this:

• There’s no type safety. If your developer accidentally typed
“prodducts” instead of “products,” the compiler wouldn’t flag
the error.

• Developers aren’t able to use auto-complete features in modern
IDEs.

• You have to manually handle authentication and authorization
if that’s required. That code can get complicated.

Rather than interacting with XML or JSON directly, you can use the
tooling of the specification you chose to generate a client. It takes
two mouse clicks from the API modeling UI to generate a stand‐
alone library (product-service-java-client-1.0.0.jar in this example;
see Figure 2-6).

Figure 2-6. SDK generation using OpenAPI tooling

Simply import the library and interact with resources in your native
language, rather than text-based documents:

API Modeling Best Practices | 21

for (Product product : new DefaultApi().productGetAll())
{
 System.out.println("Product Name=" + product.getName());
}

Developers love native libraries because they simplify development
through the use of auto-complete in IDEs (see Figure 2-7).

Figure 2-7. Auto-complete in IDE through the use of an SDK

Beyond auto-generating clients from a specification, an SDK can
abstract away all the security for developers.

Consider offering client-side libraries for a variety of popular lan‐
guages. As a provider, you should furnish all the client-side tooling
that you can in order to entice developers to consume your APIs.

Finally, don’t forget about performance. The worst thing you can do
is provide an API with response times in the hundreds of milli‐
seconds. It puts a big burden on client-side developers who then
have to code around the poor performance.

Cacheable
To improve performance, it’s important to aggressively cache API
calls. The vast majority of calls from your frontend translate to
HTTP GET requests, whether you use REST directly or indirectly
through a native SDK. An HTTP GET call is easily cacheable by any
intermediate layer between your frontend and your backend.

To cache properly, you’ll need to represent resources by proper
URIs. An HTTP request for /Cart/{id} is very easily cacheable but an
HTTP GET to /Cart/current or some other ambiguous URI is not.

22 | Chapter 2: Modeling APIs

Similarly, it’s also more difficult to cache when resources aren’t
defined independently. If you’re HTTP POSTing to a /ProductCatalog
URI to retrieve products, you’ll have a harder time than if you’re ref‐
erencing individual resources by URI, like /ProductCatalog/Product/
12345.

As individual resources, you have more control over caching policy.
You could easily define a "max-age=180" HTTP request header for
products and "max-age=5" for inventory, for example.

You’ll also be able to cache more if you make full use of HTTP verbs,
like GET, POST, DELETE, etc. Many developers take shortcuts and
route all API calls over HTTP POST. When this is done, HTTP is
used more as a tunneling mechanism, which reduces cacheability.
It’s far easier to cache GETs because you know they’re read-only and
therefore cacheable. A POST is hard to cache because you don’t know
if it’s creating, reading, updating, or deleting data, or executing some
functionality remotely.

Once you have a well-defined API, it’s easy to cache through the use
of standard HTTP-level caching techniques. Google and many oth‐
ers have great guides showing how to configure HTTP caching.

As for where to cache, you have a lot of freedom based on your envi‐
ronment. You could cache at the edge (often part of your content
delivery network), an API load balancer and/or API gateway, a
standalone caching proxy, a web server, a reverse proxy, or any one
of the intermediaries between the client and the originating applica‐
tion backing the API. The leading content delivery networks even
auto-cache by default, as seen in Figure 2-8, an example of Amazon
Web Service’s CloudFront.

Figure 2-8. Auto-caching HTTP requests at the edge

API Modeling Best Practices | 23

http://bit.ly/2xM6isZ

The ability to have intelligent intermediary layers is one of the key
advantages of using HTTP for your API calls rather than the binary-
level protocols, which are almost entirely point to point.

Intuitive
The World Wide Web (linking through HTML) is the layer that
made the internet a fixture in business and at home. That model
succeeded because it made it easy for normal people to find infor‐
mation. A web page displaying a company’s stock price also includes
a link to view that company’s balance sheet, for example. The value
is in the connections.

Good API designers adopt many of the same principles as the web,
often under the umbrella term Hypermedia as the Engine of Applica‐
tion State (HATEOAS). While arguably not the nicest sounding
acronym, the principle is solid. HATEOAS means each response
includes links to other related resources. Here’s an example of an
order object showing the caller how to delete the order:

<order id="{id}">
 ...
 <link rel = "delete" uri = "/Order/{id}/delete"/>
</order>

HATEOAS is like the web today with browsers, but applied to APIs
instead. The value of this approach is as follows:

• It allows developers to much more easily consume functionality
and data.

• Developers can code to the link named “delete,” allowing the
API paths to change.

• It eliminates hardcoded API paths and other business logic.
• It helps developers model APIs.

You can take HATEOAS further and also use it to control applica‐
tion state. For example, a cart could prevent the submission of an
order by not having a confirm rel present when billing and payment
details haven’t been provided yet in the application state.

Try for HATEOAS as much as possible.

24 | Chapter 2: Modeling APIs

Idempotent
Idempotency means that an action (such as add to cart, increment
inventory, or create product) can be performed multiple times
without causing problems. For any number of reasons, an API may
be invoked multiple times. Invoking an API multiple times should
result in the same output every time.

For example, an API expecting the following input is not idempo‐
tent:

HTTP POST /Cart/{id}

{
 "add": {
 "skuId": "12345",
 "quantity": 1
 }
}

Every time this is invoked, one SKU will be added to the cart. If the
API is accidentally executed 10 times, the customer will end up with
10 of SKU 12345 in their shopping cart.

The following input, on the other hand, would be idempotent:

{
 "add": {
 "skuId": "12345",
 "totalQuantity": "1"
 }
}

This could be executed 1,000 times and the result would still be the
same: the customer would have only one SKU 12345 in their shop‐
ping cart.

It is best practice to assume that the plumbing between your client
and your server is unreliable. APIs may be invoked multiple times
when only one invocation was anticipated.

Final Thoughts
It should be clear why APIs should first be modeled before writing a
single line of code. Don’t get too dogmatic about which specification
you use. What matters is that you use one and stick to it.

Next, let’s explore the code-level implementation of the APIs.

Final Thoughts | 25

CHAPTER 3

Implementing APIs

This chapter focuses on actually implementing what’s behind your
APIs. You’ve modeled your APIs, but now it’s time to write the code.
Here’s how you get started.

Identifying Needs of Clients
Before you start writing code, remember who you’re building APIs
for and what they want. Are your APIs primarily for internal devel‐
opers at your company? Or are they for external developers not
employed by your company? Are your APIs for paying customers or
for partners?

We’ll discuss this more in Chapter 4, but for now, let’s ask the simple
question—who are your clients? Are they other microservices? Are
they web frontends? Are they mobile frontends? Your client could be
on the other side of the world or on the next rack over in the data
center. These are all important considerations. Who’s calling your
APIs will have a direct impact on how you design, deploy, and man‐
age them.

