
Kelly Goetsch

Complement Your REST APIs
with the Power of Graphs

GraphQL for
Modern Commerce

Compliments of

Kelly Goetsch

GraphQL for Modern
Commerce

Complement Your REST APIs with the
Power of Graphs

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05684-3

[LSI]

GraphQL for Modern Commerce
by Kelly Goetsch

Copyright © 2020 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Angela Rufino
Production Editor: Beth Kelly
Copyeditor: Octal Publishing, LLC

Proofreader: Charles Roumeliotis
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

January 2020: First Edition

Revision History for the First Edition
2020-01-06: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. GraphQL for
Modern Commerce, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

http://oreilly.com

To Oleg Ilyenko

Who introduced all of us at commercetools to GraphQL in 2015. His
passion for GraphQL and leadership in the open source community
served as a model for the rest of us. We are eternally grateful to have

had him as a friend, colleague, and collaborator. Rest in peace,
@easyangel.

Table of Contents

1. Introducing GraphQL. 1
Commerce Requires More Than REST 2
What Is GraphQL? 9
GraphQL Compared to REST APIs 18
Final Thoughts 20

2. The GraphQL Specification. 21
Introducing the GraphQL Specification 22
GraphQL Specification Governance and History 24
Principles of the GraphQL Specification 24
GraphQL Terminology 27
GraphQL Operations 35
Final Thoughts 39

3. GraphQL Clients. 41
Low-Level Networking 42
Batching 42
Authentication 43
Caching 44
Language-Specific Bindings 46
Frontend Framework Integration 46
Final Thoughts 47

4. GraphQL Servers. 49
Server Implementations 56
Monitoring 58
Testing 58

v

Security 59
Merging Schemas 64
Final Thoughts 68

vi | Table of Contents

CHAPTER 1

Introducing GraphQL

Of the thousands of new commercial and open source projects that
are released every year, only a handful end up becoming widely used
industry standards. GraphQL is one of those technologies for a very
simple reason: it brilliantly solves a host of problems for a wide
range of constituencies.

This book provides a solid overview of GraphQL and its application
to commerce. In this first chapter, we cover GraphQL itself—the
problems it solves, how it intersects with REST, and why it’s such a
natural fit for commerce. In the second chapter, we look at the
GraphQL specification itself, including key terminology, how to
model your schema, and how to write queries, mutations, and sub‐
scriptions. In the third chapter, we explore GraphQL from a front‐
end developers’ standpoint and look at the role that clients can play.
Finally, in the fourth chapter, we focus on GraphQL servers, which
are actually responsible for executing queries against the schema
and performing the requested action.

We use the term “queries” to capture all of the opera‐
tions that you can execute against a GraphQL server,
even though GraphQL also supports mutations
(changing data) and subscriptions (watching for
changes to data).

1

Commerce Requires More Than REST
In the 1990s, commerce platforms shipped with the frontend and
backend as one indivisible unit. In that decade, the web was the only
channel and developers needed only to build a website. Given the
immaturity of frontend frameworks, the commerce platforms had to
offer the frontend as part of the commerce platform. “Headless”
didn’t exist as a concept. REST hadn’t been invented yet and Java‐
Script first appeared in 1995. These early commerce platforms con‐
tributed to or invented much of the software used to dynamically
generate static web pages, including JSP, JHTML, PHP, and ASP. The
major problem with this approach is that any changes, no matter
how small they were, had to be handled by IT and slotted in as part
of a formal release. This upset marketers who wanted to be able to
make changes on their own.

In the 2000s, content management systems (CMSs) like Day, Inter‐
woven, and Vignette began to offer integrations with commerce
platforms, whereby the commerce platforms would serve the back‐
end and the CMS would serve the web frontend. This allowed IT to
manage the backend and marketing to manage the frontend.
Although this made life easier for marketers, the integration
between the frontend and backend was hardcoded with what could
only be described as spaghetti code. The two were permanently
wedded and inseparable. This was all premobile, so, again, the only
channel anyone cared about was the web.

In the 2010s, there was an explosion of consumer electronic devices
that put the internet in everyone’s pockets. Mobile phones with fully
featured browsers and native apps became widely used (see
Figure 1-1). The Internet of Things (IoT) became real as the price of
semiconductors and internet connectivity fell. Even devices as mun‐
dane as TVs started to become connected to the internet and could
be used to facilitate commerce.

Commerce has transformed into something that’s part of our every‐
day lives, embedded into the dozens of screens and other internet-
connected devices that we interact with on a daily basis.

While commerce was transforming, representational state transfer
(REST) APIs were emerging as the default means of exchanging data
between disparate systems. When compared to CORBA, SOAP, and
the other standards that preceded it, REST was an enormous

2 | Chapter 1: Introducing GraphQL

improvement. Developers could build a REST API, write code to
implement the API, and then offer up the API to any system that
wanted to call it and had proper access rights.

Figure 1-1. Daily hours spent with digital media per adult user, USA
(source: Bond)

REST APIs are now the default means of exposing commerce-
related data and functionality from applications/microservices. Any
application or frontend can now consume that data and functional‐
ity to build an experience for a customer, whether on a desktop-
based website or an IoT device on a 3G network in an emerging
country.

Even though REST APIs are great for backend developers, they pose
many challenges for frontend developers. As the number of clients
capable of facilitating commerce continues to grow by the week, the
power is progressively shifting from backend to frontend
developers.

The Challenges of REST APIs
REST APIs are great, but like all transformation technologies the
benefits don’t come without new challenges. Let’s explore.

Lack of a specification
REST doesn’t actually have an actual specification, because it’s more
of an architectural style than a formal standard. The term REST was
coined and its principles were put forth in Roy Fielding’s 2000 PhD

Commerce Requires More Than REST | 3

https://oreil.ly/pXBez

dissertation titled Architectural Styles and the Design of Network-
Based Software Architectures. Although his dissertation goes a long
way toward outlining a vision, it’s by no means an actual detailed
specification with rules that can be programmatically validated. In
his dissertation, Roy explicitly says:

REST ignores the details of component implementation and proto‐
col syntax in order to focus on the roles of components, the con‐
straints upon their interaction with other components, and their
interpretation of significant data elements.

On the other hand, HTTP, OAuth, JSON, and most of the other
technologies that developers use on a daily basis are formal docu‐
mented standards, each with thousands of pages outlining granular
rules for what is and what is not considered valid. Take a look at
how the JSON specification dictates how arrays should be repre‐
sented:

5. Arrays
An array structure is represented as square brackets surrounding
zero or more values (or elements). Elements are separated by
commas.
array = begin-array [value *(value-separator value)] end-array
There is no requirement that the values in an array be of the same
type.

There’s no ambiguity about this and any JSON-compliant document
will represent arrays the exact same way, every time. Standards pro‐
mote interoperability.

The term “REST” could and often is applied to any human-readable
API offered over HTTP that returns JSON or XML as a response
type. There could be substantial differences in error handling,
authentication, authorization, response types/formats, query param‐
eter format, and so on. Because of these inconsistencies, client-side
developers need to work with the idiosyncrasies of each API that
they want to call, which in the case of a large data-intensive web
page could be dozens.

There are a few standards out like Open API and OData but these
standards have differences in what parts of REST they choose to
include in their respective specifications. For example, Open API
allows for one of four authentication schemes, whereas OData
allows for any authentication scheme. Even within the specifications,
there are inconsistencies that make lives difficult for frontend devel‐

4 | Chapter 1: Introducing GraphQL

https://oreil.ly/5HRb2
https://oreil.ly/5HRb2
https://oreil.ly/KOYZj
https://openapis.org
http://www.odata.org
https://oreil.ly/HdLqW
https://oreil.ly/Tggdb

opers. For example, the Open API specification allows responses in
both JSON and XML formats. Even with a catalog of Open API–
compliant APIs, frontend developers might need to embed a lot of
frontend logic to account for implementation differences.

Not knowing which API to call
The same data (product, price, inventory, order, etc.) or functional‐
ity (decrement inventory, calculate price, mark an order as having
been shipped, etc.) might be available in many different systems
across a typical enterprise. It’s common that an enterprise resource
planning (ERP), order management system (OMS), warehouse
management system (WMS), commerce platform, and myriad cus‐
tom applications all touch much of the same data and offer similar if
not identical data and functionality, all while claiming to be the “sin‐
gle source of truth.” Each of these systems might offer different lev‐
els of data freshness, different ways of accessing the data (REST
APIs, SOAP APIs, batch feeds, etc.), different performance and
uptime guarantees, and so on. Some of the APIs might not even be
publicly available.

A common example of this issue is inventory—who actually owns
it? Does the commerce platform? The WMS? The OMS? When you
query the WMS or the OMS, do those systems take into account
inventory that’s in users’ shopping carts but not yet firmly reserved
through a placed order? There are so many nuances that it can be
challenging for a frontend developer to discover which APIs to call
and what data or functionality each offers and then figure out how
to call each API.

To make matters worse, REST doesn’t have introspection. The cli‐
ents and servers aren’t working against a fixed contract: clients can
send anything and servers can respond with anything.

A common fix for this is an internal wiki page documenting all of
the available APIs that clients can call, but those are often stale and
their effectiveness is limited by organizational silos.

Commerce Requires More Than REST | 5

https://oreil.ly/aHcl3
https://oreil.ly/aHcl3

Overfetching data
A common problem with REST APIs is overfetching data. A typical
SKU could have hundreds of attributes, ranging from the standard
attributes like display name and long description, all the way to
manufacturer-specific codes and logistics-related information.
Although the commerce platform has all of these details, each client
does not. An Apple Watch client needs only the display name,
images, and maybe a short description. Retrieving the entire prod‐
uct is the easiest for a frontend developer:

HTTP GET for /products/12345

This works great within the confines of a datacenter, but imagine
having an Apple Watch fetch an entire two-megabyte payload over a
cellular network every time a user wants to look at a product’s
details? Multiply that across every API needed for an app to func‐
tion and you could have overfetching that leads to serious perfor‐
mance degradation.

There are two general approaches for solving this problem. The first
is to specify in the HTTP request exactly which fields are required:

HTTP GET for /products/12345?attributes=display-
Name,images,shortDescription

But not all APIs support this, and the format of how those fields are
specified tends to differ based on which API you’re calling. Again,
remember that REST doesn’t have any formal standards and the
ability to retrieve only certain attributes is not part of that specifica‐
tion. Assuming it’s even possible, frontend developers would need to
build and maintain these long unruly URLs.

Another approach is to build “backends for frontends,” which are
little applications that return exactly what’s required for a given cli‐
ent. There might be an “AppleWatchProductDetail” microservice
that exposes an API that gives the Apple Watch application exactly
the few fields it needs. That microservice then calls the full product
API.

The challenge with this approach is that you need to maintain hun‐
dreds of microservices, and each of those microservices is tightly
coupled to the client and to the backend APIs. Every new client now
requires a few dozen new microservices, as illustrated in Figure 1-2.

