

for everyone, everywhere

Ultra-Rapid BioChaperone Insulin Lispro (BC LIS): Linear Dose-Response and Faster Absorption than Insulin Lispro (LIS)

Grit Andersen¹, Bertrand Alluis², Gregory Meiffren², Aymeric Ranson², Cyril Seroussi², Martin Gaudier², Olivier Soula², Annelie Fischer¹, Leszek Nosek¹, Tim Heise¹ ¹Profil, Neuss, Germany; ²Adocia, Lyon, France

Abstract

Background and aims: This double-blind, randomised, four period crossover study investigated the dose-response relationship of BC LIS, a novel ultra-rapid insulin lispro formulation.

Materials and methods: Thirty-eight male patients with type 1 diabetes received single doses of 0.1, 0.2 and 0.4 U/kg of BC LIS and 0.2 U/kg of LIS under automated euglycemic clamp conditions (ClampArt®, clamp duration 12h

Results: Mean baseline adjusted insulin (INS) profiles are given in the Figure 1. Ultra-rapid properties of BC LIS were confirmed with significantly greater early exposure and higher glucose infusion rates (GIR) in the first hour post-dosing than LIS at 0.2 U/kg (AUC_{INS(0-1h)} 71 vs. 48 h*mU/L, AUC_{GR(0-1h)} 205 vs. 122 mg/kg, all comparisons p <0.001). Late effect was significantly lower for BC LIS (AUC_{GIRI2.9h)} 357 vs. 446 mg/kg, p=0.0115). Dose-proportionality was established (AUC_{GIRS,88)} 35 / VS. 440 INB/RS, J=0.0113). DOSE POPORTONIAN, TO ACCOUNT OF GREAT AND AUTOMOTIVE TO THE AUTOMOTIVE AND AUTOMOTIVE TO AUTOMOTIVE AUTO 726, 1357 and 2422 mg/kg for 0.1, 0.2 and 0.4 U/kg). BC LIS was well tolerated; no injection site reactions were observed.

Conclusion: BC LLS shows dose-linear absorption and action at clinically relevant doses of up to 0.4 U/kg in subjects with type 1 diabetes. Because of its ultrarapid action BC LIS has the potential to improve postprandial glucose control.

Introduction

- Current prandial insulin analogues do not act fast enough to fully match the kinetics of the physiological post-meal insulin secretion BioChaperone is a library of excipients derived from naturally occurring molecules designed
- to enhance the effectiveness and safety of therapeutic proteins and their ease of use for
- BioChaperone Insulin Lispro (BC LIS) has been developed as a second generation of prandial insulin analog lispro aimed at further improving the pharmacokinetic (PK) and glucodynamic properties of currently marketed insulins and insulin analogues.

Objective: Characterize BC LIS dose-response and compare time-action profile versus equivalent dose of LIS (Humalog) in patients with type I diabetes.

- This was a randomized, single-center, double-blind, four-way crossover euglycemic clamp study in male subjects with type I diabetes.
- administration of BC LIS at a dose of 0.1, 0.2 or 0.4 U/kg or LIS at 0.2 U/kg in random order Pharmacokinetics of insulin were determined with an immunoradiometric sandwich assay
- Pharmacodynamics of insulin were assessed based on Glucose infusion rates (GIR).

Study Schematic

This study was funded by Adocia and performed by Profil. NCT trial number: NCT02146651 This product is developed in partnership with Fli Lilly since December 2014. Presented at the American Diabetes Association, 05-09 June 2015, Boston, USA

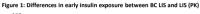
Subject Disposition & Demographics

Table 1: Subject Disposition and Demographics

Parameter	Mean (SD)
Age (years)	47 (11.7)
Height (m)	1.80 (0.05)
Weight (kg)	80 (7.8)
BMI (kg/m²)	24.7 (1.9)
Diabetes duration (years)	23 (12.2)
HbA1c (%)	7.5 (0.8)
C-Peptide (nmol/L)	0.05 (0.05)

Statistical analysis

- Dose-response/exposure relationships of BC LIS were assessed using a regression model with the logtransformed endpoint as response variable and log-dose as independent variable.
- Dose linearity of PD endpoints were assessed using a regression model with the untransformed endpoint as response and dose and dose*dose as independent variable
- Dose-response differences of RC LIS and treatment differences between RC LIS and LIS were analyzed using a linear mixed effect model with treatment, period and sequence as fixed effects and subjects within sequence as random effect.


Safety Results

- No serious or other significant adverse events occurred.
- One mild injection site reaction (mild erythema) occurred after dosing with LIS 0.2 U/kg.
- There were 14 mild (71%) or moderate (29%) adverse events rated as possibly related to study drug (10 with BC LIS and 4 with LIS). All subjects fully recovered from the adverse events.
- BC LIS was well tolerated with safety profile not different relative to LIS.