Keep these factors in mind as you look at building the code behind
your APIs.

Applications Backing APIs
All large applications fall somewhere on a spectrum between mono‐
lithic and microservices. A traditional monolithic has multiple busi‐

27

ness functions in the same codebase. Pricing, orders, inventory, and
so on are all included in the same codebase and are deployed as a
single large application requiring dozens or hundreds of people
working in horizontal (frontend, backend, ops, etc.) teams. These
monolithic applications often retroactively add APIs to access func‐
tionality contained within the monolith (see Figure 3-1).

Figure 3-1. Traditional monolithic commerce application

Microservices are individual pieces of business functionality that are
independently developed, deployed, and managed by a small team
of people from different disciplines. Characteristics of microservices
include:

Single purpose
Do one thing and do it well.

Encapsulation
Each microservice owns its own data. Interaction with the
world is through well-defined APIs (often, but not always,
HTTP REST).

Ownership
A single team of 2 to 15 (7, plus or minus 2, is the standard)
people develop, deploy, and manage a single microservice
through its life cycle.

Autonomy
Each team is able to build and deploy its own microservice at
any time for any reason, without having to coordinate with any‐

28 | Chapter 3: Implementing APIs

one else. Each team also has a lot of freedom in making its own
implementation decisions.

One of the key characteristics of microservices is encapsulation.
Small, vertical microservice teams often start by modeling the API
and then writing a microservice that implements it (see Figure 3-2).

Figure 3-2. Microservices-based commerce application

The advantage of a microservices-based architecture in this context
is that the APIs are more easily able to be consumed independently.
The shopping cart microservice team, for example, needs to expose
an API that can be called by anybody or anything, internally or
externally. An API retroactively bolted on top of a monolithic appli‐
cation is inherently less callable because you’re consuming a small
piece of something much larger. There are always going to be
dependencies. Going back to the shopping cart example, you may
have to call inventory, pricing, and tax as you retrieve your shopping
cart. But a shopping cart developed as a standalone microservice
will already have those dependencies included. Microservices
requires a substantially different approach to development that is
ultimately very beneficial for APIs.

For more information about microservices, read Microservices for
Modern Commerce, by Kelly Goetsch (O’Reilly).

Handling Changes to APIs
Traditionally, commerce applications have forced all clients to use
the same API and implementation versions. In practice, this meant
that the monthly or quarterly release to production would require

Handling Changes to APIs | 29

http://www.oreilly.com/webops-perf/free/microservices-for-modern-commerce.csp
http://www.oreilly.com/webops-perf/free/microservices-for-modern-commerce.csp

the clients to be updated at the same time, leading to a long weekend
for the ops team. When the only client was a website, this was just
fine. When it was mobile and web, it became more difficult because
an update to the core platform meant you had to redeploy both
mobile and web at the same time. But in today’s omnichannel world,
there could be dozens of clients, each with their own release cycles
(see Figure 3-3). It is not possible to get dozens of clients to push
new versions live at the same time. Each client must evolve inde‐
pendently, with its own release cycle.

Figure 3-3. Multiple clients, each calling different versions

There are two basic approaches that producers of APIs can take:
evolve or version. Let’s start with evolving APIs.

Evolving APIs
Many APIs simply do not change that much, especially if they’re
designed by people who understand the domain extremely well. For
example, most of the external tax calculators have static APIs. Have
a quick look at Avalara’s tax API as an example. The underlying tax
rates and sometimes the formulas change, but the actual API you
call is fairly static. The response you get back is also fairly static. The
US could adopt a VAT-style tax system and the APIs still wouldn’t
change. Most APIs you interact with on a day-to-day basis are like
this.

Inevitably, APIs need to evolve—but not necessarily change. Let’s
say you’re building a customer profile API that allows simple create,
read, update, and delete (CRUD) operations. The following code
shows the object that the API would need for a new customer to be
created.

{
 "id": "c12345",
 "firstName": "Kelly",
 "lastName": "Goetsch",

30 | Chapter 3: Implementing APIs

https://developer.avalara.com/

 "email": "kelly.goetsch@commercetools.com"
}

Now let’s say that your business users want to capture your custom‐
ers’ shoe sizes so they can be targeted with better product offers.
Your JSON object would now look like this:

{
 "id": "c12345",
 "firstName": "Kelly",
 "lastName": "Goetsch",
 "email": "kelly.goetsch@commercetools.com",
 "shoeSize": 12
}

This is an evolution of your API, which should be easily supported
without versioning. If the client doesn’t specify the shoeSize param‐
eter, the application shouldn’t break. This goes back to Postel’s law,
which states that you should be “liberal in what you accept and con‐
servative in what you send.” When applied to APIs, Postel’s law
essentially means you shouldn’t do strict serializations/deserializa‐
tions. Instead, your code should be tolerant of additional attributes.
If shoeSize suddenly appears as an attribute, it shouldn’t break your
code. Your code should just ignore it. For example, the serializer we
use allows for the following annotation:

// To ignore any unknown properties in JSON input wuthout exception:
@JsonIgnoreProperties(ignoreUnknown=true)

If you adopt a strict approach to serialization, any difference in the
client and server is going to break the client:

Unhandled exception
org.springframework.oxm.jaxb.JaxbUnmarshallingFailureException:
 JAXB unmarshalling exception: unexpected element
 (uri:"http://yyy.org", local:"xxxResponse").
 Expected elements are <{}xxx>,<{}xxxResponse>;

The approach of having evolving APIs goes back to Bertrand Mey‐
er’s open/closed principle, which he documented in his 1988 book,
Object-Oriented Software Construction. In it, he said that software
entities (especially APIs) should be “open for extension but closed
for modification.” He went on to further say:

A module will be said to be open if it is still available for extension.
For example, it should be possible to add fields to the data struc‐
tures it contains, or new elements to the set of functions it per‐
forms.

Handling Changes to APIs | 31

https://en.wikipedia.org/wiki/Robustness_principle
https://en.wikipedia.org/wiki/Open/closed_principle
https://www.amazon.com/Object-Oriented-Software-Construction-Book-CD-ROM/dp/0136291554

A module will be said to be closed if it is available for use by other
modules. This assumes that the module has been given a well-
defined, stable description (the interface in the sense of information
hiding).

The majority of APIs you have will fall into this category. Simply add
attributes where you can, and don’t break existing functionality.

The major advantage of this approach is that the APIs remain fairly
static, allowing clients to code to them more easily. It’s one less
dimension for developers to care about. The supplier of the API
only has one version of the codebase to support in production at any
given time, dramatically simplifying bug fixing, logging, monitoring,
etc.

The disadvantage of this approach is that the APIs are fairly locked
from the start. Vendors who solely adopt this approach lose the flex‐
ibility to radically change the APIs, which is perfectly acceptable in
many cases.

