
Microservices:
A paradigm shift for fast-

growing e-commerce
businesses

Audience: Technical decision makers

Speed is today’s leading competitive
differentiator: Facing changing customer
demands, the rise of the mobile web and ever
shorter innovation cycles, merchants need
to make sure to have both an organizational
as well as a technical structure that allows
for agility and speed. Monolithic e-commerce
applications, which still drive most of the
biggest retailers’ sites worldwide, are
bottlenecks for innovation.

Companies such as Amazon, eBay, Netflix,
Google and Uber already rely on an
architectural principle called Microservices:
Small services which are individually
developed, deployed and managed and
which communicate via standardized APIs.

Instead of having one monolithic application
containing all business logic, a flexible network
of Microservices handles all complexity.
Developers can work on small functional
chunks rather than having to understand many
millions of lines of code, resulting in better
quality as well easier testing and adapting.

Using examples by Zalando, The Gilt Groupe
and REWE, we will show how retailers benefit
from switching to Microservices and give some
practical guidance regarding the evaluation
and introduction of this methodology.

Management Summary

Microservices 3

Back in 2002, Jeff Bezos, CEO of Amazon
issued a mandate that would have enormous
repercussions for the company’s future: He
requested that all teams be required to expose
their data and functionality through service
interfaces and only communicate through
these1. Also, these services had to be set up
in a way that they could be used by external
developers. As a result, the company built an
infrastructure that would allow them to scale
their online retail business as well as provide
a hugely successful platform to third-party
developers and businesses.

In the digital age, fast-growing, fast-
moving corporations need to find both an
organizational and a technological structure
that allows for agility and speed. However, to
date only the most driven businesses have
managed to implement such changes.

When it comes to team set-up, e-commerce IT
departments traditionally follow a centralized
structure with experts organized around
technology tiers. So in practice, a database
professional might work on checkout in one
week, and on product search in another -
both two completely separate parts of the
application. Such a jack-of-all-trades approach
usually does not allow deep and specialized
knowledge to evolve and often gives way
to mediocrity. Also, if a project requires
the involvement of experts across several
technology tiers, the result is a massive
communications overhead.

According to Conway’s law2 , communication
paths in an organization have a direct impact
on the technical infrastructure. In other words,
if a centralized team structure prevails, this will
also result in a centralized application. So, not
surprisingly, a vast majority of e-commerce
sites today are based on monolithic software
applications. They share a common code-base
and have centralized storage and messaging.

When the first e-commerce systems were
launched at the turn of the century, they
inherited the monolithic paradigm of
contemporary software, such as ERP solutions.
They were designed and structured in a way
that followed the zeitgeist and reflected the
technological status quo of the time. Most
people accessed the Internet through CRT
monitors, and mobile web usage seemed light
years away. Also the capability to connect
systems via standardized APIs - something
we very much take for granted today - was
not available as yet. As a result, infrastructure
components had to be created from scratch
and added to the core of commerce solutions -
where they still are today creating considerable
technical debts.

Successively, e-commerce software developed
into monolithic, full-stack suites, assuming
some ERP functionality as well as other parts
of the business logic such as WCMS or CRM.

1Centralized teams and
monoliths are everywhere

Microservices 4

2 New market demands lead
to growing pains

Especially in recent years, global commerce
has grown exponentially and there is no sign
of this development ending anytime soon.
Customers worldwide are becoming more
demanding, looking for inspiring shopping
experiences on all channels and on all devices.
Personalization, high service levels and fast
delivery are just a few of the challenges
merchants are currently facing.

In this fast-moving, fast-growing market
environment, the shortcomings of monolithic
applications and an outdated software
architecture become painfully apparent,
especially to ambitious merchants around the
globe.

7 reasons why monolithic
applications can slow down
innovation

1. High degree of software complexity
A commerce application is constantly evolving
to keep up with changing demands. As a
result, these applications become harder and
harder to maintain, let alone be completely
understood by the developers working with it.