6 | Chapter 1: Introducing GraphQL

Figure 1-2. Backend for frontend approach

This certainly works, but it comes at the cost of higher maintenance.
Many client-related changes and many backend API changes require
updating each of the many backends for frontends on which those
clients and APIs rely.

Underfetching data
Related to overfetching data, another problem with REST APIs is
underfetching data. To render an order history web page, for exam‐
ple, you’ll first need to retrieve orders placed by a given customer.
Next, you’ll need to retrieve the shipment status of each order. Then,
you’ll need to find out what a customer can do with each order, such
as whether an order can be returned. Often times, the requests to
the different APIs must be made serially because the data from one
API is needed to make the call to the next API, as demonstrated in
Figure 1-3.

Figure 1-3. Sequential calls

Making multiple, serial round-trip calls from clients (which might
have limited computing power, limited bandwidth, and high
latency) is very expensive. Devices, especially the lower-power IoT-
style devices, can have limited processing capacity, and making so
many HTTP requests can consume too much power. Devices like
smart watches and mobile phones are often connected through

Commerce Requires More Than REST | 7

cellular networks, which have low bandwidth and high latency, both
of which are very bad for performance.

Also, all of those sequential calls amplify any performance issues
your APIs might have. Making 10 parallel calls to APIs that respond
in an average of 200 milliseconds results in 200 milliseconds of per‐
ceived latency to the end customer. But making the same calls
sequentially could result in more than two full seconds of perceived
latency. When you add in rendering and other overhead, you could
easily be rendering pages or screens in seconds rather than
milliseconds.

Finally, making all of those calls from the client requires the client to
be fairly intelligent. It needs to know which APIs to call and in what
order. When multiplied across the dozens of different clients, this
could lead to a proliferation of logic in clients that is undesirable for
frontend and backend developers alike.

Underfetching can sometimes be solved by having multiple copies of
data in each microservice. Going back to the order history example,
you could have an order history microservice that has copies of
every order, the shipping status and available actions of each order,
and the full product details of the products. The major downside to
this is the intelligence that each microservice now needs to have.
Rather than specializing on one function, each microservice needs
to perform tangential functions. Besides the sheer volume of dupli‐
cate data (a single order could have multiple megabytes worth of
data), this expands the amount of work that each team needs to per‐
form. It can also be difficult for clients to know where to retrieve
data when there’s so much duplication. The final problem with this
approach is that the data each microservice has isn’t always the most
up to date. For example, the shipping status microservice has the
most up-to-date data but if that data is being copied over to the
order history microservice, the order history microservice will by
definition have out-of-date data.

The other way to solve this is to build a backend for your frontend,
like how you’d solve the overfetching problem.

8 | Chapter 1: Introducing GraphQL

What Is GraphQL?
Although REST is great, its lack of standardization, lack of discover‐
ability, and overfetching and underfetching all cause headaches for
client-side developers. GraphQL can solve these problems and many
more, all while building on top of—not replacing—REST.

What Are Graphs?
Before we formally introduce GraphQL, we first must explain the
concept of a graph. After all, “Graph” is the defining part of the
name “GraphQL.”

Graphs are a collection of interconnected objects. Here are some
common examples in the real world:

• Transportation networks like air, rail, and auto
• Family trees
• Social networks like Facebook, Twitter, and LinkedIn

Graphs also underpin much of IT as well, including the following:

• The World Wide Web (Google built its company on graph
theory, which underpins its famous PageRank algorithm)

• XML documents (including HTML documents, which are a
subset of XML)

• Networks (routers themselves are nodes)

Any time you have a collection of interconnected objects, you have a
graph. When you look around, you’ll find them everywhere. Graph
theory, a subset of discrete math, is the formal study of the relation‐
ships between graphs.

When you look at a social network like Facebook, it’s a big graph.
“Friends” are bidirectional relationships between two nodes in a
graph. Twitter is another example of a graph, but the relationships
can be one-way (I follow Martin Fowler but he doesn’t follow me).
In graph theory, this is known as an undirected graph. Given that
Facebook and Twitter are essentially big graphs, it shouldn’t be a
surprise that Facebook invented GraphQL and Twitter was an early
prominent user. Both of their businesses (along with Google) owe
their success to having properly understood graph theory.

What Is GraphQL? | 9

Commerce Graphs
Commerce is full of graphs. There are objects (customers, orders,
products, etc.) and relationships between those objects (customers
place orders, which contain products). Figure 1-4 shows a graph
with five directed relationships.

Figure 1-4. Example of a commerce graph

A foreign key in a database is a relationship between two nodes in a
graph.

REST is definitively not graph-based. It’s great for retrieving single
objects (customers, orders, products, etc.) and maybe their depen‐
dencies (the products contained in an order, etc.), but that’s it. REST
would be the equivalent of being able to select data from only one
database table at a time, whereas GraphQL allows you to select data
from multiple tables in one query.

Now that we’ve covered what graphs are, it’s time to actually explain
what GraphQL is.

In the Beginning…
In the 2010s, Facebook began to have the same problems with
REST as outlined earlier. The company had more than a billion
active users in 2012. Those billion-plus users accessed Facebook
from every conceivable device in every conceivable configuration.

10 | Chapter 1: Introducing GraphQL

https://oreil.ly/5eJ4T
https://oreil.ly/5eJ4T

At the time, Facebook supported desktop web, mobile web, and iOS/
Android wrappers (which were thin wrappers over mobile web).
The iOS and Android applications were widely panned, but Face‐
book was limited in its ability to create native clients due to the limi‐
tations of REST.

In 2012, Facebook set out to build entirely new native mobile apps.
Lee Byron, Nick Schrock, and Dan Schafer came together, and by
early March they released an initial prototype of GraphQL that was
then called SuperGraph. Later that year, Facebook released
GraphQL internally in more or less its modern form, with it power‐
ing the company’s native apps. The desktop web and mobile web cli‐
ents also switched over to GraphQL after its success was
demonstrated with the native apps. Today, every time you pull up
Facebook from any client, you’re using GraphQL behind the scenes.

Because of GraphQL’s success internally, Facebook released its speci‐
fication externally, including a JavaScript-based reference imple‐
mentation in July 2015. In September 2016, GraphQL left the
“technical preview” stage, meaning that it was mature enough to be
considered production ready.

Facebook originally patented GraphQL in 2012 and then licensed it
as BSD+Patents when the company publicly released it. Although
this license did help to protect Facebook and the GraphQL commu‐
nity from patent trolls, it prohibited users of GraphQL from ever
having the legal right to sue Facebook for any patent infringement,
even if it wasn’t at all related to GraphQL. Bowing to pressure from
the GraphQL community, Facebook relicensed the specification
under the much more permissive Open Web Foundation Agreement
(OWFa), which grants GraphQL users full patent rights and makes
it easier for other organizations to contribute. GraphQL.js, the refer‐
ence implementation, was also relicensed under the extremely per‐
missive MIT license.

In November of 2018, Facebook created the GraphQL Foundation
and donated the GraphQL intellectual property to it. The GraphQL
Foundation is a top-level member of the Linux Foundation, and a
peer to the Cloud Native Computing Foundation (CNCF). The
GraphQL Foundation’s managing board is composed of senior lead‐
ers from Apollo, AWS, IBM, PayPal, Twitter, and others, and their
responsibilities are as follows:

What Is GraphQL? | 11

https://oreil.ly/fgc77
https://oreil.ly/cDnJk
https://oreil.ly/bhIAY
https://oreil.ly/bhIAY
https://oreil.ly/osFmB

• Provide a roadmap for the GraphQL specification
• Oversee changes to the specification
• Provide legal, marketing, and community facilitation support

Today, GraphQL is used by hundreds of enterprise-level organiza‐
tions. The major cloud vendors along with other software vendors
of all stripes (including the commerce platform vendors!) have, or
are adding, GraphQL support, as well.

Introducing GraphQL
GraphQL is a formal specification for retrieving and changing data,
similar to how SQL is used to change and retrieve data from data‐
base tables. At a very high level, GraphQL describes the language
and grammar that should be used to define queries, the type system,
and the execution engine of that type system.

A very basic example of a GraphQL query is something like the
following:

query {
 product(id: "94695736", locale: "en_US") {
 brandIconURL
 name
 description
 price
 ableToSell
 averageReview
 numberOfReviews
 maxAllowableQty
 images {
 url
 altText
 }
 }
}

The GraphQL server would then respond with something like this:

{
 "data" {
 "product": {
 "brandIconURL": "https://
www.legocdn.com/images/disney_icon.png",
 "name": "The Disney Castle",
 "description": "Welcome to the magical
Disney Castle!....",
 "price": "349.99",

12 | Chapter 1: Introducing GraphQL

https://oreil.ly/MfS9U

 "ableToSell": true,
 "averageReview": 4.5,
 "numberOfReviews": 208,
 "maxAllowableQty": 5,
 "images": [
 { "url": "https://
www.legocdn.com/images/products/94695736/1.png", "altText":
"Fully assembled castle" },
 { "url": "https://
www.legocdn.com/images/products/94695736/2.png", "altText":
"Castle in the box" }
]
 }
 }
}

That response then could be used to render a product detail page as
shown in Figure 1-5:

Figure 1-5. Lego’s product detail page

Rather than interacting with the multiple APIs that hold this data,
the client-side developers can make one GraphQL query against an
endpoint that’s typically exposed as /graphql. The GraphQL server

What Is GraphQL? | 13

then validates the query and calls what are known as “resolvers” to
retrieve (or modify) data from the underlying APIs, protocol buffer
(protobuf), datastore, or any other source system. GraphQL doesn’t
take a stance on what programming language you should use, how
to retrieve data from resolvers, or much of anything else. GraphQL
is a specification, not a specific implementation.

Even though GraphQL is a specification, GraphQL’s
official reference implementation underlies most of the
GraphQL servers on the market, including Apollo and
Relay. It was first released by Facebook in 2015 and has
emerged as the community standard.

To this point, we’ve talked only about GraphQL queries (retrieving
data). Besides queries, GraphQL supports three other action types:

Mutations
Creating, updating, or deleting data, then an optional read after
data is written

Subscriptions
Watching for updates to data

Introspections
Retrieving metadata about what types of queries can be
performed

With support for all three operations, client-side developers can
build any experience imaginable.

Benefits of GraphQL
GraphQL offers many benefits. Let’s explore some of them.

Easier frontend development
GraphQL’s primary benefit is that it empowers frontend developers.
Given the wide array of devices and clients you need to support, it’s
possible to have many more frontend developers than backend
developers. Those developers must also iterate much more quickly
than the backend. Browsers, operating systems, frontend frame‐
works, end-customer tastes, and so on all change so frequently that
each of these teams need to be releasing constantly. GraphQL is the

14 | Chapter 1: Introducing GraphQL

https://oreil.ly/Wozlf

layer that decouples the frontend teams from the backend teams and
allows frontend teams to rapidly innovate.

Frontend developers no longer need to hunt for APIs or try to
understand which APIs have the most up-to-date version of data.
That complexity is handled by the GraphQL layer. If there are four
different APIs holding inventory data, it’s the GraphQL layer’s
responsibility to identify which API should be made available to the
clients. Now, each team doesn’t need to go through the exercise of
discovering each API and hoping they’re using the right one.