For APIs that change more radically and where true A/B testing is
necessary, versioning is the preferred approach.

Versioning APIs
With versioning, the provider of the APIs deploys more than one
major version of an API to the same environment at the same time.
For example, versions 1, 2, and 3 of the pricing API may be live in
production all at the same time. All versions can serve traffic con‐
currently.

While there are many flavors of versioning, a common approach is
to guarantee API compatibility at the major version level but contin‐
ually push minor updates. For example, clients could code to version
1 of an API. The vendor responsible for the implementation of the
API can then publish and deploy versions 1.1, 1.2, 1.3, and beyond
over time to fix bugs and implement new features that don’t break
the published API. Later, that team can publish version 2, which
breaks API compatibility with version 1.

Clients (e.g., point of sale, web, mobile, and kiosk) can request a spe‐
cific major version of an API when making an HTTP request. By
default, they should get the latest minor release of a major version.
This is often done through a URL (e.g., /Inventory/v2/ or /Inventory?

32 | Chapter 3: Implementing APIs

version=v2) or through HTTP request headers (Accept: applica
tion/vnd.example.api+json;version=2).

This is great for vendors who are rapidly innovating. It allows them
to release minimum viable products. When enough is learned, they
can fork the codebase and then offer the old version 1 and have an
entirely new breaking API as version 2. The vendor isn’t “locked in”
to a specific API, as is the issue with evolving APIs.

The major challenge you’ll have with versioning is persistent data.
Here, there are essentially two approaches: you can have one data‐
store per major API version (Figure 3-4), or you can have one data‐
store per environment (Figure 3-5).

Figure 3-4. One data store per version

Figure 3-5. One data store per environment

If you have one datastore per major API version, then you need to
migrate or continually synchronize the data between major versions.
If your client was using version 1 of the order API, and then you
start using version 2, you need to physically move or synchronize
the data from version 1 to version 2. You can’t just seamlessly switch
over to version 2, for example. This is hard to do when you have
multiple clients because it requires that you cut all your (potentially
dozens of) clients over to the new version of the API at the same

Handling Changes to APIs | 33

time. Facebook has gone so far as to offer an upgrade utility to help
developers transition from one version to another.

If you have one datastore per environment, with all API versions
hitting the same datastore, you have the problem of “evolving” the
objects. Your point-of-sale system could write an order object using
version 1 of the API and, five seconds later, your iOS application
could try to amend that order using version 2 of the same API. Any
API version can write an object, and any API version can update
that order at any time. This is by far the most common approach,
but it’s hard to do.

Versioning is only used because it offers more freedom to innovate,
especially in a fast-changing environment. Evolving APIs are easier
to support, but both the clients and the producer of the APIs tend to
get locked in over time, slowing the pace of change.

Testing APIs
Testing is obviously important to all software development and must
be taken seriously. Fortunately, APIs make testing easy. Before we go
further, you must adopt a new mindset.

Traditional commerce applications were one large monolith, often
deployed as a single multigigabyte EAR file or something similar.
They had frontend and backend code, all contained in one applica‐
tion. The scope of testing was fairly well defined—whatever was in
that single archive needed to be tested.

Commerce is now a collection of smaller APIs, often backed by sep‐
arate microservice teams. You’ll have a team that exposes an inven‐
tory API and another that exposes a pricing API. An enterprise
could easily expose a catalog of a few hundred individual APIs for
any client to consume. The providers of the APIs often have no idea
how their APIs will be used by the dozens of clients out there. Think
of APIs as LEGO blocks, available for use by anyone in any way.

With that in mind, let’s look at the different methods of testing.

Local Testing
Testing APIs locally is pretty easy. Just download Postman,
Advanced REST Client, Insomnia REST Client, or any of the myriad
of GUI-based tools that allow you to execute HTTP requests against

34 | Chapter 3: Implementing APIs

https://www.getpostman.com
https://advancedrestclient.com
https://insomnia.rest

a REST resource, and see the response (Figure 3-6). You can even
use traditional cURL if you’re inclined to use the command line. The
purpose of this testing is to verify that uncommitted changes you’ve
made locally don’t break the API.

Figure 3-6. Postman HTTP client

Traditionally, local testing was hard because you’d have to run an
entire multigigabyte application locally, including the UI, applica‐
tion server and database. There was no way to test out the backend
functionality without exercising the frontend. But it’s actually pretty

Testing APIs | 35

easy to test your APIs if you’re just building APIs. The frontend
developers can test their stack independently.

Unit Testing
While local testing is focused on individual developers testing
uncommitted changes, unit testing is focused on ensuring that the
API you’re working on as a team (often a microservice team) works
as expected. The API is the unit you’re testing. An API is really just a
contract, if you look at the big picture. When unit testing, you’re
verifying that the API is working as advertised.

Unit testing must be 100% automated and baked into your Continu‐
ous Integration/Continuous Delivery (CI/CD) pipeline. It should
exercise all aspects of the API, including its functionality and espe‐
cially the HTTP response codes it produces. If you version your
APIs, your tests should cover supported versions of your APIs as
well.

For example, let’s pretend you have a /Product/{id} HTTP REST
resource. When you call it with /Product/12345, you get back the
following response:

{
 "product":
 {
 "id" : "12345",
 "name" : "Test product",
 "description" : "Long description..."
 }
}

To test this functionality, you can use any number of frameworks.
Let’s use a simple example using REST Assured. It would look some‐
thing like this:

@Test public void
product_resource_returns_200_with_expected_product_name() {
 when().
 get("/Product/{id}", "12345").
 then().
 statusCode(200).
 body("product.name", equalTo("Test product"));
}

You can very easily hook this into any CI/CD pipeline so that each
of your APIs is rigorously tested with each code commit.

36 | Chapter 3: Implementing APIs

https://rest-assured.io

Load Testing
In addition to testing the functionality of each API, you should also
test its scalability limits. Again, you don’t know who’s consuming
your API or what they’re doing with it.

Any load testing framework out there can make an HTTP request to
test an API. Common frameworks include ApacheBench, Gatling,
and JMeter. If your API is backed by a microservice-style applica‐
tion and deployed to a public cloud with auto-scaling, you should
have no problems scaling your APIs.

Integration Testing
Once you’ve verified that an individual API works and performs
well under load, it then must be tested within the context of other
APIs in the ecosystem.

Figure 3-7 shows a fairly common end-to-end flow you’d want to
test.

Figure 3-7. Synthetic integration testing

Repeat this for all the major flows for all the combinations of all the
APIs you support. It might take a few minutes to execute the tests,
but it’ll be well worth the comfort in knowing that the APIs all work
well together.

Testing APIs | 37

http://bit.ly/2cOdAmX
https://gatling.io
http://jmeter.apache.org

These integration tests should be executed every time code is
checked in, as part of your CI/CD pipeline. If integration testing
fails, stop everything and fix it.