2. No responsibility
A large commerce application also runs the
risk of being perceived as a black-box that
nobody fully grasps and that nobody wants to
take responsibility for. In other words, there is
a strong disincentive for individual developers
to touch anything. For example, if they fix a
problem with the ORM system, it could break
everything else. As a result, inefficient or even
faulty code can enter the system.

3. Lack of agility
With monolithic commerce solutions, teams
are usually structured according to their
individual functions, such as frontend, backend
or database. When a request is made that
affects all of these teams, the resulting projects
can take a great deal of time because tasks
have to be shared by and among multiple
different team members. As a result, rolling
out new features or entering new markets
takes too long and leads to missed business
opportunities.

4. Fragility
In a centralized architecture, the individual
parts are highly coupled and depend on each
other. This results in a single point of failure. If
one little cog of the clockwork does not work
as planned, this can bring down the entire
system. As Abel Avram writes: “In a monolithic
application, as the number of code changes
grows, the risk rises exponentially because of
all the dependencies that tend to build up in
such systems over time.” 3

5. Inefficient testing
Because of the single points of failure present
in these applications, comprehensive and
repeated testing is crucial; if only one small
part of the application is changed, it needs
to be tested in its entirety – also with respect
to features that have nothing to do with the
original changes. However, because of the
software’s internal dependencies, the effort
involved in (automatic) testing and quality
assurance rises exponentially; concepts
such as continuous delivery become almost
impossible.

Microservices 5

6. No specialization
In a highly coupled application, individual
components are usually treated equally with
regard to the kind of the number of resources
they have access to – regardless of a certain
part needing more or less CPU, RAM or disk
I/O.

7. Scaling issues
With more and more transactions taking
place online, even major retailers struggle to

keep pace because scaling their applications
becomes harder every day. The recent outages
of major retailers during Black Friday speak
a clear language. With most monolithic
applications, scaling horizontally is the only
option, which in turn creates many other
issues.

Quite understandably, companies facing the
need to move faster and drive innovation are
trying to find ways around these restrictions.

The software-oriented architecture community
has recently been discussing the idea of
Microservices. As a concept, it draws on the
methodology of Service-Oriented Architecture
(SOA), which has been around for decades.
Although there is no bullet-proof academic
definition for it, the basic idea is to build small
applications with limited functionality which
can be deployed separately.

Instead of having a single monolithic
application handle all business logic and
offer the required features, a Microservice-
based approach encapsulates each business
capability into individual services and lets them
interact with each other
(see diagram 1) 4.

3 Microservices to
the rescue

User In
te

rfa
ce Application

Data
sto

re
Infrastructure

Payment

Inventory

Profile

Product
Catalog

Profile
API

Application

Infrastructure

Data-
store

Payment
API

Application

Infrastructure

Data-
store

Inventory
API

Application

Infrastructure

Data-
store

Product
Catalog

API

Application

Infrastructure

Data-
store

Diagram 1: Each microservice has its own UI, application and datastore layers.

Microservices 6

6 advantages of a Microservices-
based approach

In practice, following a Microservice-based
approach has a number of advantages in
comparison to the shortcoming of monoliths
listed above.

1. Reduced software complexity
By definition, the scope of a single
Microservice’s functionality is limited, so that
maintaining and updating becomes much
easier. You only have to care about messages
from other Microservices that you subscribe
to (inputs) and your API that can be called
(outputs). At Gilt Groupe, for example, the first
Microservice that was put in production was
designed to only output a small marketing
message on a per-user basis.

2. Full responsibility
According to Werner Vogels’ paradigm6 “You
build it, you run it, you own it” developers can
take full responsibility for “their” Microservice:
“Smaller codebases help developers focus
and have a higher empathic relationship with
the users of their product, leading to better
motivation and more clarity in their work.” 7

3. Increased agility:
Building a Microservice requires a cross-
functional development team, which works on
their project independently. Synchronization
effort between teams is reduced and features
can be deployed significantly faster. The team
for product service, for example, works on its
own and makes adjustments and deployments
as it sees fit - independently of what the
payment team is currently working on. As a
result, it also becomes easier to test individual
services and establish a continuous delivery
workflow.

