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Abstract—Elliptic curve cryptography (ECC) is widely used
as an efficient mechanism to secure private data using public-
key protocols. This paper focuses on ECC over prime fields
(GF(p)). We present a novel hardware architecture that calculates
the elliptic curve point multiplication (ECPM). Our processor
supports arbitrary prime fields with sizes up to 1024 bits.
Different standards, which use curves in short Weierstrass form
are supported. A Xilinx Virtex-7 implementation of the proposed
hardware architecture takes from 0.69 ms for a 192-bit point
multiplication up to 9.7 ms for 512-bit. The implementation takes
only 20 DSP slices and 6816 LUTs. To the authors knowledge,
this is the best performance reported so far for ECC point
multiplication for arbitrary prime field curves without the use
of FPGA reconfiguration.

Index Terms—Elliptic curve cryptography (ECC), field pro-
grammable gate array (FPGA), finite field arithmetic, Mont-
gomery multiplication, scalable ECC processor

I. INTRODUCTION

Miller [1] and Koblitz [2] independently proposed elliptic

curve cryptography (ECC) in 1985 as an approach to public

key cryptography based on a group of points on an elliptic

curve over a finite field. The security of cryptographic algo-

rithms using the group of points on an elliptic curve is based on

the elliptic curve discrete logarithm problem (ECDLP). After

thirty years of research, the fastest algorithm for solving the

ECDLP in this group still exhibits exponential behavior. In

contrast, the DLP for other public key cryptosystems such as

RSA[3] can be solved in sub-exponential time. Thus, ECC

parameters can be chosen smaller than RSA for an equal level

of security. Computation with smaller parameters has shown

to be more efficient. Therefore ECC has recently gained more

interest.

Implementations of algorithms associated with public-key

cryptography in hardware accelerators are always a trade-

off taken up by circuit area, throughput, and flexibility. The

majority of cryptography systems using hardware accelerators

relocate only computationally expensive parts to hardware

accelerators. In ECC protocols, the by far most expensive part

is the elliptic-curve point multiplication (ECPM).

The ECPM may be implemented either over GF(2m) or

GF(p) respectively. Many researchers have been focusing on

the implementation over GF(2m) because computation is faster

than GF(p) on hardware. However, the ECC over GF(p) seems

to be safer, i.e. harder to break under same key sizes. The

focus of this paper is on implementations of the finite field

arithmetic over GF(p).

The typical implementation for ECC applications follows

a top-down structure. On top are the ECC protocols such

as ECDSA (elliptic-curve digital signature algorithm) [4] or

ECDH (elliptic-curve Diffie Hellman key exchange). They

make use of the ECPM, which is calculated by the double-

and-add algorithm (see Algorithm 2). The next layer consist of

algorithms for point doubling (Algorithm PDBL, 4) and point

addition (Algorithm PADD, 3). PDBL and PADD consists

of modular addition, subtraction, multiplication and inversion,

which form the bottom layer of operations.

Different ECPM hardware implementations have been doc-

umented for GF(p). State of the art papers in this field often

describe specific applications. They are either not particularly

flexible in size of parameters [5], [6] or support only a

specified field [7], [8], or both [9]. In this paper, an architecture

is proposed that supports different standards and user-defined

curves without the necessity of reconfiguration. In other words,

both, size of parameters and prime fields may be chosen

arbitrarily.

The architecture presented here is based on the Montgomery

multiplier from [10], the point doubling formula stems from

[11] and point addition from [12]. In particular, a pipeline

for the word wise digit-digit Montgomery multiplier and a

parallelization of the point arithmetic is described.

This paper is organized as follows. A short mathematical

background related to ECC and Montgomery multiplication is

given in Section II. The hardware architecture is described in

Section III. The implementation results on a Xilinx Virtex-7

FPGA and a comparison with related designs is presented in

Section IV. Section V concludes this paper.

II. BACKGROUND INFORMATION

In this section, a brief introduction to prime field and

modular arithmetic is given.
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A. Elliptic Curves

An elliptic curve over a prime field GF(p) can be defined by

the short Weierstrass equation (1). An elliptic curve in affine

coordinates is the set of solutions, which satisfy the equation

y2 = x3 + ax+ b (mod p) (1)

where

p > 3 (2)

and

4a3 + 27b2 �= 0. (3)

The parameters a, b and the prime p specify the curve. The

variables (x, y, a, b) are all integers between 0 and p− 1.

Different standards for recommended curves in short Weier-

strass form exist. Certicom Research standardized the secplr1
[13], the German Brainpool team generated some curves

named brainpoolPlr1 [14], and the most widely used curves

are specified by NIST, the NIST-Pl [4]. All standards define a

family of curves with different l. l defines the binary length of

the parameters and lies typically between 160 and 521 in state

of the art ECC algorithms. This paper will consider curves

with l ≥ 192.