Securing APIs
Before you can expose an API, you must secure it. Security starts
with authentication: is this developer or application whom he/she/it
purports to be? Next, you have to authorize the user: does he/she/it
have access to this API? What type of behavior is permitted? Finally,
you have to ensure that your users aren’t abusing your APIs in some
way. For example, you may want to cap the number of HTTP
requests that can be made by any given client. A few thousand
HTTP requests may be OK, but are 100 million HTTP requests per
hour OK? Probably not.

What’s great about using REST-based APIs is that the underlying
stack (TCP, HTTP) is so widely used. There are well-established
approaches to solving all of these security issues.

Authentication
Let’s start with authentication. Authentication ensures that a user,
whether a human or another system, is who he/she/it purports to be.
It’s like having your ID checked at the airport.

At a high level, your client needs to provide a “secret” of some sort
(Figure 3-8). That secret can be a username/password or an API key
of some sort, which is typically a long string encoded using base64.
Keys are best because they’re easier for developers to use, with many
SDKs allowing you to supply the key via a configuration file.

38 | Chapter 3: Implementing APIs

Figure 3-8. Simple authentication flow

Here’s Tesco’s developer documentation for how to pass in a key
when making an HTTP GET request for products:

curl -v -X GET "https://dev.tescolabs.com/product/?gtin={string}&
 tpnb={string}&tpnc={string}&catid={string}"
-H "Ocp-Apim-Subscription-Key: {subscription key}"

Never put your secret in a URL as an argument. URLs
are public. Your secret should be private. Any number
of intermediaries can sniff the URLs you’re browsing,
even if you use HTTPS. Your secret is safe if it’s in the
request header and you use HTTPS (HTTP + TLS or
SSL).

The issue with simply supplying an API key or username/password
is that the application now knows your secret. If you have one big
monolithic application, it’s fine, as it’s less likely to leak out. But
imagine if you have 100 APIs backed by 100 microservices/applica‐
tions? That creates a whole new set of issues, which we’ll discuss
shortly (see Figure 3-9).

Securing APIs | 39

http://bit.ly/2z5ikRQ

Figure 3-9. Don’t let this happen to you!

Authorization
Once you’ve authenticated your client, you must now authorize that
client to perform some action, like retrieve an order or query for
inventory availability.

Authentication and authorization are often intermingled, but they’re
distinct. Going back to the airport analogy, authorization is scan‐
ning your boarding pass when boarding your flight. Your identity
has already been validated, but now you need to be authorized to
board a particular flight.

With one monolithic application backing your APIs, you can put an
API gateway in front of your APIs. Begin by cataloging all your APIs
and the HTTP verbs allowed by each (POST, GET, PUT, PATCH, and
DELETE). Define which groups or individuals are allowed to access
each API, and then within each API, which verb they’re allowed to
call. This is fairly simple (see Figure 3-10).

Figure 3-10. Securing your APIs through an API gateway

Now let’s say you have 100 separate microservices, each backed by
its own application and development team. A vulnerability in any
one of those microservices will expose the secret to the public. The

40 | Chapter 3: Implementing APIs

secret will need to be regenerated and all clients using it will need to
be updated.

OAuth 2 solves this problem by serving as a trusted intermediary
between the client and the applications the client is trying to interact
with. The client is able to authenticate once with an OAuth server.
The server responds with a temporary access token, which the client
sends as an HTTP request header with every request. The microser‐
vice/application receiving that temporary access token (such as a
product or shopping cart microservice), then consults with the
OAuth server, asking what rights the token has (see Figure 3-11).

Figure 3-11. Advanced authentication flow

Access tokens are great because they:

• Are temporary
• Can be easily revoked
• Are granular, allowing for fine-grained access to resources
• Don’t force each microservice/application to validate identity, as

done by the OAuth server

Most API gateways allow you to define authorization policies, with
the underlying implementation and enforcement being left to
OAuth 2.

Securing APIs | 41

https://tools.ietf.org/html/rfc6749

Both authentication and authorization are specialized
domains that require experts. Hire an external consul‐
tant who specializes in this area. It’s not worth doing
yourself.

Request Rate Limiting
All your APIs should have throttling in place to ensure that they’re
not called too often by any given client, whether maliciously or not.
Whether through error or poor architecture, a client can end up
calling an API too many times. Establish limits for each type of cli‐
ent. Limit new developers to a thousand requests per hour, for
example. But allow your web-based frontend to call your APIs
without any limits.

Denial of Service attacks are rampant today. Use your content deliv‐
ery network or alternate upstream systems to ensure that you’re pro‐
tected.

If the number of HTTP requests exceeds your policy, respond with
an HTTP 429 Too Many Requests response.

Data Validation
As with any application, all inputs must be validated. Since you’re
probably using REST APIs, you can use any HTTP-based web appli‐
cation firewall on the market. These firewalls are like traditional net‐
work firewalls except that they look more deeply at the HTTP
traffic, applying rules that look for malicious behavior, such as cross-
site scripting (injecting malicious code that the server then exe‐
cutes), SQL injection (getting the application to arbitrarily execute
commands against the database), and the use of special characters or
other behavior designed to cause application errors.

Using an API Proxy
APIs should always be protected behind an API proxy of some sort,
whether it’s an API load balancer or an API gateway. These proxies
sit between your clients and backend, providing a number of valua‐
ble functions, including:

• Load balancing to individual instances of applications running
your API

42 | Chapter 3: Implementing APIs

• Offering authentication and authorization
• Throttling abusive clients
• Conversion between representation formats, like XML → JSON
• Metering of API consumption
• Logging who’s consuming your APIs and what they do with

them

Where an API load balancer differs from an API gateway is aggrega‐
tion, as seen in Figure 3-12. A web page or screen on a mobile device
may require retrieving data from dozens of different APIs. Each of
those clients will need data tailored to it. For example, a web page
may display 20 of a product’s attributes, but an Apple Watch may
only display 1.

You could choose an API to serve as the intermediary.

Figure 3-12. Aggregator pattern

The client makes the call to the API gateway, and the API gateway
makes concurrent requests to each of the microservices required to
build a single response. The client gets back one tailored representa‐
tion of the data. API gateways are often called “backends for your
frontend.”

The issue with API gateways is that they become tightly coupled
monoliths because they need to know how to interact with every cli‐
ent (dozens) and every microservice (dozens, hundreds, or even
thousands). The very problem you sought to remedy with APIs and
microservices may reappear in your pipes if you’re not careful.

Using an API Proxy | 43

Whether you use an API load balancer or gateway, what matters is
that you have one or more intermediaries between your clients and
backend providing the functions outlined in this section.