4. Increased resilience
By definition, cloud services are designed for
failure. If a business application is made of an
array of Microservices in the background, there
is no single point of failure. If one service no
longer responds, this does not automatically
break the whole application. You can still
continue streaming movies on Netflix even if
the search is down.

5. More effective scaling
Microservices are small, fully functional on
their own, have their own application layers
and work independently. As such, it is easier
to scale them vertically and increase the

 [...] the microservice architectural style is an approach to developing a single
application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and independently deployable by fully
automated deployment machinery.” 5

Microservices 7

overall performance of the whole business
application. If, for example, an application
requires a lot of calls to an inventory service,
this service can be scaled individually - without
wasting resources on scaling other parts of the
application that receive much less traffic.

6. Specialization
Each Microservice uses a technology stack
best suited for the task at hand and preferred
by the team using it. For services requiring
extensive background calculation, developers
might choose to use Java, whereas others
might rely on more lightweight technologies
such as PHP or Ruby.

Microservices are no silver bullet

As intriguing as the advantages of a
Microservice-based approach sound, it
should be noted that it is neither suited for
every business context nor does it result in
development and maintenance complexity
magically vanishing.

There is no clear pro or contra distinction
between monoliths and Microservices; opting
for one of the two always involves a trade-off.

When it comes to development of complex
e-commerce projects, Microservices offer a
clear advantage over monoliths: Reduced

functionality leads to less software complexity
which in turn makes developing new features
easier. However, when it comes to deployment
and operations, the monolith can be deployed
at once. With Microservices, you need a
common container orchestration system,
multiple tiers of load balancing, and service
discovery to make sure that the services are
deployed correctly and to monitor whether
they work together as planned.

There are also other issues with Microservices
that need to be considered, such as latency in
the case of weak connections or the eventual
consistency that comes with an architecture
primarily aimed at high availability.

Microservices don’t reduce the complexity of a system, but they do make complexity
more explicit and visible, which facilitates bounding and containing complexity in
the right ways. [...] For example, with microservices, the thousand rules might be
packaged into 100 modules instead of five, which means that complexity moves
from inside the modules to the connections between them and to managing the
larger number of them.” 8

Microservices 8

Software monolith Microservices

A single application Array of many small services with limited
functionality

Entire application needs to be deployed Microservices can be deployed separately

One datastore for entire application Each Microservice has its own datastore.

Communication within application Remote calls, usually REST calls via HTTP

Separation between developers and ops Cooperation of developers and ops to maintain
stable operations

State lies in external application at runtime States are stored centrally, individual instances
are stateless

Two approaches in a nutshell

Monolithic applications and Microservices are
structured completely different, both regarding
technological as well as organizational

aspects. The following table sums up the most
important points:

Microservices 9

A number of fast growing, fast moving
corporations such as Netflix9 , Uber and
Google already rely on a Microservice-based
architecture. In retail, apart from Amazon -
one of the first to move from their monolithic
application to a service-oriented platform –
there are also other merchants who apply a
Microservice-oriented approach to address the
challenges of their digital transformation.

REWE uses Microservices to scale
effectively

The REWE Group is a co-operative retail group
based in Germany, with total external sales
of more than €51bn in 2014. Running the
second largest supermarket chain in Germany,
REWE invests heavily to build a strong offering
in online food retail. The company started
the REWE digital branch in 2013 to hire the
necessary talent and build the required
technical infrastructure to meet the ambitious
goals of the group10 .

The challenge for REWE digital was to find both
an organizational structure and a technical
approach which would allow them to grow,
scale effectively and support the various
strategic initiatives. According to their CEO
J.J. van Oosten11 , this would only be possible
having decentralized, self-organized teams
that can make their own decisions and work
on tasks in parallel. As a result, new features
can be put online almost daily, improving the
customer experience one deployment at a
time.