GraphQL also handles the intricacies of calling each source system
(API, protobuf, datastore, legacy system, etc.). Source systems can
use different transport protocols, different data formats, and differ‐
ent authentication and authorization schemes, and can have differ‐
ent idiosyncrasies in how they’re called. Frontend developers don’t
want to deal with that. Duplicating all of that logic in every client is
difficult, expensive, and slows down overall development velocity.
With GraphQL, every time a backend system changes (i.e., from
XML to JSON data representation), it’s completely transparent to
each client. The change can be solely implemented in the GraphQL
layer. Clients should be as free of frontend logic as possible.

Another advantage of GraphQL is introspection. Frontend develop‐
ers can access one endpoint (typically /graphql), and using an inte‐
grated development environment (IDE) or even by calling GraphQL
directly (see Figure 1-6), they can quickly understand what types
(objects like customers, orders, and products) and fields (attributes
like firstName, shippingAddress, and displayName) are available.

Because GraphQL is introspective, every single query is validated
before it’s executed. Again, it’s similar to SQL in that regard. Devel‐
opers immediately know whether their queries are valid, even if the
source systems aren’t available.

What Is GraphQL? | 15

Figure 1-6. GraphiQL, the GraphQL IDE

Improved performance
Next, GraphQL dramatically improves the performance for end
customers.

GraphQL makes data from multiple source systems available in one
JSON document. Frontend developers specify exactly the data that
they need, and GraphQL provides it by making parallel requests to
the source systems that have that data. Within a datacenter, latency,
bandwidth, and computing power are basically unlimited. It’s far
more advantageous from a performance standpoint to make all of
those requests within a datacenter and then offer up the client a sin‐
gle document containing that data. Clients are often connected over
mobile networks, which are bandwidth and latency constrained. Cli‐
ent devices are often constrained by their computing power. Making
all those HTTP requests has a cost, and small IoT-style clients, wear‐
ables, and other devices don’t have that much computing power to
work with.

Also, GraphQL completely eliminates the problems of over- and
underfetching. Frontend developers specify exactly what they need
and GraphQL provides it. There is likely to be some over- and
underfetching when the GraphQL layer calls the source systems, but
again, within a datacenter resources like latency and bandwidth are
essentially unlimited.

16 | Chapter 1: Introducing GraphQL

Less code to maintain
Finally, GraphQL leads to there being far less code to maintain. As
previously discussed, clients don’t need to replicate the logic
required to call different source systems. Clients can execute queries
against a GraphQL server rather than having to write complex
authentication code for each source system. Any changes with how
source systems are called can be made in one location.

Also, GraphQL completely eliminates the need for backends for
frontends. Clients can query the GraphQL layer for everything they
need. Not having that intermediary layer dramatically cuts down on
how much code needs to be written, tested, maintained, and run.

Drawbacks of GraphQL
Like all new technology, GraphQL isn’t a silver bullet that magically
fixes all of your problems.

GraphQL is another layer that must be maintained with its own
architecture, development, operations, and maintenance needs,
though it does eliminate the need for dozens or hundreds of back‐
ends for frontends.

Also, security, as we discuss in Chapter 4, can be challenging with
GraphQL. The GraphQL specification leaves out security entirely,
leaving it up to each vendor.

The final challenge with GraphQL is that it can be difficult to com‐
bine multiple GraphQL endpoints and schemas. Frontend develop‐
ers want one endpoint (/graphql) with one schema, but different
teams and different vendors will all have their own endpoints and
schemas. The commerce platform vendor can expose its
own /graphql endpoint and schema, for example. Your cloud vendor,
CMS vendor, search vendor, various internal teams, and so on might
all expose their own endpoints and schemas. Frontend developers
then need to access multiple endpoints. At that point, why even
bother with GraphQL when REST is already available? Fortunately
GraphQL server vendors do offer a way to offer your frontend
developers a single GraphQL endpoint and schema, which we dis‐
cuss in detail in Chapter 4.

What Is GraphQL? | 17

GraphQL Compared to REST APIs
Part of the reason REST has become so popular is because microser‐
vices have emerged as the default architecture for building many
cloud-based applications and commerce applications in particular.
As Figure 1-7 shows, microservices are individual pieces of business
functionality that are independently developed, deployed, and man‐
aged by a small team of people from different disciplines. For more
on microservices, take a look at Microservices for Modern Commerce
(O’Reilly, 2017).

Figure 1-7. Microservice architecture

Microservices by definition require an API, given that a microservi‐
ce’s data can be accessed only through an API. In other words, a cli‐
ent or another application cannot directly read or write to a
microservice’s datastore. REST APIs are what most choose to
expose.

With REST, developers are optimizing for east/west communication
(communication within a datacenter between applications), not
north/south communication (communication from a datacenter to a
client, as demonstrated in Figure 1-8). Developers don’t care much
about the latency/bandwidth/computing power constraints of their
clients. Their scope is within a datacenter, where all of those resour‐
ces are basically unlimited.

18 | Chapter 1: Introducing GraphQL

https://oreil.ly/SqhUM

Figure 1-8. North/south versus east/west communication

Too much focus on east/west communication leads to developers
automatically returning all data from an API by default. If a product
has 200 attributes, any given developer is likely to write the applica‐
tion to return all 200 of those attributes. A product could be hun‐
dreds of kilobytes or even megabytes. The client has very little say in
what data is returned. Developers don’t have much visibility or con‐
cern for what happens after the data is exposed in an API. With
GraphQL, developers specify exactly what they need. GraphQL
shifts the power from the backend developers to the frontend
developers.

As previously discussed, REST is more of an architectural style than
a formal standard. GraphQL, on the other hand, has a very strict
specification, which we cover in greater detail in Chapter 2. Graph‐
QL’s strict standard supports introspection, which allows frontend
developers to quickly see which types and fields are available. REST
can allow developers to discover types through Hypermedia as the
Engine of Application State (HATEOAS).

<product id="{id}">
 <link rel = "inventory" uri = "/Inventory/product/
{id}"/>
</order>

HATEOAS helps frontend developers discover new types, but it’s
not widely used. Because REST doesn’t have a formal schema, field-
level introspection is not possible.

GraphQL Compared to REST APIs | 19

Although GraphQL and REST do share the same transport protocol
(typically HTTP) and often the same data response format (JSON),
the two approaches for retrieving data are substantially different and
were designed for different use cases. If REST is working for you
now, stick with it.

If you need more than REST can provide, consider adopting
GraphQL as a complement to REST, not a replacement.

Final Thoughts
In this chapter, we discussed the challenges of REST and why com‐
merce, specifically, requires more than REST on its own. Then, we
introduced GraphQL and discussed its pros and cons. Finally, we
discussed why you should view GraphQL as a complement to REST,
not a replacement for it.

In Chapter 2, we cover the GraphQL specification.

20 | Chapter 1: Introducing GraphQL

CHAPTER 2

The GraphQL Specification

A specification allows all parties to work together with a common
language and syntax. Specifications are everywhere. Motorists drive
their cars on the same side of the road, obey stop lights, obey posted
road signs, and follow other local regulations. Without clearly
defined rules, traffic collisions would happen everywhere. Written
languages are an example of another specification, with Arabic and
Hebrew specifications calling for text to be written right to left,
whereas English and German specifications call for text to be writ‐
ten left to right.

In the technology realm, some common technologies have a specifi‐
cation and some do not. XML has a very strict standard. From the
formal specification, you’ll find many examples like this:

The formal grammar of XML is given in this specification using a
simple Extended Backus-Naur Form (EBNF) notation. Each rule in
the grammar defines one symbol, in the form
symbol ::= expression
Symbols are written with an initial capital letter if they are the start
symbol of a regular language, otherwise with an initial lowercase
letter. Literal strings are quoted.

Any human or software that writes or reads an XML document can
make sure the document is valid because there’s a strict specification.

21

https://oreil.ly/8ioo_

As previously discussed, REST doesn’t have a specification. A REST
endpoint can return a response in a specific standards-compliant
version of JSON or XML, but you’ll find little agreement across
REST endpoints on how response bodies should be structured or
how errors are logged.

Introducing the GraphQL Specification
With a better understanding of what a specification is, let’s now
apply that to the GraphQL specification.

What’s in the GraphQL Specification?
The GraphQL specification is a lengthly set of rules that govern how
the schema should be defined and what happens after a query is
passed to the GraphQL server.

The schema itself starts with the Schema Definition Language,
which is commonly abbreviated as SDL. The SDL defines the basic
syntax for the language. Think of it like punctuation in a written
language. For example, here’s what the GraphQL definition says
about line terminators:

LineTerminator
New Line (U+000A) Carriage Return (U+000D)New Line (U
+000A) Carriage Return (U+000D)New Line (U+000A)
Like white space, line terminators are used to improve the legibility
of source text, any amount may appear before or after any other
token and have no significance to the semantic meaning of a
GraphQL Document. Line terminators are not found within any
other token.

The SDL also covers topics such as reserved names, how to com‐
ment, directives, the available operands, and so on.

Next, the specification outlines the root operations that are available.
As discussed in Chapter 1, those operations are query, mutation,
and subscription. Think of these as verbs that define which opera‐
tions can be executed. The specification then outlines how to create
types (objects like customers, orders, and products) and fields
(attributes like firstName, shippingAddress, and displayName).
Think of types as nouns. Similar to many other programming lan‐
guages, GraphQL offers the ability to define interfaces, unions,

22 | Chapter 2: The GraphQL Specification

https://oreil.ly/7L4cf
https://oreil.ly/2HW_K

fragments, and so on. The specification then defines how to tie
together operations (like a query) with a type (like a product).

Finally, the specification goes into depth on how GraphQL servers
should execute and respond to queries. For example, the
specification details how the server should respond to successful and
unsuccessful queries. The specification also details the rules for
when operations can be executed serially or concurrently, for
example.

The specification is about 216 printed pages of dense technical writ‐
ing, but this level of detail is what makes GraphQL so valuable. The
prescriptiveness of the specification guarantees interoperability
within the ecosystem, which makes the entire ecosystem more
valuable.

The specification is written for software developers writing
GraphQL clients and servers. Users of GraphQL would be better
served by HowToGraphQL.com or any of the GraphQL books avail‐
able on the market.

What’s Not in the GraphQL Specification?
Although the GraphQL specification is very particular about defin‐
ing the syntax of queries and how the server should execute and
respond to queries, the specification is not particular about the
following:

• How queries are passed to GraphQL. Often, queries are routed
through an HTTP server like Express, but they could also be
passed to GraphQL through a Functions as a Service (FaaS)
platform like AWS Lambda.

• Which language the servers and clients are written in. There are
at least a dozen (and counting!) language-specific GraphQL
server implementations and a few dozen client implementa‐
tions. So long as the GraphQL specification is adhered to, you
could build a client or server in any language.

• How multiple GraphQL schemas are combined (schema stitch‐
ing or schema federation).