Exposing APIs Using GraphQL
GraphQL is a query language specification for APIs that originated
at Facebook in 2012, with the specification being open sourced in
2015. Facebook, Twitter, Yelp, GitHub, Intuit, Pinterest, and many
others are now using it. GraphQL is analogous to what SQL queries
brought to relational databases. Rather than querying the product
and SKU tables independently, you can build a SQL query to
retrieve data from both tables. GraphQL is the same but for APIs.

GraphQL is a specification, not an implementation.

Let’s say you wanted to render a page showing a given customer’s
last five orders, along with the products purchased in each order.
Normally, you’d query the orders resource to find the orders belong‐
ing to the customer in question. Then you’d query the customer
resource to retrieve the customer’s name and other details. Then
you’d query the product resource to retrieve the name of the prod‐
ucts contained in the orders. To render just one page, you’d hit at
least three different resources, retrieving kilobytes or even mega‐
bytes of data that is unnecessary to rendering the page (Figure 3-13).

44 | Chapter 3: Implementing APIs

http://bit.ly/2h3tobn

Figure 3-13. Retrieving customer, order, and product information
using separate APIs

There are many solutions to this problem that involve inserting
some form of an aggregation layer between your client and the dif‐
ferent APIs you need to render (Figure 3-14). While that certainly
works and is more elegant than hitting individual APIs, it forces the
pages/screens to be rendered to match what data views are available.
Now there’s coupling between the different layers.

Figure 3-14. Retrieving customer, order, and product information
using an aggregation layer

Exposing APIs Using GraphQL | 45

This is where GraphQL comes in. You can build a simple query that
retrieves customer, orders, and products in one single request:

query {
 customer(id: "25484d8d45") {
 id
 firstName
 lastName
 orders (last: 5) {
 id
 datePlaced
 products: {
 displayName
 }
 }
 }
}

An intermediary layer then queries the individual APIs (/
Customer, /Order, /Product) and exposes the data according to the
GraphQL specification:

{
 "data": {
 "customer": {
 "id": "25484d8d45",
 "firstName": "Kelly",
 "lastName": "Goetsch",
 "orders": [
 {
 "datePlaced": "2017-06-10T21:33:15.233Z"
 "products": [
 "displayName": "Magformers Construction Set",
 "displayName": "Puzzle Doubles Find It!",
 "displayName": "LEGO Marvel Super Heroes 2"
]
 },
 {
 "datePlaced": "2017-08-19T08:07:55.007Z"
 "products": [
 "displayName": "Fast Lane Live Streaming Drone"
]
 },

The advantages of GraphQL include the following:

• Each client retrieves exactly the data it needs. This can be espe‐
cially beneficial in low-bandwidth environments.

46 | Chapter 3: Implementing APIs

• JSON objects can be retrieved and used as is, without logic on
the client side. Everything the client asks for is right there in the
response.

• Your clients can remain independent from how the APIs are
defined. There’s no need to build these static intermediary lay‐
ers.

• Pairs perfectly with React. GraphQL and React were co-
developed and are extensively used together.

APIs are still necessary. But GraphQL is a perfect complement to
them.

Final Thoughts
Now that we’ve discussed the mechanics of building an API, let’s
explore clients and how they consume APIs.

Final Thoughts | 47

CHAPTER 4

Consuming APIs

Up to this point, we’ve discussed why APIs are important, how to
model them, and how to implement the code behind them. In this
chapter and the next, we’ll discuss how to best consume APIs.

Identify Clients
Broadly, your clients can fall into one of the following three cate‐
gories:

Internal applications
Internal microservices that rely on functionality exposed by
your APIs

Digital Experience Platforms
Platforms that allow non-technical and semi-technical business
users to build experiences for different customers. Grew out of
web content management space

Custom frontends
Custom web UIs, native mobile, embedded devices, social
media, etc.

These three categories of clients have different requirements that
will change how you model, build, and consume APIs.

Start by building an inventory of all known clients. If you have an
existing API that you’re replacing, trace the source of all the
inbound API calls. Your existing API may have clients you never
knew about.

49

Then, imagine what kinds of clients you’ll see more of. If you’re sell‐
ing consumer packaged goods, many of your future clients will
probably be Internet of Things (IoT) devices, like smart refrigera‐
tors. If you’re selling apparel, many of your future clients will proba‐
bly be magic mirrors and similar devices.

Finally, look at the characteristics and capabilities of each type of cli‐
ent:

Language
What type of language can be used to consume the APIs? Does
it have to be plain REST, or can you use SDKs based on
Java, .NET, or other languages?

Latency
Where physically is the client relative to the origin of your API?
Are you running a custom web UI out of the same physical data
center where you have a millisecond of latency, or are you con‐
suming the API from a mobile phone that’s 200 milliseconds
from the origin?

Bandwidth
Similar to latency, what are bandwidth constraints? Your end-
consumers will get upset if their smart watch consumes hun‐
dreds of megabytes every time your app is opened.

Processing power
Some clients may have very limited processing power, which
impacts how you call the API. An internet-connected coffee pot
that reorders coffee pods will be able to consume APIs very dif‐
ferently than a microservice running on a new data center’s
server.

Security
Does your client support the libraries required for common
authentication and authorization libraries? Native clients, espe‐
cially, may severely restrict your ability to include third-party
libraries.

Ability to cache
Is the client capable of any client-side caching? To what degree?
An internet-connected coffee pot might not be able to cache
anything, whereas a full data center server can probably cache
hundreds of millions of responses.

50 | Chapter 4: Consuming APIs

The capabilities of each client may force the producer of your API,
whether internal or external, to cater to the lowest common denom‐
inator.

Let’s look at the three classes of clients and explore what specifically
sets them apart and what you should keep in mind.

Internal Applications
By far, the top client for your APIs will be other internal applica‐
tions. These applications can be legacy back-office applications
(OMS, ERP, CRM, etc.), newer cloud-native microservices, or any‐
thing in between.

Legacy applications can be excessively chatty with your APIs
because they weren’t built to support the number of integrations that
are common within enterprises today. The big back-office applica‐
tions that serve as the backbone of enterprises (OMS, ERP, CRM,
etc) once largely operated within their own silos but today are con‐
nected by hundreds of touchpoints. To make matters worse, these
applications don’t tolerate latency. The world they were built for was
deployment to on-premise data centers, with all applications physi‐
cally deployed next to each other with no latency. Because responses
were expected to be instantaneous, there often isn’t any support for
asynchronous programming of any sort.

Newer-style cloud-native applications, often backed by microservi‐
ces, are built for the heavily interconnected world that is common
within enterprises today. They are more intelligent about how they
call other APIs, often relying on batching or calls that retrieve more
data than is immediately required. They are better able to cache
data. They support latency, often through advanced asynchronous
programming models.

As we discussed in Chapter 2, serialization frameworks like Apache
Thrift, Apache Avro, and Google’s protocol buffers sometimes must
be used. Clients like internal applications are best able to leverage
these frameworks because you can often include the required libra‐
ries and have more control over how the APIs are called.