Regarding matching technology to the team
structure, Dr. Robert Zores, CTO of REWE
digital, thinks that “a microservice component
should only be as big as a small development
team can build and test in a single month. And
if the service or API needs to be enhanced or
extended, build a new one.”12

Gilt Groupe relies on Microservices
for their unique business model

The Gilt Groupe offers a flash-sales
e-commerce site for luxury brands and
lifestyle goods and was founded in 2007. It
is based in New York, aims at selling highly
discounted merchandise to its members and
has generated revenue of $650m in 2014.
Each day at noon, Gilt sends out a blast of
emails and other notifications to its more
than 6 million members, informing them of
discounted products with only limited stock.
As a result, they see a massive traffic spike
following these send-outs, resulting in a rush
of visitors to their site. From a technical point
of view, one of the major goals for Gilt was
to find a software or an architecture that
would be able to handle the shift of this traffic
dynamic.

After relying on software monoliths based
on Ruby-on-Rails and Java for the first years,
Gilt decided to move towards a Microservice-
based architecture in 2015. Today, they are
running more than 250 different services that
create the individual pages for their different
sites and form the basis for their inventory
and logistics. Regarding the benefits of this
approach, the Gilt Groupe emphasizes the
following:13

4 Who benefits from
Microservices?

Microservices 10

•	 Lessens dependencies between teams -
resulting in faster code to production

•	 Allows lots of initiatives to run in parallel
•	 Supports multiple technologies/languages/

frameworks
•	 Enables graceful degradation of service
•	 Promotes ease of innovation through

‘disposable code’ - it is easy to fail and
move on

Zalando builds a fashion platform
on top of Microservices

Founded in Germany in 2008, fashion retailer
Zalando is now active in 15 countries, has
generated revenues of more than 2.2bn € in
2014 and sees more than 130 million page
visits per month. Recently, the company has
started an initiative dubbed “radical agility”14 ,
changing their organizational structure to form
small, autonomous teams and create software
using cloud and Microservice principles. One
of the first projects following the radical agility
approach was to exchange their fashion store
frontend:

Our team — seven engineers and a UX/UI
designer — decided to replace “Jimmy”, our
monolithic shop application, with microservices
built by multiple autonomous teams. Under
Jimmy, all of the shop teams shared the same
code base and lacked true ownership or the
freedom to make decisions, plus couldn’t move
quickly because of Jimmy’s slow startup time and
our overly complicated deployment processes.
Radical Agility promotes microservices to get
around monolith-generated problems. 15

This strategy allowed the Zalando development
teams to bring new features into production
without depending on others. Although there
still needs to be communication between the
teams in order to create a seamless frontend
design and a homogenous user experience,
relying on Microservices has increased the
level of innovation at Zalando. Also, because
of the polyglot nature of Microservices, which
means that they can be built with any given
technology, the fashion retailer is able to
attract new talent.

Microservices 11

As convincing as the case for a Microservices
architecture might be in theory – putting the
necessary steps into practice is an entirely
different story. This is mainly because in order
for this new approach to be successful in
the long run, organizations need to change
structurally. New teams have to be formed so
they can work as decentralized, autonomous
units building, owning, and maintaining their
own Microservices.

Step 1: Define strategic goals

In a first step, get some clarity regarding your
strategic goals and how these benefit from
this new approach. Broadly speaking, there are
three objectives you could aim for:

1. Gain agility
For customer-centric initiatives, it becomes
increasingly important to get new features out
quickly, so customers can benefit directly and
remain loyal. Instead of showing something
fresh every quarter, aim at deploying updates
at least daily.

2. Scale with growing traffic and bigger team
sizes
In a similar fashion, you need to make sure to
prepare your infrastructure for the anticipated
growth. On one hand, scaling refers to the
software being resilient enough to handle large
amounts of traffic – on the other it describes
the architecture’s ability to allow for growing
teams and parallelized tasks.