Table 2: PK/PD Parameters

	BC LIS 0.1 U/kg	BC LIS 0.2 U/kg	BC LIS 0.4 U/kg	LIS 0.2 U/kg	p-value
harmacokinetic (PK) pa					ns
C _{max Ins} [mU/L]*	52 (16)	99 (35)	190 (53)	90 (28)	0.0404
t _{max les} [min]	40 (12; 105)	40 (25; 105)	45 (25; 120)	60 (25; 105)	< 0.0001
Early t _{0.5maxins} [min]	14 (7; 28)	14 (8; 27)	15 (6; 32)	27 (12; 43)	< 0.0001
AUC _{Ins(0-1h)} [h*mU/L]	35 (16; 54)	70 (27; 119)	139 (55; 229)	48 (18; 84)	< 0.0001
AUC _{ins(0-12h)} [h*mU/L]	96 (40; 200)	195 (123; 449)	430 (322; 851)	201 (142; 504)	0.4039
Pharmacodynamic (PD) parameters, based on glucose infusion rates (GIR)					
GIR _{max} [mg/kg/min]*	4.8 (1.9)	7.4 (2.7)	10.2 (2.5)	6.6 (2.3)	0.0661
t _{GIR max} [min]	83 (42; 169)	86 (55; 200)	109 (65; 221)	117 (71;225)	0.0005
Early t _{0.5max GIR} [min]	30 (11; 45)	32 (16, 63)	31 (23; 49)	42 (24; 81)	< 0.0001
AUC _{GIR 0-30min} [mg/kg]	18 (0; 80)	42 (0; 94)	60 (8; 121)	0 (0; 63)	< 0.0001
AUC _{GIR 0-1h} [mg/kg]*	137 (62)	205 (88)	296 (99)	123 (58)	< 0.0001
AUC _{GIR 0-3h} [mg/kg]*	577 (199)	952 (350)	1411 (346)	821 (288)	0.0090
AUC _{GIR 3-8h} [mg/kg]*	155 (97)	394 (206)	996 (337)	482 (239)	0.0115
AUC _{GIR 0-12h} [mg/kg]*	734 (231)	1353 (443)	2424 (521)	1307 (374)	0.4461

Values are mean ± SD, p-values are based on LS-Mean Difference for the comparison between 0.2 U/kg BC LIS and LIS.

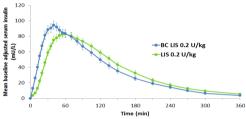
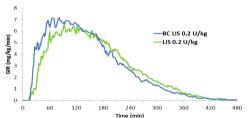
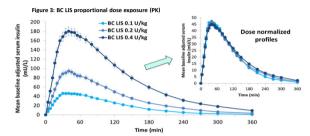
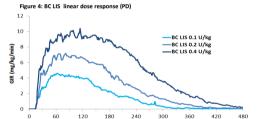





Figure 2: Differences in early metabolic effect between BC LIS and LIS (PD)

- o BC LIS displayed an ultra-rapid absorption of insulin with a total exposure similar to LIS.
- o Total glucodynamic effect was similar for BC LIS and LIS over the entire clamp interval (AUC_{GIR(0-12)}).
- Onset of action was significantly earlier for BC LIS than for LIS (defined as time from dosing until decrease in blood glucose by 5 mg/dl).
- Early glucodynamic effect was significantly stronger for BC LIS than for LIS both over 30 minutes, 1 hour and up to 3 hours post-dose.
- The glucodynamic effect in the late part of the GIR profile (3-8 hours post-dose) was significantly lower for BC LIS compared to LIS.
- BC LIS had a shorter duration of action than LIS as indicated by a significantly shorter time to late half maximum GIR (3.78 vs. 4.07 hours; p= 0.0004).
- Total exposure (AUC_{LIS(0-12)}) and maximum insulin concentration (C_{max}) increased proportionaly with increasing the dose of BC LIS.
- Dose-proportionality was established for BC LIS (all AUCs_{BC LIS} and Cmax) as showed in the superimposed dose normalized profiles (Figure 3 inset).
- Dose-linearity was shown for pharmacodynamics (all AUCs_{cip} and GIR_{max})

Conclusions

BC LIS showed a proportional dose-exposure relationship and a linear dose-response relationship across the dose-range of 0.1, 0.2 and 0.4 U/kg.

Time (min)

- BC LIS is an ultra-rapid insulin compared to Humalog as demonstrated both in PK and
- Trial results confirm that BC LIS in comparison to LIS more closely mimics the prandial insulin secretion pattern. Therefore BC LIS has the potential to achieve a better postprandial glucose control.
- BC LIS is currently tested in a meal tolerance study in subjects with type I diabetes.