Digital Experience Platforms
Digital Experience Platforms (DXP) allow non- or semi-technical
business users to define experiences for customers on different devi‐

Identify Clients | 51

ces. An experience is an interaction with an end consumer, whether
it’s a traditional web page view, an alert on a smart watch, or a
moment in front of a magic mirror (Figure 4-1).

Figure 4-1. Example of a Digital Experience Platform (Adobe Experi‐
ence Manager)

Marketing should own these touchpoints with customers because
they’re closest to customers. Yet in most organizations, IT owns all
digital interactions with customers. DXPs give control of experien‐
ces to marketers and other business users. Here’s how Gartner
defines these platforms:

A digital experience platform is a rationalized, integrated set of
technologies used to provide and improve a wide array of digital
experiences to a wide array of audiences. This includes web, mobile
and emerging IoT experiences. DXP frameworks evolved from por‐
tals and web content management (WCM), yet differ from them
with a broad collection of supporting services. Examples include
app/API framework, search, analytics, collaboration, social, mobile
and UX framework, and may include features like digital com‐
merce or digital marketing.

—Gartner, Hype Cycle for Digital Commerce 2017, Gene Phifer,
July 2017

Commerce APIs are then injected into the various experiences. In
this model, business owns the experiences, and IT owns the APIs
that are consumed as part of those experiences.

52 | Chapter 4: Consuming APIs

These platforms are usually deployed to data centers that are near or
well connected to where your APIs are served from. You often have
your choice of programming language and are able to use third-
party libraries, allowing you to use SDKs, serialization frameworks,
and security libraries.

Unless you have compelling reasons to build custom
UIs, you should use a DXP.

Custom UIs
Custom UIs can be anything. They could be web, mobile, embedded
devices, social media, etc. It’s hard to find a device that isn’t capable
of facilitating a commerce transaction in some way.

These clients have wide ranges of capabilities, but many times you’re
left working directly with REST APIs. Remember to design and
deploy your APIs in a way that allows the lowest common denomi‐
nator of a client.

GraphQL can be of particular value to native clients, where latency
and bandwidth are serious constraints. Facebook developed and
then later open-sourced GraphQL for precisely this reason.

API Calling Best Practices
As a consumer of an API, what’s behind the API shouldn’t be of con‐
cern to you. As a consumer, you’re given a URL, some documenta‐
tion, and an SLA. The provider of the API should make sure that the
API is functional and available. That being said, there are some
things you can do to protect yourself from issues on the client side.

Only Request What You Need
It’s easy to over-request data. A simple request to /Product/12345
might result in a response that’s hundreds of kilobytes. A single
product may have hundreds of attributes. Unless you’re a merchan‐
diser who’s editing that information in a business administration UI,
it is unnecessary for clients to be requesting that much. Displaying a
product on a smart watch may only require retrieving three or four
properties.

API Calling Best Practices | 53

Your SDK may allow you to specify which attributes you’re request‐
ing. Or if you’re making an HTTP request directly to a REST
resource, you could simply specify the properties you want as part of
the HTTP request:

GET /Product/12345?attributes=id,displayName,imageURL

If you’re using GraphQL, it’s even easier:

query {
 product(id: "12345") {
 id
 displayName
 imageURL
}

However you approach this problem, ensure that every single client
is requesting only what is truly necessary.

Don’t Make Too Many Calls
For performance reasons, it’s important to not make too many calls
to your APIs. Your clients may be accessing APIs over a mobile
internet connection. Like traditional web browsers, your client may
have limits on the number of parallel HTTP requests or even open
sockets. The farther away your clients are from your APIs, the more
you have to worry about this problem.

HTTP/1 only supports one outstanding HTTP request
per TCP connection. With browsers supporting only a
handful of HTTP requests per distinct origin URL,
HTTP/1 suffers from a head-of-line blocking problem
whereby one slow response can block the rendering of
an entire page.
HTTP/2 is fully multiplexed, meaning it allows multi‐
ple HTTP requests in parallel over a single TCP con‐
nection. A client can send multiple requests over one
connection, and the server can respond as each
response becomes available. This makes it dramatically
faster and easier to hit dozens of APIs in parallel to
render a single page.

You can minimize the number of calls from the client by using some
form of an aggregation layer. The layer may be an API gateway of
some sort. It may be another application or microservice. It may be

54 | Chapter 4: Consuming APIs

GraphQL. What matters is that your remote client isn’t making doz‐
ens or even hundreds of API calls to render pages or screens.

Use a Circuit Breaker
Calls from your client to your API should ideally be routed through
a circuit breaker. Circuit breakers are a form of bulkheading in that
they isolate failures.

If your client calls an API without going through a circuit breaker,
and that API is fails, the client is likely to fail as well. Failure is likely
because your client’s request-handling threads end up getting stuck
waiting on a response from your API. This is easily solved through
the use of a circuit breaker (see Figure 4-2).

Figure 4-2. Example of the circuit breaker pattern

A circuit breaker uses active, passive, or active-plus-passive moni‐
toring to keep tabs on the health of the microservice you’re calling.
Active monitoring can probe the health of a remote microservice on
a scheduled basis, whereas passive monitoring can monitor how
requests to a remote microservice are performing. If a microservice
you’re calling is having trouble, the circuit breaker will stop making
calls to it, as seen in Figure 4-3. Calling a resource that is having
trouble only exacerbates its problems and ties up valuable request-
handling threads.

API Calling Best Practices | 55

Figure 4-3. Example of Hystrix, the popular circuit breaker from Net‐
flix

To further protect callers from downstream issues, circuit breakers
often have their own threadpool. The request-handling thread
makes a request to connect to the remote microservice. Upon
approval, the circuit breaker itself, using its own thread from its own
pool, makes the call. If the call is unsuccessful, the circuit breaker
thread ends up being blocked, and the request-handling thread is
able to gracefully fail.

The exact technology you use doesn’t matter so much as the fact that
you’re using something.

Cache on the Client Side
A client can be anything—a mobile device, a web browser, another
application or microservice, an API gateway, etc. For performance
reasons, it’s best to cache as aggressively as each client allows, as
close to the client as possible.

What’s good about REST APIs, is that they leverage the HTTP stack,
which is extremely cacheable. The vast majority of HTTP requests
use the GET verb, which is almost entirely cacheable. GET /Prod
uct/12345?attributes=id,displayName,imageURL will always
return the same JSON or XML document. Through existing ETags
and Cache-Control HTTP headers you can finely control how your
clients cache responds. Google has a great guide on this topic.

Some clients are essentially transparent passthroughs that make
caching transparent. For example, many clients access APIs through
a Content Delivery Network. Many APIs are exposed through API
gateways. With clients like this, you set up caching and forget about
the internals of how it’s handled.