3. Mitigate vendor lock-in
In order to manage the risks of relying solely
on one technology for business-critical
processes, you might consider developing your
own Microservices for these areas and thus
regain technical independence from any third-
party vendor.

Step 2: Define business domains
according to the customer journey

Next, analyze your current software ecosystem
from the perspective of the customer journey
it helps to provide. Usually, there is an evolved,
highly individualized monolithic commerce
application in which very different business
functionalities are encapsulated, as the
diagram (2) shows.

Try to define the boundaries between the
various stages of the customer journey
and which services are needed for the
respective customer experience. The process
of discovering a product, for instance, is
completely separate from the checkout
and fulfillment logic that happen later on
in the course of the journey. Then, within
the bounded context of product discovery,
find smaller functional units that can work
independently from one another, such as
search or product details.

5 What steps are required to introduce a
Microservices architecture?

Microservices 12

Monolithic application

Product discovery Checkout Fulfillment

Search

Product details

Basket

Payment

Stock

Invoicing

Product discovery Checkout Fulfillment

Frontend layer / UI

Application layer

Data store

Diagram 3: Classic, horizontal technology tiers.

Product discovery Checkout Fulfillment

Frontend layer / UI Frontend layer / UI Frontend layer / UI

Application layer Application layer Application layer

Data store Data store Data store

Diagram 4: Vertical decomposition

Diagram 2: Setup of a monolithic application

Microservices 13

Step 3: Review current systems and
match domains to goals

In this step, look at each domain individually
and determine how well the respective parts of
the application match the business objectives.
Use a simple, traffic-light system to specify
if the objective is already fulfilled (green), if
some work needs to be done (yellow) or if
the objectives cannot be met at all (red). For
instance, the organization could focus on the
shopping cart, think about what should be
possible with it in the future (e.g. multiple
locales, multiple channels, mobile-friendly, etc.)
and then assess what the current status looks
like. This simple method also helps prioritize
the necessary effort. And as a side-effect,
using this threefold classification makes it
easy for non-technical staff to better judge the
challenges at stake and follow the progress.

Step 4: Form new teams around
domains

A fundamental part of a successful
Microservices infrastructure is to align teams
to the services and make them autonomous.
Ideally, each team owns one (or more)
Microservices and is completely responsible
for what they are and how they perform.

Traditionally, teams are organized around
horizontal technology tiers, such as frontend
or data storage (see diagram 3).

Here, developers do their work across all
business domains and might be working
on search functionality in one week, and on
checkout features in the next.

In contrast, Microservices are planned and
built as self-contained, isolated units which
do not share either code-base or data store.
As a result, a given application will be cut
into vertical parts, resulting in fully functional
parts that contain a specific part of the overall
business logic (see diagram 4).

Organize your teams according to these
vertical parts, making sure that each team has
a broad skillset – involving specialists for UI,
backend development as well as operations –
so that they can work autonomously.

Step 5: Soft migration

The decentralized nature of Microservices
is a major advantage for their introduction
into a company’s existing IT landscape. They
can take over processes formerly assumed
by the monolith – one part at a time. Rather
than making the transition with one fell
swoop, teams can gradually introduce more
Microservices to the picture.

A good starting point for an e-commerce
business is to think about an alternative way to
store and deliver their catalog data. Implement
a product data Microservice parallel to the
existing legacy application and update its
data regularly. As a result, this new product
service can serve data to other clients, such
as internal search or price comparison sites,
and successively take over responsibility from
the original application – to a point, where
products are not handled by legacy software
anymore.

Businesses that have a clear customer-
centric strategy require a flexible and
scalable software infrastructure in order to
be successful in a disruptive marketplace.
Introducing a Microservice methodology - as
complex and startlingly it may seem at first
glance - is the next logical step.

Luckily, from a technical point of view, you
do not have to start from scratch. As an
innovative omnichannel e-commerce platform,
commercetools offers all the necessary tools
and capabilities and exposes them through
a range of very flexible APIs - making it the
perfect basis for a Microservice approach.
Also, it is a resilient, cloud-based solution
which scales automatically depending on your
organization’s requirements.