• Where the data is and how it’s retrieved by the GraphQL
resolvers.

Introducing the GraphQL Specification | 23

https://oreil.ly/LL5kz
https://oreil.ly/005LG
https://oreil.ly/005LG
https://oreil.ly/005LG

• Anything related to security. Authentication, authorization, lim‐
its, and so on are all completely beyond the scope of the
GraphQL specification.

• Caching, whether on the client side or the server side.

These topics are where the various GraphQL implementations can
differentiate themselves. Commercial vendors, especially, are build‐
ing entire companies around solving many of these problems.

GraphQL Specification Governance and History
The GraphQL specification and GraphQL.js reference implementa‐
tion were first published externally by GraphQL’s creators at Face‐
book in July 2015. The specification has been updated once or twice
each year since then.

Originally the specification was posted to Facebook’s GitHub, but in
2018, Facebook turned the governance and hosting of the specifica‐
tion and the reference implementation over to the GraphQL Foun‐
dation (as discussed in Chapter 1). Even though Facebook is a
member of the GraphQL Foundation, it has as much say over the
future of the specification as other members, which include Apollo,
AWS, IBM, PayPal, Twitter, and more.

Principles of the GraphQL Specification
GraphQL was designed with a strict set of principles in mind. Let’s
examine them here.

Evolvable
With change being the only constant in software development, it’s
inevitable that your GraphQL schema will need to change. Maybe
you add a new product type, add a new promotion attribute, or
must deprecate a payment method. Your GraphQL schema will
change.

When designing GraphQL, its founders strongly opted for evolving
schemas rather than versioning them. Evolving schemas means
adding nonbreaking changes to the schema, thereby slowly evolving
it over time. The GraphQL specification says:

24 | Chapter 2: The GraphQL Specification

https://oreil.ly/flgp5
https://oreil.ly/flgp5

GraphQL services and schema maintainers are encouraged to avoid
breaking changes; however, to be more resilient to these breaking
changes, sophisticated GraphQL systems might still allow for the
execution of requests which at some point were known to be free of
any validation errors, and have not changed since.

Versioning, as is often practiced when designing REST APIs,
requires that clients specify the version of the REST API in the
HTTP request. Clients make requests to https://api.domain.com/
v1.1/product or v2, or whatever version they want. But the client
must keep track of which version it needs to call, and the producer
of the API needs to run multiple versions of the application concur‐
rently, each with a different API. For more information about ver‐
sioning versus evolving APIs, have a look at APIs for Modern
Commerce (O’Reilly, 2017). Although it’s specific to REST APIs, the
same principles hold true for GraphQL.

When fields do need to be deprecated, GraphQL offers the @depre
cated directive as follows:

type Category {
 displayName: String
 name: String @deprecated(reason: "Use `displayName`.")
}

In this example, clients would be gradually moved from using the
name field to the displayName field. After it’s confirmed (via usage
monitoring) that all clients have moved, the GraphQL schema defi‐
nition can be updated to drop the deprecated field entirely. Some
commercial GraphQL server vendors have features that allow you to
replay all transactions from a past period of time (usually a few
days) against your changed GraphQL schema to make sure nothing
broke. These tests can even be integrated into your continuous inte‐
gration (CI) pipeline with every change to the schema.

You can avoid many schema changes by putting ample time and
thought into naming your types and fields properly. Rather than a
field name like quantity, use a name like quantityAvailableTo
Sell. If you later need to add a different type of quantity, such as
quantityFromDropShipper, you can do that without having to
rename one or more fields.

Principles of the GraphQL Specification | 25

https://oreil.ly/aUvFR
https://oreil.ly/aUvFR

Data Oriented
Within any commerce platform, you have two types of operations:

Create/read/update/delete (CRUD) data operations
Querying products, updating inventory, and so on.

Execution of functionality
Adding to a shopping cart, creating customers, and so forth.

GraphQL was built for CRUD operations and therefore easily han‐
dles them. It is fundamentally a data access layer.

GraphQL wasn’t built for the execution of functionality. Adding to a
shopping cart, creating a customer, executing a search, and so on all
require datastore-level CRUD operations but also the execution of a
lot of business logic. Even though technically you could put that
business logic in your GraphQL server, it was never intended to be
there and shouldn’t be there. GraphQL is a data access layer, not a
platform for executing business functionality.

Client Centric
GraphQL is unapologetically built for frontend developers who are
building experiences for clients. The first sentence of the actual
specification (June 2018 version) says:

GraphQL is a query language designed to build client applications
by providing an intuitive and flexible syntax and system for
describing their data requirements and interactions.

The server side is obviously important, but GraphQL was built for
and by frontend developers. Most of the GraphQL ecosystem,
including Facebook’s reference implementation, which underpins
many of the commercial and open source offerings, is written in
JavaScript. Facebook also developed and released the wildly popular
React frontend framework alongside GraphQL, with the two often
being used together.

Strongly Typed
A defining characteristic of the GraphQL specification is that it’s
strongly typed, meaning that the author of the GraphQL schema
precisely defines the types (objects like customers, orders, and prod‐
ucts), fields (attributes like firstName, shippingAddress, and

26 | Chapter 2: The GraphQL Specification

https://oreil.ly/Lr69i

displayName), and data integrity constraints (data types, whether
fields are required, etc.).

Here is a very simple example of how you’d define an Order type in
GraphQL:

type Order {
 date: Date!
 orderTotal: Float!
 products: [Product]
}

If you tried to set orderTotal as a String like foo, you’d immediately
get an error. That’s strong typing.

In JavaScript, you wouldn’t even be able to statically define a type.
You’d construct an order object on the fly:

var order = {
 date: "2019-09-05T09:22:16Z",
 orderTotal: 86.82,
 products: ["p96698497", "p49360022", "p87891741"]
};

In this example, you could set orderTotal to foo and JavaScript
would still allow it because there’s nothing that says it can’t be a
String. Strong typing allows for query validation, introspection,
autodocumentation, and a host of other benefits.

GraphQL Terminology
Before we get too far, we need to explain in more detail some
GraphQL terms that you’ve seen earlier.

Types
A type in GraphQL is an object, like a customer, order, or product.
It’s a “thing”—a noun.

Here’s an example:

type Product {
 name: String!
 description: String!
 price: Float!
 ...
}

GraphQL Terminology | 27

In this example, Product is the type. Types are the building blocks of
GraphQL.

When modeling types, don’t fall into the trap of mapping your REST
APIs each to their own type. REST APIs, backed by microservices,
are often extremely limited in scope to one type of data and/or one
piece of functionality. Because separate teams build each microser‐
vice, and one of the central tenets of microservices is to avoid
dependencies between teams, you are unlikely to find too many
relationships between REST APIs. REST APIs are typically designed
so that they are entirely self-contained, with few or any links to
other REST APIs. The whole point of GraphQL, however, is to allow
frontend developers to traverse a graph of connected objects. When
you design your types, make sure that you have as many type-based
references as possible. For example, you’d want your customer type
to refer to your orders type, and your order type to refer to your
customer type:

type Customer {
 orders: [Order!]!
}
type Order {
 customer: Customer!
}

Developers then can traverse the graph by referencing
customer.orders or order.customer in their code.

Fields
A field is an attribute like name, description, price, and so on. Fields
belong to types. Here’s an example of some of Product’s fields:

type Product {
 name: String!
 description: String!
 price: Float!
 parentCategory: Category!
 reviews: [Review]
 ...
}

Following the name of the field, you’ll find its data type. Data types
can be scalars (primitives) of the following type:

• Strings (String)
• Integers (Int)

28 | Chapter 2: The GraphQL Specification

• Floats (Float)
• Booleans (Boolean)
• Unique identifiers (ID)

In the previous example, you can see that name and description are
String`s, whereas `price is a Float.

Fields can also have a data type of another type within the same
GraphQL schema. In the previous example, the parentCategory
field points to a Category type. When you build your query, you can
retrieve field values from the referenced types:

query {
 product(id: "94695736") {
 category {
 name
 }
 }
}

This would return something like the following:

{
 "data" {
 "product": {
 "category": {
 "name": "Men's Belts"
 }
 }
 }
}

Fields can be marked as required by adding an exclamation point
after the data type. Here’s an example of a required field:

type Product {
 name: String!
}

Here’s an example of an optional field:

type Product {
 reviews: [Review]
}

Rather than having a singular value, GraphQL also supports fields
having multiple values through the use of brackets ([]). A field
defining a single String would be represented as follows:

GraphQL Terminology | 29

type Product {
 review: Review
}

This singular field calls for one Review type.

To allow mutliple reviews, you’d simply wrap Review in brackets:

type Product {
 reviews: [Review]
}

Now your clients can iterate through multiple reviews, retrieving
only the values from each review that are necessary to render the
page.

Arguments
You can pass arguments to any GraphQL operation, and they are
often used for retrieving specific nodes in the graph. Going back to
the example we’ve been using in this chapter, the query begins with
an argument to retrieve the product whose ID is "94695736":

query {
 product(id: "94695736") {
 name
 }
}

Notice how the argument is named, unlike in many other program‐
ming languages. In most others, you’d pass in "94695736" but
GraphQL requires both the parameter name and value, which in
this case is id: "94695736"

You can pass in as many arguments as you’d like. Multiple argu‐
ments are often passed in for pagination, or for mutations. Here’s
how you’d create a new product and then retrieve its ID and name
after it has been created:

mutation {
 createProduct(
 name: "The Disney Castle",
 description: "Welcome to the magical Disney Cas-
tle!...."
) {
 id
 name
 }
}

30 | Chapter 2: The GraphQL Specification

The data type of the argument(s) can be a scalar or even a type.

Arguments do not need to be hardcoded.

Variables
GraphQL allows you to pass in named variables to queries. Variables
are prefixed with a $ and are immediately proceeded by the data
type and then an exclamation point if it’s required. Queries can have
an unlimited number of variables. Here’s an example of a query with
two variables:

query orderHistory ($id: ID! $year: Int){}

This query requires the customer’s ID as the id variable and then
optionally accepts year as an input.

All GraphQL servers allow you to pass key/value inputs, with the
key being the name of the variable and the value being the value of
the variable.

{
 "id": "12345",
 "year": 2019
}

If you’re accessing GraphQL through an HTTP server, you can pass
in variable names/values as HTTP GET arguments.

Fragments
Sometimes, GraphQL queries can become repetitive by having to
call out the same fields over and over. Let’s take an address, for
example. Retrieving an address would look something like this:

query {
 customer(id: "47937102") {
 firstName
 lastName
 addresses {
 type
 address1
 address2
 address3
 city
 state
 zip
 country
 phone

GraphQL Terminology | 31

 }
 }
}

Rather than typing those field names throughout your queries, you
can define a fragment as follows:

fragment addressInfo on Address {
 type
 address1
 address2
 address3
 city
 state
 zip
 country
 phone
}

Fragments can belong to only a single type, in this case the Address
type:

query {
 customer(id: "47937102") {
 firstName
 lastName
 addresses {
 ...addressInfo
 }
 }
}

Wherever you need to retrieve those specific fields from the Address
type, you can now use ...addressInfo and spare yourself from
having to type all those fields manually. An added benefit of using
fragments is that if you add additional fields to types, you can
update the fragment directly rather than having to update each
occurrence manually.