56 | Chapter 4: Consuming APIs

http://bit.ly/2xM6isZ

If your client is another application or a custom frontend, you’ll
have to deal with caching on your own. In this case, consider using
Redis, Memcached, or some other object store to cache entire
resources or collections of resources.

Final Thoughts
Now that we’ve discussed consuming APIs, let’s turn our attention to
how to extend/customize APIs to suit your specific business needs.

Final Thoughts | 57

CHAPTER 5

Extending APIs

Your business is unique, and few APIs will offer the exact function‐
ality required by every client. Whether provided by a third-party
software vendor, a systems integrator, or an in-house team, you’ll
often have to extend the APIs you consume. Common extensions in
the commerce space include:

• Sending notifications when an event has occurred, like sending
an email when an order has been shipped

• Capturing additional properties on resources, like capturing a
customer’s shoe size at registration

• Validating data, like checking user-submitted data for SQL
injection attacks

• Performing real-time data checks, like making sure inventory is
available during checkout

• Adjusting the behavior of the API, like changing how prices are
calculated

In this chapter, I’ll explain the three different approaches to extend‐
ing APIs, highlighting which approach is best for which type of
extensions.

59

Extending Traditional Enterprise Commerce
Platforms
If you were consuming a legacy commerce platform, you’d essen‐
tially be getting two things:

• A framework
• A bunch of libraries

The framework, platform, or whatever you want to call it often
includes some type of extensibility mechanism, allowing you to plug
your custom code inside the framework. This is often implemented
with IoC.

Libraries are immutable, precompiled pieces of functionality, like
JAR files and NPM packages. Libraries are similar to APIs, with the
only difference being how the functionality is consumed. With a
library, you’re embedding the vendor’s code in your application.
With an API, you’re still embedding the vendor’s code in your appli‐
cation but rather than executing locally, it’s executing somewhere
else.

Martin Fowler draws the distinction between frameworks and libra‐
ries as follows:

Inversion of Control is a key part of what makes a framework dif‐
ferent to a library. A library is essentially a set of functions that you
can call, these days usually organized into classes. Each call does
some work and returns control to the client.
A framework embodies some abstract design, with more behavior
built in. In order to use it you need to insert your behavior into var‐
ious places in the framework either by subclassing or by plugging
in your own classes. The framework’s code then calls your code at
these points.

Commerce platforms are no longer just something you deploy off to
the side of your business. Commerce is your business. Small, vertical
teams are building and exposing granular pieces of functionality to
the rest of your business, often as microservices.

In this model, there is no longer a single packaged commerce solu‐
tion providing both the framework and the libraries with a vendor
telling you how to extend out-of-the-box functionality.

60 | Chapter 5: Extending APIs

https://martinfowler.com/bliki/InversionOfControl.html
https://martinfowler.com/bliki/InversionOfControl.html

Approaches to Extending APIs
Let’s explore four different approaches to extending API-based com‐
merce platforms.

Extending the Default Object Model
Many customizations are simply a matter of collecting additional
attributes or defining custom objects. If you sell shoes, you’ll want to
capture the shoe size of your customer. If you sell auto parts, you’ll
want to capture the make/model/year of the customer’s car. These
are all fairly standard requirements that any API-based commerce
platform should be able to easily support.

Event-Based
Many extension use cases can be solved through the use of events.
An event is essentially a message with a payload—often a JSON or
XML-based representation of an object—like an order or a customer
profile. What differentiates an event from a message is volume. Tra‐
ditionally, messaging was limited to passing important bits of data
(orders, customer profiles, etc.) between applications. Messaging
often used heavyweight protocols like JMS and relied on expensive
commercial products.

Eventing is a central characteristic of modern software development,
especially microservice-based development. Everything is repre‐
sented as an event. Individual lines in log files; small changes to
orders, customer profiles, and products; container instantiations,
API calls, and so on—all are represented as unique events. It’s not
uncommon to have millions or tens of millions of events per second
in a microservice-based ecosystem.

Once an event is emitted, it must be consumed and passed to cus‐
tom code that can process it. Here, you have two options.

The first option is to write a small application. Using a small frame‐
work like Spring Boot, Play, or Node.js, you can quickly write a
small application whose sole responsibility is to pull events and do
something. The “something” may be connecting to your backend
CRM system and updating a customer record. It may be sending an
email to a customer. It may be charging a credit card. While these
applications can be easily built, they must be maintained over years
or even decades. The development framework you use will need to

Approaches to Extending APIs | 61

be upgraded. You’ll inevitibly have to upgrade your continuous
delivery pipeline. Docker will continue to change as it matures.
Maintaining applications is difficult.

The second option is to use a function-as-a-service/serverless
framework. AWS Lambda, Google Cloud Functions, Azure Func‐
tions, and others allow you to essentially route specific types of
events back to arbitrary functions/methods.

Let’s take an example. A fairly routine requirement is to send an
email to the customer when the order has been successfully sent to
the OMS. You’d start by defining your AWS Lambda function, as
shown in Figure 5-1.

Figure 5-1. Configuring your Lambda function

Then you’d write your code, as shown in Figure 5-2.

Figure 5-2. Lambda function code

Then, you’d bind your function to your event (Figure 5-3) so that
your code is executed whenever a message is published.

62 | Chapter 5: Extending APIs

https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

Figure 5-3. Binding a Lambda function to an event

You’d follow a similar approach with the other cloud vendors and
their function-as-a-service offerings.

Function-as-a-service works great because it’s simple and it allows
different pieces of the application to be changed and deployed at dif‐
ferent times. You can change your order confirmation email tem‐
plate without redeploying your entire monolithic application, which
is revolutionary for enterprise-level commerce.

To summarize, it’s best to use event-based extensions for:

• Asynchronously synchronizing data between systems, often
from your commerce platform to legacy backend systems

• Sending notification emails
• Logging important data for audit purposes
• Computationally heavy activities, like generating product rec‐

ommendations

Posting Data Using Webhooks
Rather than the provider of the API publishing events, they may
additionally or instead offer webhooks. Webhooks are URLs that the
vendor of the API posts data to.

For example, you can often register webhooks for when an order is
placed, a product is added, or a customer record is updated. If you
register a webhook when an order is placed, the vendor of the API
will post the entire order and maybe the customer’s profile to the
URL that you define. It’s essentially the same model as events, with
the following exceptions:

Approaches to Extending APIs | 63

• HTTP requests are often made synchronously, whereas events
are often posted asynchronously.

• Rather than pulling messages, you have to provide your vendor
with a URL to which they can post data.

• An event-based model allows any number of consumers to con‐
sume an event; webhooks often allow just one URL.

• The vendor has to explicitly provide hook points. This often
results in fewer hooks being defined. Events are just emitted
from the application.

One advantage of webhooks is that it is theoretically possible to post
data to backend systems without having to write an intermediary
application or serverless function. The problem is that these back-
end systems have different authentication and authorization
schemes. Sometimes they require VPNs. It’s hard to do a direct post
from a third-party vendor’s API to an application that’s not meant to
be public.