B. Curve Arithmetic

Possible operations with points on a curve are PDBL and

PADD. In order to calculate the ECPM based on a given point

(Q = u·P ), l PDBL and ≈ l/2 PADD are required. The PADD

is defined by

R(x3,y3) = P(x1,y1) +Q(x2,y2)

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2 (mod p)

y3 =

(
y2 − y1
x2 − x1

)
· (x1 − x3)− y1 (mod p)

(4)

and the PDBL by

Q(x3,y3) = 2 · P(x1,y1)

x3 =

(
3x2

1 + a

2y1

)2

− 2x1 (mod p)

y3 =

(
3x2

1 + a

2y1

)
· (x1 − x3)− y1 (mod p).

(5)

Both operations need a computationally expensive modular

inversion. An ECPM in affine coordinate requires on average

1.5 · l inversions. This is reduced to a single inversion, if

projective coordinates are used. Many different representations

for projective coordinates are mentioned in the literature. This

work uses Jacobian coordinates where x,y is represented as X,

Y, Z, which satisfy the equation

x =
X

Z2
,

y =
Y

Z3
.

(6)

Different formulas for PADD and PDBL in projective coor-

dinates can be found in [15]. Some of them can be parallelized

such that many hardware multipliers can be highly utilized.

This work uses the formulas for double (Algorithm 4) from

[11] and for addition (Algorithm 3) from [12].

C. Montgomery Multiplication

PADD and PDBL consist of modular addition, subtrac-

tion and multiplication. Modular reduction after an addition

or subtraction is computationally trivial. However, modular

reduction after multiplication is more complex. NIST and

Certicom Research standardized curves, where the field p is

a generalized Mersenne prime. Multiplication with modular

reduction can be implemented efficiently, when the modulus

is a generalized Mersenne number [4]. The Brainpool curves

are not of any special form. An efficient way for modular

multiplication with an arbitrary modulus is the Montgomery

multiplication (MM) [16]. This operation results in

Z = X · Y ·R−1 mod p (7)

where R−1 = 2l.
One can deal with the error term R−1 by applying the

following rule: At the beginning of a calculation, all variables

have to be multiplied by R: This is computed by MM by the

precomputed value R2 mod p.

XR = X ·R2 ·R−1 mod p (8)

This procedure is sometimes referred to as transformation into

Montgomery space, because all following operations can be

calculated with the transformed variable, if MM is used instead

of modular multiplication. Modular addition and subtraction in

Montgomery space are equal, since the distributive law

(X + Y ) ·R = XR+ Y R (9)

can be applied. After the ECPM is completed, the result has

to be divided by R. The division is computed by another MM

by 1.

Z = ZR · 1 ·R−1 mod p (10)

III. IMPLEMENTATION DETAILS

This section starts with the Montgomery multiplier archi-

tecture. It shows the pipeline and the modifications of the

algorithm compared to the original from [10]. Then, the

parallelization of PDBL and PADD formulas are described.

Furthermore, it will be shown how the final inversion can be

done with least computational resources. Finally, we show how

many clock cycles our architecture needs per ECPM.

A. Montgomery Multiplier

Morales-Sandoval and Diaz Perez presented in 2015 a

word-based Montgomery multiplication architecture which

they called iterative digit-digit Montgomery multiplication

(IDDMM) [10]. Our work uses the IDDMM architecture as

a starting point, because:

• Arbitrary integer sizes are supported.

• It fits perfectly into FPGAs (use of DSPs and RAMs).

• The authors reported outstanding performance in terms

of area and throughput.
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• No final addition is needed.

During our tests, we realized that the architecture produces

false results in some cases. In particular, it turned out that

the errors occurs when a carry remains at the end of the

inner loop (see Algorithm 1). Thus, we expanded the IDDMM

architecture by a separate mechanism for the carry. As a

consequence, an additional final subtraction is needed in the

algorithm. The additional parts due to the carry handling are at

lines 3, 11-13, 21 and the subtraction at 24 - 26 in Algorithm

1.

Algorithm 1 Iterative digit-digit Montgomery algorithm

Input:
n = l

k � k = word size, l = binary length of p
X = (0, Xn−1, ..., X0) � Factor 1

Y = (Yn−1, ..., Y0) � Factor 2

p = (0, pn−1, ..., p0) � Modulus

R = 2l = βn � β = 2k

p′ = −p−1 mod β
Output:

A =
∑n−1

0 Aiβ
i = X · Y ·R−1 mod p

1: function IDDMM(X,Y )

2: An,...,0 ← 0
3: carry ← 0
4: for i← 0 to n− 1 do
5: C ← 0
6: for j ← 0 to n do
7: S ← Aj +Xj · Yi

8: if j = 0 then
9: q ← S · p′ mod β

10: end if
11: if j = n then
12: S ← S + carry
13: end if
14: R← q · pj
15: Uj ← S +R+ C mod β � lower word