Interfaces
Like other object-oriented programming languages, GraphQL
allows you to define interfaces. An interface is basically a type that
can be implemented by other types or queried.

Suppose that you have an order type and want to add subtypes for
B2C and B2B orders. Most of the fields are generic enough to belong
to the order type, but some are specific to B2C orders and some are

32 | Chapter 2: The GraphQL Specification

specific to B2B orders. Here’s an example of what the order type
would look like:

interface Order {
 date: String!
 products: [Product!]!
 merchandiseTotal: Float!
 shippingTotal: Float!
 orderTotal: Float!
 payment: Payment!
}

Then, you’d define new types (in this case B2COrder and B2BOrder)
that implement the Order interface:

type B2COrder implements Order {
 facebookHandle: String
}

type B2BOrder implements Order {
 approvers: [User]
}

In the case of a B2C order, you’ll want to capture the customer’s
Facebook handle and in the case of a B2B order, you’ll probably have
one or more approvers. These fields are each unique to their specific
types of orders, yet the vast majority of fields would be shared by all
types implementing the order interface.

The order itself can be queried, with specific fields requested from
specific implementations of the Order interface (via the ...on
notation):

query allOrders {
 orders {
 date
 products {
 name
 }
 ...on B2COrder {
 facebookHandle
 }
 ...on B2BOrder {
 approver {
 firstName
 lastName
 }
 }
 }
}

GraphQL Terminology | 33

Common examples of interfaces in commerce include orders, prod‐
ucts, customers, payment methods, and so on.

Inputs
When working with mutations, the number of inputs can get to be
excessive. Going back to the order example, let’s define mutations to
create B2C and B2B orders:

type Mutation {
 createB2COrder(date: String!, products: [Product!]!,
merchandiseTotal: Float!, shippingTotal: Float!, orderTotal:
Float!, payment: Payment!, facebookHandle: String): B2COrder

 createB2BOrder(date: String!, products: [Product!]!,
merchandiseTotal: Float!, shippingTotal: Float!, orderTotal:
Float!, payment: Payment!, approvers: [User]): B2BOrder
}

This is ugly already, and in a real production system, an order could
have dozens if not hundreds of fields. Orders could be created across
many different mutations as well. Every time you update your fields,
you don’t want to be forced to go through your mutations to make
sure you’re not forgetting something.

GraphQL allows you to define “input” types to solve this exact prob‐
lem. The definition of an input looks the exact same as a type defini‐
tion but with the type keyword being changed to input:

input OrderInput {
 date: String!
 products: [Product!]!
 merchandiseTotal: Float!
 shippingTotal: Float!
 orderTotal: Float!
 payment: Payment!
}

You can then pass the OrderInput object to your mutations:

type Mutation {
 createB2COrder(order: OrderInput!, facebookHandle:
String): B2COrder
 createB2BOrder(order: OrderInput!, approvers: [User]):
B2BOrder
}

Your GraphQL schema will be far more readable and maintainable
with inputs defined.

34 | Chapter 2: The GraphQL Specification

GraphQL Operations
Now that we’ve covered some basic terminology, it’s time to cover
the four types of operations that GraphQL supports.

Queries
The vast majority of operations executed against a GraphQL server
are queries. A query is a simple retrieval of data, analogous to an
HTTP GET with REST or a SELECT with a database. Data is not
changed, it’s simply retrieved. Retrieving data is what GraphQL was
built and optimized for.

A query follows this structure:

query ProductDetailWebPage { # some query }

The query keyword is optional because GraphQL assumes every‐
thing to be a query by default.

Next, you’ll see ProductDetailWebPage, which is the name of the
query. Naming your queries is optional and helps with the readabil‐
ity of your queries and with debugging. An advantage of naming
your queries is that GraphQL will force you to select one query to
execute if you pass multiple queries to a GraphQL server.

This wouldn’t work, for example:

query ProductDetailWebPage { # some query }
query ProductDetailAndroid { # some query }

Through your GraphQL IDE or through code, you could have one
large document with related queries and then specify which one
you’d like the server to execute.

Queries work with GraphQL concepts such as arguments, variables,
fragments, and interfaces.

When formatted, queries look almost exactly like JSON, but with
only the keys. GraphQL responses perfectly mirror the queries, but
with the keys and the values. The types and fields you retrieve are
also the types and fields you’ll get back. This mirroring on multiple
levels was deliberate by the GraphQL authors and has been an inte‐
gral part of GraphQL’s rise in popularity.

Successful responses always contain a "data" key as follows:

GraphQL Operations | 35

{
 "data" {
 "product": {
 "brandIconURL": "https://
www.legocdn.com/images/disney_icon.png"
 ...
}

Failed queries always begin with an "errors" key, as follows:

{
 "errors": [
 {
 "message": "price for product with id 94695736 could not
be fetched.",
 "locations": [{ "line": 6, "column": 9 }],
 "path": ["Product", 1, "price"]
 }
]

A response could have both "data" and "errors" in the same JSON
document.

Mutations
Mutations are changes to data (create, update, and/or delete) fol‐
lowed by an optional query. Think of them as HTTP POST/PUT/
PATCH/DELETE methods or INSERT/UPDATE/DELETE com‐
mands in a database.

As mentioned earlier in the design principles of GraphQL, GraphQL
is intended to be a data access layer. It is not intended to be a layer
that contains much, if any, business-level functionality. Many muta‐
tions require executing business functionality. For example, when
you create a customer, you’ll also want to do the following:

• See whether the customer already has an account
• Create a record for that customer in your loyalty system
• Create a record for that customer in your marketing system

And so on.

None of this code should be in GraphQL. The code should be in
your microservices layer. Mutations should be used selectively for
modifying data that doesn’t require much business logic. Product
catalog–related data is probably best for mutations, but anything

36 | Chapter 2: The GraphQL Specification

related to customers or orders is probably too complex for GraphQL
to handle on its own.

This is why datastores are largely void of any business
logic. The functionality to put the data into the data‐
stores should reside in the application, not in the data‐
store or the datastore access layer.

Mutations are structured like queries. Start with the operation name
(in this case mutation) followed by an optional name for your muta‐
tion (in this case createDisneyCastle). Then, the underlying muta‐
tion (in this case createProduct) is invoked. Finally, the mutation
calls for the retrieval of the id and name of the product that was just
created:

 mutation createDisneyCastle {
 createProduct(
 name: "The Disney Castle",
 description: "Welcome to the magical Disney
 Castle!....",
 price: "349.99") {
 id
 name
 }
 }

Mutations work with GraphQL concepts such as arguments, vari‐
ables, fragments, interfaces, and inputs. Inputs can be used only with
mutations.

Mutations can easily lead to unintended bulk changes of data. A
developer could define a deleteAllProducts mutation for testing
locally and forget to remove it in production. Unless properly
secured by role, a developer could easily invoke this in production.

Subscriptions
Subscriptions are real-time streams of data that allow bi-directional
communication over a single Transmission Control Protocol (TCP)
socket. Facebook originally built subscriptions to allow its custom‐
ers to see real-time “Likes” without having to refresh the page.

Suppose that you want to be notified every time your inventory is
changed. Your subscription would look something like this:

GraphQL Operations | 37

 subscription {
 inventoryChange (productId: "94695736", loca-
tion:"FulfillmentCenter32") {
 inventoryCount
 }
 }

Every time the underlying inventory is changed, the new value for
inventoryCount will be pushed over a web socket or some other
type of persistent connection.

The only way a subscription differs from a query is the use of the
operation name subscription and the ongoing push nature rather
than a one-time pull, as with a query.

Introspection
As discussed earlier, a defining characteristic of GraphQL is that it’s
introspective, meaning it’s possible to query the schema to under‐
stand the following:

• What types are available
• What fields are available
• The metadata (data types [whether required or not], arguments,

directives, etc.)

With few exceptions, everything in your schema definition can be
retrieved by querying the schema:

 query {
 __schema {
 types {
 name
 description
 }
 }
 }

Introspection is what allows GraphQL servers to validate queries
before they’re executed. It also allows for a rich ecosystem of
GraphQL tooling, including IDEs.

38 | Chapter 2: The GraphQL Specification

Final Thoughts
In this chapter, we discussed the GraphQL specification and its his‐
tory, core architectural principles, and terminology, as well as the
operations it supports. It should be clear by now how well thought
out GraphQL is and how much Facebook improved it between its
internal launch in 2012 and its public release in 2015.

Next, we explore clients.

Final Thoughts | 39

CHAPTER 3

GraphQL Clients

A GraphQL client is software that runs in each client (web browser,
native application, etc.) that handles the life cycle of connecting to
the GraphQL server, executing queries, and receiving responses.

Technically, any code that allows you to make an HTTP request is a
client, from cURL on the command line to any of the thousands of
JavaScript libraries that are available. Every programming language,
framework, operating system, and so on has the means of making
HTTP requests because HTTP-based API calls underpin modern IT.

Even though GraphQL is technically agnostic to the
underlying transport protocol, HTTP is the only one
you’ll see out in the real world.

Formal GraphQL clients offer basic HTTP request handling plus the
following:

• Low-level networking
• Batching
• Authentication
• Caching
• Language-specific bindings
• Frontend framework integration

41

Let’s explore each one of these in greater depth.

Low-Level Networking
Making an HTTP request sounds simple, but things can go wrong
in the long, complicated journey from a client to the GraphQL
server and back. The GraphQL server might not respond, the
response might be slow, there might be errors calling the underlying
datastore, the response size could be very large, and so on. The real
world is full of problems. The networking stack of your client can
greatly help with these issues by allowing you to configure the
following:

• Retry policies (how many times to retry, how long between each
retry, etc.)

• Limits on response sizes
• Timeout limits

Depending on your client, you can even swap out HTTP for another
protocol.

Batching
The entire point of GraphQL is to allow your clients to retrieve
everything needed to render a page or other experience with one
request. In an ideal world, you’d have one HTTP request per page.

Frontend frameworks like React encourage modularization. Each
“component” in React should be more or less self-contained, includ‐
ing fetching data. Here’s an example of a very simple component:

import React from 'react'
import {Query} from 'react-apollo'
import gql from 'graphql-tag'

const Price = () => (
 <Query
 query={gql`
 {
 product(id: $id) {
 price
 }
 }
 `}
 >

42 | Chapter 3: GraphQL Clients

 {({ loading, error, data }) => {
 if (loading) {
 return "Loading..."
 }
 if (error) {
 return "Error!"
 }

 return "{data.product.price}"
 }}
 </Query>
)

Imagine having a product detail page composed of 10 of these com‐
ponents, each with their own GraphQL query. Even though this
makes the frontend code more manageable from a development
standpoint, you’re back to the same problem as REST APIs.