Webhooks are difficult for API vendors to properly
implement. What happens if the callback fails? How
often should retries be made? Are calls idempotent?
How can these callbacks be monitored by third par‐
ties? It’s hard. Vendors are increasingly exposing
events, which do not suffer from many of the same
problems as webhooks.

Going back to the previous example of using events, you can also
define URLs that trigger serverless functions. Figure 5-4 shows an
example of how you’d do it with AWS Lambda and AWS API Gate‐
way:

Figure 5-4. Binding Lambda function to a URL

In this example, you’d register https://xatp7l47qh.execute-api.us-
west-2.amazonaws.com/prod/SendOrderConfirmationEmail as the

64 | Chapter 5: Extending APIs

webhook URL for the "placeOrderWebhookURL" property or what‐
ever your vendor defines.

An issue to be aware of is that there is little in terms of standards. If
you switch providers, you’ll have to rewrite your functions.

Wrapping API Calls
While extending the default object model, events and webhooks
solve a wide range of use cases, there is a class of extensions that are
inherently harder to implement. Examples include:

• Validating data, like checking user-submitted data for SQL
injection attacks

• Performing real-time data checks, like making sure inventory is
available during checkout

• Adjusting the behavior of the API, like changing how prices are
calculated

All these examples require synchronously executing custom code
before or after an API call is made. The process for this flavor of
extensions is exactly the same as you’re used to with old third party
commerce platforms.

Let’s take inventory as an example. Let’s say you want to perform a
real-time inventory check when inventory dips below 100 units.

With a traditional commerce platform, you’d use their IoC frame‐
work to extend the out-of-the-box inventory code. Out of the box, a
client calling the inventory resource through an SDK would return
an instance of com.bigcorp.inventory.Inventory or whatever the
out-of-the-box class from your vendor is. You’d then create
com.yourcorp.inventory.CustomInventory with a method as fol‐
lows:

public class CustomInventory extends Inventory
{
 public int queryInventory(String productId,
 String skuId)
 {
 int inventory = super.queryInventory(productId,
 skuId);
 if (inventory < 100)
 {
 inventory =

Approaches to Extending APIs | 65

 SAPConnection.realTimeInventoryLookup(productId,
 skuId);
 }
 return inventory;
 }
}

Now, the Inventory resource resolves back to instantiations of
com.yourcorp.inventory.CustomInventory. Simple.

The difference is that API-based commerce platforms don’t have an
IoC framework. You’re consuming APIs from your commerce plat‐
form vendor, from third-party vendors (payment, tax, product rec‐
ommendations, etc.), and from custom applications/microservices
that you build in house. There is no longer a single platform—it’s
just a bunch of APIs from different sources.

To perform this simple extension, you’d start by using your API ven‐
dor’s SDK. Then, pick a small framework like Spring Boot, Play, or
Node.js and build a standalone application that queries the API
using your vendor’s SDK:

public class InventoryService
{
 @RequestMapping(value = "/Inventory/{productId}/{skuId}",
 method = RequestMethod.GET)
 public int queryInventory(
 @PathVariable("productId") String productId,
 @PathVariable("skuId") String skuId)
 {
 int inventory =
 MyVendorSDK.getInventoryService().queryInventory(
 productId, skuId);
 if (inventory < 100)
 {
 inventory = SAPConnection.
 realTimeInventoryLookup(productId, skuId);
 }
 return inventory;
 }
}

This example is based on Spring Boot.

Once you’ve defined your application, deploy it behind your API
gateway. Clients would then query inventory by accessing https://
api.yourcompany.com/Inventory and passing productId and skuId as
HTTP GET arguments.

66 | Chapter 5: Extending APIs

Final Thoughts
Using these three approaches, you can implement just about any
requirement you can think of. And if you can’t, just build a brand-
new API backed by a new microservice to accomplish your require‐
ment.

Stepping back, I hope this introduction to APIs gives you enough
guidance to get started on your journey. There are a lot of things to
think about; but with proper planning, I have no doubt you’ll be
able to quickly get started and realize some quick wins.

Final Thoughts | 67

About the Author
Kelly Goetsch is Chief Product Officer at commercetools, where he
oversees product management, development, and ops. He came to
commercetools from Oracle, where he led product management for
its microservices initiatives. Kelly previously held senior-level prod‐
uct development and go-to-market responsibilities for key Oracle
cloud products representing billions of dollars of revenue for Oracle.
Prior to Oracle, he was a senior architect at ATG (acquired by Ora‐
cle), where he was instrumental to 31 large-scale ATG implementa‐
tions. In his last years at ATG, he oversaw all of Walmart’s
implementations of ATG around the world.

Kelly has expertise in commerce, microservices, and distributed
computing, having spoken and published extensively on these top‐
ics. He is the author of two books—Microservices for Modern Com‐
merce: Dramatically Increase Development Velocity by Applying
Microservices to Commerce (O’Reilly) and E-Commerce in the Cloud:
Bringing Elasticity to E-Commerce (O’Reilly).

He holds a bachelor’s degree in entrepreneurship and a master’s
degree in management information systems, both from the Univer‐
sity of Illinois at Chicago. He holds three patents, including one key
to distributed computing.

	Cover
	commercetools
	Copyright
	Table of Contents
	Foreword
	Acknowledgments
	Chapter 1. The API Economy
	What Is an API?
	Digitizing the World
	APIs Are the Currency of Commerce
	Defining a Channel

	Final Thoughts

	Chapter 2. Modeling APIs
	The Case for REST
	Serialization Frameworks
	API Modeling Best Practices
	Documented Using a Specification
	Independently Callable
	Stateless
	Easy to Call
	Cacheable
	Intuitive
	Idempotent

	Final Thoughts

	Chapter 3. Implementing APIs
	Identifying Needs of Clients
	Applications Backing APIs
	Handling Changes to APIs
	Evolving APIs
	Versioning APIs

	Testing APIs
	Local Testing
	Unit Testing
	Load Testing
	Integration Testing

	Securing APIs
	Authentication
	Authorization
	Request Rate Limiting
	Data Validation

	Using an API Proxy
	Exposing APIs Using GraphQL
	Final Thoughts

	Chapter 4. Consuming APIs
	Identify Clients
	Internal Applications
	Digital Experience Platforms
	Custom UIs

	API Calling Best Practices
	Only Request What You Need
	Don’t Make Too Many Calls
	Use a Circuit Breaker
	Cache on the Client Side

	Final Thoughts

	Chapter 5. Extending APIs
	Extending Traditional Enterprise Commerce Platforms
	Approaches to Extending APIs
	Extending the Default Object Model
	Event-Based
	Posting Data Using Webhooks
	Wrapping API Calls

	Final Thoughts

	About the Author