However, technology is only one side of the
equation. In order for this strategy to be
successful, it requires a long-term effort in
terms of the organizational structure as well.
By breaking down business functions into
independent apps, you allow new features
to get to market very quickly because you
remove dependencies between teams. Only
by enabling them to create, maintain and
run their own Microservices do you have the
opportunity to scale your business and stay at
the top of the food chain in the next decades.

Summary

1.	 Steve Yegge, Stevey’s Google Platforms Rant,
https://plus.google.com/+RipRowan/posts/
eVeouesvaVX

2.	 Wikipedia “Conway’s Law”, https://en.wikipedia.
org/wiki/Conway%27s_law

3.	 Abel Avram, The Benefits of Microservices, March
2015, http://www.infoq.com/news/2015/03/
benefits-microservices	

4.	 Kelly Goetsch, Microservices + Oracle | A Bright
Future, January 2016, http://www.slideshare.net/
KellyGoetsch/microservices-oracle-a-bright-future

5.	 Martin Fowler and James Lewis, Microservices
- a definition of this new architectural term,
March 2014, http://martinfowler.com/articles/
microservices.html

6.	 acmqueue, A Conversation with Werner Vogels,
June 2006, https://queue.acm.org/detail.
cfm?id=1142065	

7.	 Abel Avram, The Benefits of Microservices, March
2015, http://www.infoq.com/news/2015/03/
benefits-microservices

8.	 Randy Heffner, Microservices Have An Important
Role In The Future Of Solution Architecture,
Forrester Research, Inc., https://www.forrester.
com/report/The+Future+Of+Solution+Architectu
re/-/E-RES123031

9.	 Adrian Cockcroft, Migrating to Microservices,
July 2014, http://www.infoq.com/presentations/
migration-cloud-native

10.	 Mike Dawson, Rewe arms for Amazon food
delivery challenge, March 2014, http://www.
german-retail-blog.com/topic/past-blogs/Rewe-
arms-for-Amazon-274

11.	 J.J. van Oosten, Transforming a Retail Power
House in the Digital Age, November 2014, https://
www.youtube.com/watch?v=0Uq5vzQ6dB4

12.	 Ted Schadler, Forrester Blogs, Some Thoughts On
Shippable Software And Microservices, October
2015, http://blogs.forrester.com/ted_schadler/15-
10-01-some_thoughts_on_shippable_software_
and_microservices

13.	 Daniel Bryant, Scaling Microservices at Gilt with
Scala, Docker and AWS, April 2015, http://www.
infoq.com/news/2015/04/scaling-microservices-gilt

14.	 Lauri Apple, Radical Agility with Autonomous
Teams and Microservices in the Cloud, June 2015,
https://tech.zalando.com/blog/radical-agility-with-
autonomous-teams-and-microservices-in-the-
cloud/

15.	 Dan Persa, From Jimmy to Microservices:
Rebuilding Zalando’s Fashion Store, October 2015,
https://tech.zalando.com/blog/from-jimmy-to-
microservices-rebuilding-zalandos-fashion-store/

Endnotes

commercetools revolutionizes the enterprise commerce platform market by
combining the flexibility of an on-premise solution with the speed of SaaS. Following
a unique API-first approach that radically reduces complexity, the platform enables
large businesses to deliver engaging shopping experiences across all channels and
drive innovation.

About commercetools

Contact us

Europe
commercetools GmbH
Adams-Lehmann-Str. 44
80797 Munich
Germany
Phone: +49 (89) 9982996-0
Email: marketing@commercetools.de

CT-WP-MiSe-EN_V004-11.17

US
commercetools Inc.
American Tobacco Campus | Reed Building
318 Blackwell St. Suite 240
Durham, NC 27701, USA
Phone: +1 212-220-3809
Email: mail@commercetools.com