Some clients allow you to batch together multiple GraphQL queries
so that you can still have the modularity, but multiple queries are
sent to the GraphQL server in one batch. The client will gather all of
the GraphQL requests over a period of tens of milliseconds and then
submit one request to the server.

Authentication
All GraphQL clients require that you authenticate with the GraphQL
server before being able to execute queries. Because GraphQL is
served almost exclusively over HTTP, the authentication scheme
you’ve been using to secure your REST APIs (typically OAuth 2.0)
can easily be reused for GraphQL. Chapter 4 examines this in
greater depth.

Authentication typically requires inserting an HTTP header, as
follows:

const httpLink = new HttpLink({
 uri: "https://api.myserver.com/graphql",
 headers: {
 authorization: `Bearer ${token}`
 }
});

All HTTP clients, whether GraphQL focused or not, allow you to
insert custom HTTP headers.

Authentication | 43

Caching
Most of the requests handled by a GraphQL server are for queries.
As discussed in Chapter 1, queries simply retrieve data; they do not
change it. Therefore, many of these queries can be cached locally.

One of the advantages of REST is that it uses the HTTP ecosystem
around caching. You could make an HTTP GET to /ProductCatalog/
Product/12345 with an HTTP request header of “max-age=180” and
your client (or an intermediary) could cache the results. Every piece
of software touching the HTTP request between the client and
server knows how to handle that HTTP request. With GraphQL, all
operations are typically submitted over HTTP GET or POST
(though, as we’ll discuss later, GraphQL is transport layer agnostic).
HTTP is used as a tunneling mechanism and you’re not able to use
the native verbs and caching mechanisms. It’s a different paradigm
entirely.

Let’s go back to the very first GraphQL response from Chapter 1:

{
 "data" {
 "product": {
 "brandIconURL": "https://
www.legocdn.com/images/disney_icon.png",
 "name": "The Disney Castle",
 "description": "Welcome to the magical
Disney Castle!....",
 "price": "349.99",
 "ableToSell": true,
 "averageReview": 4.5,
 "numberOfReviews": 208,
 "maxAllowableQty": 5,
 "images": [
 { "url": "https://
www.legocdn.com/images/products/94695736/1.png", "altText":
"Fully assembled castle" },
 { "url": "https://
www.legocdn.com/images/products/94695736/2.png", "altText":
"Castle in the box" }
]
 }
 }
}

In this example, the fields brandIconURL, name, description, max
AllowableQty, and images are unlikely to change frequently and

44 | Chapter 3: GraphQL Clients

can therefore be cached. However, price, ableToSell, averageRe
view, and numberOfReviews are likely to change constantly.

Depending on which client you use, you can specify various cache
directives for both the type and the field.

Caching is entirely absent from the GraphQL
specification.

Here’s how you’d cache an entire image type for a whole day using
the Apollo GraphQL implementation:

type image @cacheControl(maxAge: 86400) {
 id: ID!
 url: String!
 altText: String!
}

Here’s how you’d cache individual fields within a type:

type product {
 id: ID!
 brandIconURL: String @cacheControl(maxAge: 300)
 name: String! @cacheControl(maxAge: 300)
 description: String! @cacheControl(maxAge: 300)
 price: Float!
 ableToSell: Boolean!
 averageReview: Float
 numberOfReviews: Int
 maxAllowableQty: Int @cacheControl(maxAge: 300)
 images: [Image] @cacheControl(maxAge: 300)
}

When a client sees a cacheControl directive, it serves up the data
from its local client-side cache. If it doesn’t have the data, it then
must call the GraphQL server. The mechanics of caching are entirely
dependent upon the client and server vendor, and the client/server
often need to work together. As mentioned earlier, caching isn’t in
any way part of the formal GraphQL specification. The previous
examples were all from the Apollo GraphQL implementation,
though other implementations are similar.

It’s extremely unlikely that entire GraphQL queries can be cached
for commerce. There’s always at least one field or type that can’t be

Caching | 45

cached. Therefore, you really need to use an actual GraphQL client,
rather than a traditional HTTP client.

Language-Specific Bindings
Frontend developers want to be able to call the GraphQL server
using the programming language in which they’re writing the cli‐
ents. JavaScript developers want a GraphQL client written in Java‐
Script. Swift developers want a GraphQL client written in Swift. And
so on. Even within the programming languages, there are “flavors.”
In the JavaScript world, there’s Angular, Vue, Meteor, Ember, and
others.

A good client offers the same functionality regardless of the pro‐
gramming language the developer chooses.

Frontend Framework Integration
There are entire frontend frameworks built around GraphQL that
include GraphQL client functionality. For example, Facebook’s
Relay/Relay Modern are built entirely around React and GraphQL.

Although GraphQL is fast, there’s still a few hundred millisecond
delay before data in a user interface (UI) is retrieved and rendered.
Popular GraphQL clients can display placeholder data while the
actual data is being retrieved. Figure 3-1 presents an example from
Facebook, which is using Relay Modern.

Figure 3-1. Progressive rendering

46 | Chapter 3: GraphQL Clients

After the content is retrieved over GraphQL and rendered, the
screen looks as depicted in Figure 3-2:

Figure 3-2. Fully rendered

Rendering the UI and then painting the data on it dramatically
improves the perceived performance.

These frameworks can also get creative with how mutations are han‐
dled from a user experience (UX) standpoint. Rather than executing
the mutation and repainting the entire page, these frameworks make
it possible to update the UI first and then asynchronously execute
the mutation against the server.

Final Thoughts
In this chapter, we explained what GraphQL clients are, why they’re
better than clients that just handle HTTP requests, and what value
specifically GraphQL clients offer.

In Chapter 4, we discuss GraphQL servers.

Final Thoughts | 47

CHAPTER 4

GraphQL Servers

At a high level, a GraphQL server is responsible for responding to
queries from clients. It’s typically fronted by an HTTP server and lis‐
tens at https://api.myserver.com/graphql. Clients (whether GraphQL
or otherwise) make requests to that endpoint, and the server
responds.

A GraphQL server is composed of two parts: an HTTP server and a
GraphQL engine, as shown in Figure 4-1.

Figure 4-1. GraphQL server

The core GraphQL engine accepts the schema definition upon
instantiation, builds the type schema, and allows you to execute
queries against that schema. This is a library of code implemented in
many common programming languages.

49

The HTTP server accepts the GraphQL queries and then passes
them to the core GraphQL engine. When the engine responds, the
HTTP server then passes the JSON response back to the client.

Let’s discuss this in more detail.

Building a Type Schema
The GraphQL schema definition is purely some text. It’s like code
that hasn’t been compiled yet. It’s pretty useless on its own sitting in
a text file or as a string in memory somewhere. For the GraphQL
schema to be of any use, it must be loaded into a GraphQL server
upon instantiation. Here’s how you’d do it with GraphQL.js, which is
Facebook’s reference implementation and the near standard:

var { graphql, buildSchema } = require('graphql');

// Construct a schema, using GraphQL schema language
var schema = buildSchema(`
 type Product {
 id: ID!
 brandIconURL: String
 name: String!
 description: String!
 price: Float!
 ableToSell: Boolean!
 averageReview: Float
 numberOfReviews: Int
 maxAllowableQty: Int
 images: [Image]
 }
`);

// The root provides a resolver function for each API endpoint
var root = {
 id: () => { return '94695736'; },
 brandIconURL: () => { return 'https://www.legocdn.com/images/
disney_icon.png'; },
 name: () => { return 'The Disney Castle'; },
 description: () => { return 'Welcome to the magical Disney
Castle!....'; },
 price: () => { return 349.99; },
 ableToSell: () => { return true; },
 averageReview: () => { return 4.5; },
 numberOfReviews: () => { return 208; },
 maxAllowableQty: () => { return 5; },
 images: () => { return [{url: 'https://www.legocdn.com/
images/products/94695736/1.png', altText: 'Fully assembled cas
tle'}, {url: 'https://www.legocdn.com/images/products/

50 | Chapter 4: GraphQL Servers

94695736/2.png', altText: 'Castle in the box'}] },
};

(based somewhat on the example found in the GraphQL.js tutorial).

In this very simple example, we instantiated a GraphQL server with
a single type defined. We cover this shortly, but each field must have
a corresponding “resolver,” which is a function that provides the
value for the field. In this example, the data is hardcoded but in real-
world code you’d call the various REST APIs to retrieve the data
needed for each field.

At this point, the server is instantiated but is not yet ready to accept
queries.

HTTP Request Handling
The GraphQL engine is responsible for building the type schema
and parsing/validating/executing queries, but it doesn’t provide the
functionality required to accept and respond to queries. You need a
way to pass queries to the library and for the responses to be passed
back to the clients given that the clients are always physically separa‐
ted from the servers. Although you could front your GraphQL
engine with anything that can be used to communicate with a client,
an HTTP server makes the most sense and is by far the default
within the GraphQL community.

The GraphQL specification doesn’t include anything in
front of the GraphQL engine. HTTP servers, authenti‐
cation, authorization, caching, and so on are all com‐
pletely beyond the scope of the specification.

An HTTP server automatically gets you the following:

• Authentication
• Authorization
• Protection from malicious queries
• Monitoring
• Metrics collection
• Health checking

GraphQL Servers | 51

https://oreil.ly/o7qsD

And so on. There are hundreds of feature-rich, mature HTTP
servers available, so it makes sense to take advantage of that ecosys‐
tem to front your GraphQL engine.

Most GraphQL servers are written in JavaScript and therefore
require a JavaScript-based HTTP server such as Express, Koa, and
Hapi. You can easily embed these HTTP servers in your application.
You can also layer your HTTP servers with other intermediaries that
are capable of working with HTTP. For example, you could put AWS
Elastic Load Balancer (ELB) in front and have that route HTTP
requests down to Express. AWS ELB could have the logic for secu‐
rity, monitoring, and more, and Express could serve as a pass-
through to the GraphQL engine.

By custom, GraphQL is exposed as /graphql. All requests are posted
to that single URI, typically as HTTP POST, though HTTP GET is
often used, as well.

Here are the variables that you’ll need to post:

query
The actual query, like "{product(id: $id) {price}}." This is
required.

operationName
The name of the query to execute, in case there are multiple
queries provided. Recall that in Chapter 2 we discussed that
multiple queries are possible in the same string. This is required
only if multiple queries are provided.

variables
A map of key/value pairs that are used as variables.

Here’s an example of what you’d post to a /graphql URI over HTTP
POST:

{
 "query": "{product(id: $id) {price}}",
 "variables": { "id": "94695736"}
}

Next, it’s time for the GraphQL engine to parse the query.

52 | Chapter 4: GraphQL Servers

https://expressjs.com
https://koajs.com
https://hapi.dev

Parsing Queries
Upon receiving a query, the GraphQL engine immediately parses it
to an abstract syntax tree (AST). An AST is basically a parsed ver‐
sion of the query with extra metadata around arguments, data types,
location of code, and so on. Visually, an AST looks like a graph, as
demonstrated in Figure 4-2.

Figure 4-2. AST

Conversion to AST is required by the GraphQL specification.

A very simple GraphQL query looks something like this:

query {
 product(id: "100001", locale: "en_US") {
 name
 }
}

In an AST, it would be represented as shown in Figure 4-3.

The full AST representation of this simple three-line query is 120
lines long. Conversion to an AST is something that the GraphQL
server automatically does. You will never need to see or deal with an
AST. It’s strictly internal to the GraphQL server.

GraphQL Servers | 53

Figure 4-3. An AST representation of a sample query (from https://
astexplorer.net)

54 | Chapter 4: GraphQL Servers

https://astexplorer.net
https://astexplorer.net

Validating
Next, the GraphQL server takes the newly generated AST and
checks it for errors. The GraphQL specification is very particular
about validation. It starts out the validation section by stating the
following:

GraphQL does not just verify if a request is syntactically correct,
but also ensures that it is unambiguous and mistake‐free in the
context of a given GraphQL schema.

Common errors include:

• Referencing types or fields that don’t exist
• Missing required parameters or fields
• Data in the wrong format (e.g., a String when the schema

called for a Float)

The GraphQL specification is explicit in stating that only queries
that have been fully validated should be executed.

This is another example of how GraphQL is different
from REST. Unless you implement custom validation
for each REST API, most applications will execute any
request that passes XML or JSON validation.

Executing Queries
Now that the server has been started and the query has been parsed
and validated, it’s time to actually execute it.

The GraphQL server starts by crawling the AST it produced earlier.
It then executes what are called “resolver” functions for each type
and field to retrieve the data from the underlying source. Finally, the
GraphQL server constructs a single JSON response that is passed
back to the HTTP server in front.

Let’s spend some time on resolvers because they’re really the heart of
GraphQL. A resolver is the function that calls the underlying REST
APIs, databases, legacy backends, or any other source of data.

Resolvers are what actually call the underlying source of data and
return the data in the proper format. They shouldn’t have any busi‐
ness logic, because GraphQL is strictly an intermediary.

GraphQL Servers | 55

https://oreil.ly/vr42G

Here’s an example of a simple query:

query {
 product(id: "94695736", locale: "en_US") {
 name
 }
}

And here’s a simple response:

{
 "data" {
 "product": {
 "name": "The Disney Castle"
 }
}

In the GraphQL server, there’s a resolver function for the “name”
field that returns the actual name of the product. Here’s what that
function would look like in GraphQL.js, the JavaScript-based
GraphQL reference implementation from Facebook:

name(obj, args, context, info) {
 if (context.product == null) {
 fetch('https://api.myserver.com/product/
94695736')
 .then(resp => resp.json())
 .then(context.product = resp)
 }
 return context.product.name;
)

In this example, name is the field name, obj is the parent object (in
this example, the query), args are any arguments provided to the
field (like (locale='en_US')), and context is a catch-all object that
can be used to store long-lived objects of value to other resolver
functions. You wouldn’t want to call a REST API for every field.

Server Implementations
GraphQL is a specification, not a specific implementation. Anyone
can write a GraphQL server using whatever programming language
and implementation methodology, so long as it adheres to the speci‐
fication. As we’ve discussed, the GraphQL specification is fairly
silent on how the internals of a GraphQL server should work.

Much of the GraphQL community uses GraphQL.js either directly
or indirectly as the GraphQL server. GraphQL.js was released by
Facebook (along with the original specification) in 2015 and is

56 | Chapter 4: GraphQL Servers

https://oreil.ly/vb6l_

actively maintained by a large community of individual and corpo‐
rate contributors. The entire Apollo ecosystem, which is the largest
and most popular within the GraphQL community, is built around
GraphQL.js. There really aren’t any other JavaScript-based imple‐
mentations of GraphQL servers, and with JavaScript being the
default client- and server-side programming language in the
GraphQL community, GraphQL.js is the de facto standard.

Many organizations do not run much or any JavaScript on the
server side, yet they still choose GraphQL.js because of how strong
of a GraphQL server implementation it is. Remember, there
shouldn’t be any business logic in your GraphQL server. GraphQL is
a layer over the top of your REST APIs, databases, legacy backends,
or any other source of data. Most of the time, you call an API, parse
the results, and return the data specified by each type or field. The
programming language you use is mostly irrelevant. What matters is
that you’re able to find developers and that you’re supported by a
rich ecosystem of tooling. JavaScript checks both of those boxes.

If you want a non-JavaScript GraphQL server, there are implementa‐
tions available in many programming languages including Scala, Go,
Java, Ruby, Python, Haskell, and more.

When possible, it’s best to use a GraphQL client and server provided
by the same vendor because of the additional functionality provided
outside of the GraphQL specification. Remember that caching, secu‐
rity, monitoring, testing, and other aspects are completely beyond
the scope of the GraphQL specification. Many of those features
require making changes to both the client and the server, with both
pieces working together. Furthermore, some frontend frameworks
like Relay require that the GraphQL server have additional function‐
ality that’s outside the GraphQL specification. For example, users of
Sangria, the GraphQL implementation written in Scala, must add an
additional library to support Relay.

Now that we’ve covered the fundamentals of GraphQL servers, let’s
discuss some of the additional features that are available in various
implementations.

Server Implementations | 57

https://oreil.ly/aVXlV
https://oreil.ly/sqsy6

Monitoring
Like all services in production, you must monitor GraphQL for
availability, functionality, and performance. Unlike REST APIs, for
which each endpoint can be monitored separately, all GraphQL
requests are GETs or POSTs to /graphql. A query can be for one field
or for an entire product catalog.

The key to monitoring GraphQL is to monitor your resolver func‐
tions because that’s where the real work happens. The GraphQL
server itself is very unlikely to fail. Within each resolver function, it’s
best practice to log a correlation ID, the operation type, and the
query complexity (which we discuss soon) to a log file and/or a time
series database like InfluxDB or Prometheus. You then can layer an
analytics platform like Grafana on top to aggregate and analyze the
data.

Per the GraphQL specification, GraphQL servers execute resolvers
concurrently in the case of queries, and sequentially in the case of
mutations. Therefore, the performance of any given GraphQL query
is a function of the slowest resolver and the performance of any
given GraphQL mutation is the sum of all resolvers.

Commercial GraphQL vendors have full monitoring solutions in
place already, so it’s best to use that functionality if it’s available.

Testing
Every time you touch your schema, resolvers, or underlying data
sources (REST APIs, databases, legacy backends, or any other source
of data) you need to retest your entire GraphQL layer to make sure
you didn’t introduce any errors.

Fortunately, GraphQL is easy to test in local environments as well as
in integration or QA environments. With GraphQL, you have a
fixed set of inputs (queries, mutations, and variables) and a fixed set
of outputs (in nicely formatted JSON). It’s easy to write test cases
with real or mocked data that exercise every type and field in your
schema. Writing tests should be mandatory for every new type and
field introduced to your schema.

If you want to provide your frontend developers with some mocked
data so that they can build their frontends as the backend is being
built in parallel, it’s easy to have each resolver return some mocked

58 | Chapter 4: GraphQL Servers

https://oreil.ly/jVpEi
https://prometheus.io
https://grafana.com

data. If you want to test resolver functionality in isolation, outside of
the GraphQL server, you can call each resolver independently
because they’re self-contained functions with a few inputs and a
fixed output.

Some commercial GraphQL server vendors have features that allow
you to replay all transactions from a past period of time (usually a
few days) against your changed GraphQL schema to make sure
nothing broke. You can even integrate these tests into your CI pipe‐
line with every change to the schema.

Everyone’s testing needs are unique, and there are enough commer‐
cial products and open source tools available to meet your needs.

Security
A topic of particular importance to those adopting GraphQL is
security. GraphQL’s centralization makes security easier (authentica‐
tion, authorization, etc.) but also more challenging (expensive quer‐
ies, destructive mutations, etc.).

Let’s explore the security-related topics that you’ll need to address.

Authentication
Though the /graphql URI is often publicly available, you don’t want
anyone to be able to call it. Users should be required to properly
authenticate. Authentication ensures that a user, whether a human
or another system, is who he/she/it purports to be.

Authentication should be performed in a layer that sits atop your
GraphQL server. The HTTP servers embedded within a typical
GraphQL server tend to be fairly minimalist and therefore might
not support the additional authentication-related features that a
more robust HTTP server/load balancer/reverse proxy would be
able to support. You also want to shield your GraphQL server from
abusive queries and denial of service attacks.

Because GraphQL is served over HTTP, you can take advantage of
all of the common authentication schemes and tooling available for
traditional REST APIs. See APIs for Modern Commerce (O’Reilly
2017) for more information.

Security | 59

https://oreil.ly/2j4Se

Authorization
After you’ve authenticated your client, you must now authorize that
client to call specific operations (query, mutation, subscription,
introspection), specific types (products, orders, inventory, etc.) and
specific fields (price, quantity, availableToSell).

Here are some common business rules you’d want to implement:

• The merchandising team should be able to view only product
catalog–related data. Any data related to an individual customer
shouldn’t be viewable.

• Only connections made from the CSR application should be
allowed to add credits to a customer’s account.

• Administrators should be able to do anything.
• Nobody should be allowed to call the deleteAllOrders muta‐

tion in a production environment.

If you recall from earlier in the chapter, each resolver is passed a
context object of some sort, which is used to access long-lived
objects, database connections, and other objects that are of value to
all resolvers. That context object can also be instantiated with a user
object. That user object could have the following:

• User ID/name
• Role(s)
• Organization

Within each resolver, you can then apply limited business logic.
Here’s a very simple example of how you’d prevent merchandising
team members from viewing the products field of an order:

products(obj, args, context, info) {
 if (context.user == null || context.user.role == "mer
chandising") {
 return null;
 }
 return context.order.products;
)

If the user isn’t attached to context or the user has the wrong role,
you could return null (as in this example), an empty value/array, or
throw an error to the client. It’s up to you.

60 | Chapter 4: GraphQL Servers

In this example, we’re using GraphQL.js, but the concepts are the
same regardless of your GraphQL server implementation.

Expensive Queries
One of the benefits of GraphQL is that it allows you to query and
mutate large amounts of data with a single line of text. Can you
imagine the amount of work a GraphQL server would need in order
to serve this response?

query lotsOfData {
 allProducts
 allSKUs
 allCategories
 allCustomers
 allOrders
}

That single query would quickly peg any server’s CPU. The response
size would be well into the gigabytes. If someone were to acciden‐
tally run that a few times, it could very quickly bring down an entire
GraphQL server.

Another challenge with GraphQL is that its ability to traverse a
graph can lead to deep recursions that burn valuable resources. You
could define a product with a reference to category and a category
with a reference to all of its products as follows:

type Product {
 category: Category!
}

type Category {
 products: [Product]
}

Now imagine a query like this:

query somethingMalicious {
 allProducts {
 category {
 products {
 category {
 products {
 category
 }
 }
 }
 }

Security | 61

 }
}

Fortunately, there are well-established ways to protect your
GraphQL server from overly complex queries, whether malicious or
not.

Query size limits
Before the query even hits your GraphQL server, you can filter out
unusually large HTTP requests. Large could be defined as follows:

• Number of characters
• Number of bytes
• Number of unique types and/or fields requested

This filtering can be done in the HTTP server above your GraphQL
server.

Clearly this isn’t very effective, but queries that are dramatically
larger than others should be filtered. You might want to block all
HTTP requests that are larger than 250 kilobytes, for example.

Timeouts
Another way to protect your GraphQL server is to kill queries that
are taking too long to execute. If a query is running for 10 seconds,
something is probably wrong and the query should be terminated.

It’s best to terminate long-running queries at both the HTTP server
above the GraphQL server as well as within the GraphQL server
itself. Depending on the implementation, it is possible to halt the
execution of the resolvers, but there might be unexpected errors as
connections to data sources are abruptly terminated.

Allowlists
Rather than allow all GraphQL queries, another approach is to cre‐
ate an allowlist of acceptable queries. Only queries on the list are
allowed to be executed.

If you have control over your clients, you can run tools like Persist‐
GraphQL to analyze your code and pull out any GraphQL queries.
Those queries are then added to the list. If you were to pull up
GraphiQL and arbitrarily execute queries, they wouldn’t work.

62 | Chapter 4: GraphQL Servers

https://oreil.ly/4iVuY
https://oreil.ly/4iVuY

Another option is to watch the queries executed over the course of a
week and build an allowlist from that. Subsequent queries not on
that allowlist wouldn’t be allowed to be executed.

Query depth
Another option for protecting your GraphQL server is to check the
depth of your queries before you execute them. Using something
like graphql-depth-limit, you can see how many levels deep your
queries are.

For example, this query is one level deep:

query somethingMalicious {
 allProducts
}

This query is two levels deep:

query somethingMalicious {
 allProducts {
 category
 }
}

And so on.

Part of the value of GraphQL is that you can form these large, nested
queries. But there needs to be a limit. A query five levels deep is
verging on abusive. A query 10 levels deep is definitely abusive.

An advantage of checking query depth is that it forces your develop‐
ers to come up with more elegant solutions. Nobody wants to write
or debug a query that’s five levels deep.

Query complexity/cost
Similar to query depth, you can estimate the cost of a query before
it’s executed by looking at its complexity. Here are some factors that
influence a query’s complexity:

• Nesting depth
• How many fields are requested
• How many types are requested

Assuming defaults from graphql-query-complexity, the following
query would have a cost score of 2:

Security | 63

https://oreil.ly/jrZ3i
https://oreil.ly/dyU8h

query {
 product(id: "94695736", locale: "en_US") { # cost=1
 name # cost=1
 }
}

You could assign a higher weight to specific fields. For example,
retrieving a product and its attributes is pretty straightforward. Now
let’s add in price:

query {
 product(id: "94695736", locale: "en_US") { # cost=1
 name # cost=1
 description, # cost=1
 brandIconURL, # cost=1
 price # cost=5
 }
}

This query comes out with a cost of 9. Price has a higher complexity
score because retrieving it requires another call to a different REST
API. Network hops are always more expensive and therefore cost
more.

You then can set a maximum cost for a query. For example, you
could set a cost limit of 100. As with query depth, enforcing a maxi‐
mum cost forces your developers to come up with more elegant sol‐
utions.

Merging Schemas
The greatest value of GraphQL is that there’s a single schema for
frontend developers to execute queries against. Developers can get
any data they want from any backend datasource with one query.
The GraphQL schema and the interconnectedness of the types and
fields is what enables this. Unfortunately, the GraphQL layer can
quickly become a monolith. Imagine having 25 different microser‐
vice teams, each trying to contribute to a single GraphQL schema as
depicted in Figure 4-4. It quickly becomes complicated. The whole
“monolith in the pipes” problem is what led to service-oriented
architecture’s decline.

Given this tension between centralization and decentralization, how
do you allow individual teams to work in parallel while exposing a
single cohesive GraphQL schema to your clients?

64 | Chapter 4: GraphQL Servers

Figure 4-4. Centralization of GraphQL versus decentralization of cli‐
ents/microservices

Separate Files
A very simple yet effective way of distributing the ownership of your
GraphQL schema is to break apart your schema into separate physi‐
cal files. When you instantiate your GraphQL server, you need only
to pass it a string containing your schema definition. That string
could be retrieved from 1 file or 100 files, it doesn’t matter to your
server. It needs a single string. At runtime or at build time, you
could easily combine multiple files. Popular libraries like graphql-
import can automate this process for you.

In this model, you would have your pricing microservice team
own pricing.graphql, while your product catalog team would own
product_catalog.graphql, and so on. Different teams will be
touching other team’s schema definitions, but at least there’s some
ownership and physical separation of definitions.

Schema Stitching
To this point, we’ve only discussed having different microservice
teams within an organization contributing to the same schema.
With many software vendors exposing their own GraphQL end‐
points, your frontend developers could end up having to call

Merging Schemas | 65

https://oreil.ly/arshA
https://oreil.ly/arshA

different /graphql endpoints based on what data they want to
retrieve. Suppose that you have a commerce platform vendor, a
CMS vendor, and some microservices you’ve built in-house. Each
organization exposes its own /graphql endpoint as follows:

Commerce platform: http://commerce-platform-vendor.com/graphql
query product {
 product(id: "94695736") {
 displayName
 }
}

CMS: http://cms-vendor.com/graphql
query content {
 content(productId: "94695736") {
 longDescription
 images
 }
}

Your own microservices: http://your-company.com/graphql
query inventory {
 inventory(productId: "94695736") {
 quantity
 }
}

Imagine the challenges your frontend developers would have calling
each of those endpoints, each with their own authentication and
authorization schemes. You might as well go back to calling individ‐
ual REST endpoints. You can run into the same issue if you have
multiple teams within an organization each exposing their own
GraphQL endpoint.

With GraphQL schema stitching (again, not part of the GraphQL
specification), you can combine those three queries into one:

query productDetailPage {
 product(id: "94695736") {
 displayName
 }

 inventory(productId: "94695736") {
 quantity
 }

 content(productId: "94695736") {
 longDescription

66 | Chapter 4: GraphQL Servers

 images
 }
}

To set it up, you need a GraphQL gateway that exposes its
own /graphql endpoint. That gateway then connects to and merges
the schemas from the other /graphql endpoints.

The big drawback with schema stitching is that you must query each
type. You can’t have one query that accesses one type (like “product”
in this example). Instead, you need to have one query that accesses
the product, inventory, and productContent types. Another draw‐
back is that there can be naming conflicts. For example, what hap‐
pens if two schemas both define a type named product?

Schema Federation
Increasingly, schema federation is replacing schema stitching.
Schema federation allows multiple teams/vendors to contribute to a
single type, so that clients need to query only one type.

Here’s an example of how you’d instantiate your Apollo-based
GraphQL server with different types from different sources:

const gateway = new ApolloGateway({
 serviceList: [
 { name: 'product', url: 'http://commerce-
platform-vendor.com/graphql' },
 { name: 'content', url: 'http://cms-vendor.com/
graphql' },
 { name: 'inventory', url: 'http://your-
company.com/graphql' }
]
});

(async () => {
 const { schema, executor } = await gateway.load();
 const server = new ApolloServer({ schema, executor });
 server.listen();
})();

You can then query a single type (in this case product) and it will
magically pull fields from the appropriate types from the appropri‐
ate /graphql endpoints provided the @key and @external directives
are properly used:

query productDetailPage {
 product(id: "94695736") {
 displayName # from http://commerce-

Merging Schemas | 67

platform-vendor.com/graphql
 longDescription # from http://cms-vendor.com/
graphql
 images # from http://cms-vendor.com/
graphql
 inventory # from http://your-
company.com/graphql
 }
}

Schema federation at scale is difficult but worth it due to the
autonomy it gives each team.

Final Thoughts
By now you should have a firm understanding of the shortcomings
of using plain REST for commerce, graphs and how they are used in
everyday life, the origins of GraphQL, the GraphQL specification,
and how GraphQL clients and servers work.

Adopting GraphQL will give your frontend developers a substantial
competitive advantage by allowing them to get exactly the data they
want, without the burden of trying to find and retrieve data from
various REST APIs. Even though GraphQL is an additional layer to
maintain, many will find that not having to support many diverse
frontends that rapidly change will far outweigh the overhead incur‐
red by adopting it.

Happy GraphQL’ing!

68 | Chapter 4: GraphQL Servers

About the Author
Kelly Goetsch is chief product officer at commercetools. He came to
commercetools from Oracle, where he led product management for
their microservices initiatives. Kelly previously held senior-level
product development and go-to-market responsibilities for key
Oracle cloud products representing revenue in the nine-figure
range. Prior to Oracle, he was a senior architect at ATG (acquired by
Oracle), where he was instrumental to 31 large-scale ATG imple‐
mentations. In his last years at ATG, Kelly oversaw all of Walmart’s
implementations of ATG around the world.

Kelly has expertise in commerce, microservices, and distributed
computing, having spoken and published extensively on these top‐
ics. He is the author of three books: APIs for Modern Commerce
(O’Reilly, 2017), Microservices for Modern Commerce (O’Reilly,
2016), and E-Commerce in the Cloud (O’Reilly, 2014).

He holds a bachelor’s degree in entrepreneurship and a master’s
degree in management information systems, both from the Univer‐
sity of Illinois at Chicago. Kelly also holds three patents, including
one key to distributed computing.

Acknowledgments
Thank you to Tori Hall, Stephanie Sprinkle, Rob Senn, Laura Luiz,
Yann Simon, Tamas Piros, and Camilo Jimenez.

	Cover
	Copyright
	Table of Contents
	Chapter 1. Introducing GraphQL
	Commerce Requires More Than REST
	The Challenges of REST APIs

	What Is GraphQL?
	What Are Graphs?
	Commerce Graphs
	In the Beginning…
	Introducing GraphQL
	Benefits of GraphQL
	Drawbacks of GraphQL

	GraphQL Compared to REST APIs
	Final Thoughts

	Chapter 2. The GraphQL Specification
	Introducing the GraphQL Specification
	What’s in the GraphQL Specification?
	What’s Not in the GraphQL Specification?

	GraphQL Specification Governance and History
	Principles of the GraphQL Specification
	Evolvable
	Data Oriented
	Client Centric
	Strongly Typed

	GraphQL Terminology
	Types
	Fields
	Arguments
	Variables
	Fragments
	Interfaces

	GraphQL Operations
	Queries
	Mutations
	Subscriptions
	Introspection

	Final Thoughts

	Chapter 3. GraphQL Clients
	Low-Level Networking
	Batching
	Authentication
	Caching
	Language-Specific Bindings
	Frontend Framework Integration
	Final Thoughts

	Chapter 4. GraphQL Servers
	Server Implementations
	Monitoring
	Testing
	Security
	Authentication
	Authorization
	Expensive Queries

	Merging Schemas
	Separate Files
	Schema Stitching
	Schema Federation

	Final Thoughts

	About the Author