16: C ← S +R+ C div β � upper word

17: if j > 0 then
18: Aj−1 ← Uj

19: end if
20: end for
21: carry ← C � carry ← 0 or 1
22: end for
23: An ← carry
24: if An,...,0 ≥ pn−1,...,0 then � A < 2 · p
25: An−1,...,0 ← An,...,0 − pn−1,...,0

26: end if
27: return An−1,...,0

28: end function

The computation time requires n2 clocks, where n = l/k, l
being the binary length of p and k the word size in bits. The

value k defines the size of hardware primitives. The architec-

ture needs two multipliers for unsigned input values of size k
and two adders with input size 2k. In this work, three versions

for different k (16, 32 and 64) were implemented. Since the
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Fig. 1: The architecture of the IDDMM consists of unsigned

multipliers and unsigned adders. Together with the pipelined

structure, a high clock frequency can be applied and yet small

latency achieved.

calculation time of a single Montgomery multiplication drops

quadratically with rising k, the 16-bit version performance is

significantly lower than the 32-bit version and therefore not

considered any further.

Our architecture needs approximately half the computation

time compared to the solution from [10]. The number of clocks

is given mainly by l and k. Expanding k results in higher

usage of FPGA slices. To increase performance, we focused on

speeding up the maximum clock of the Montgomery multiplier

by reducing the length of the critical path. By adding pipeline

stages to the MM architecture, the maximum clock speed

could be significantly increased. As shown in Fig. 1, eight

pipeline stages are created as follows: Both multiplication
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units contain three stages each, and the additions contain one

each. However, the pipeline has a disadvantage. The input

Aj , which is the outcome Uj at stage 8 from the previous

iteration loop, is needed before stage 4. Filling the pipeline is

only possible if n = l/k ≥ 6. As a consequence, the version

with k = 64 is not suited well if l < 384. Smaller l
could be computed with the k = 64 version as well, but

the required clock count does not decrease. Furthermore, four

extra clock cycles are needed in every outer loop for the

calculation of q. All in all, the proposed MM has a latency

of n2 + 5n+ 10 clock cycles. Nevertheless, the computation

time is significantly lower than the version without pipeline

due to the higher clock frequency that can be applied.
The two multipliers for unsigned input values of the MM

make use of the DSP slices available on Virtex-7. One slice

is filled with multiplications of size 16 · 16 bit. To use larger

word size, scheme (11) is being used.

c = a · b, γ = 216

a = a31...16 · γ + a15...0

c0 = a15...0 · b15...0
c1 = a31...16 · b15...0
c2 = a15...0 · b31...16
c3 = a31...16 · b31...16
c = c3 · γ2 + c2 · γ + c1 · γ + c0

(11)

Four parallelized DSP slices are spent on the 32 · 32 bit mul-

tiplication unit. Two multipliers are needed for the IDDMM

architecture. Because one additional DSP is used for the final

subtraction, nine DSP slices per Montgomery multiplier are

used for the k = 32 version.
The version with k = 64 uses scheme (11) twice recursively.

sixteen DSP slices are used in parallel per multiplication unit.

Because the additions and subtractions are calculated in fabric,

one MM instance occupies 32 DSP slices.

B. Point Multiplication

ECPM

FSM

Distributed RAM

Montgomery
multiplier 1

Montgomery
multiplier 2

Add
Sub

start
done

data

control
signals

Fig. 2: The algorithms are stored in the FSM of the ECPM

core

The hierarchy of the ECPM core is depicted in Fig. 2.

It uses two Montgomery multipliers and one modular addi-

tion/subtraction unit. As already mentioned in the sections

above, the ECPM is calculated by Algorithm 2 which uses

PADD and PDBL. The complete calculation needs some

additional steps.

1) Transform the starting point x0, y0 and the variables a
and 1(= Z0) into Montgomery space.

2) Use ECPM Algorithm 2 to obtain Q = u · P0 in

projective Jacobian coordinates.

3) Calculate the modular inversion Z−1 ·R from Z ·R.

4) Compute the affine coordinates x · R, y · R out of

X ·R, Y ·R, Z−1 ·R
5) Leave Montgomery space with two final Montgomery

multiplications.

These parts as well as the ECPM Algorithms (2, 3, 4) are

stored in the finite state machine (FSM) of the ECPM core.

Step 1, 4 and 5 need just a few Montgomery multiplications.

Step 2 needs over 90% of the total computation time. This part

is responsible for the decision to use two MM instances. The

inversion in Step 3 is calculated using Fermat’s little theorem

Z−1 = Zp−2 mod p. (12)

The square and multiply algorithm, that might be applied

for the RSA algorithm [3], can be parallelized using both

Montgomery multipliers. Because both Montgomery multi-

plier are used, the calculation time of the inverse is equal to l
times the calculation time of the Montgomery multiplication.

An advantage of this method is that the computation of the

inversion uses the same hardware components as the ECPM.

Algorithm 2 Double and add (MSB first)

Input:
P0 � point on curve

u � integer u = ul−1,...,0 � ul−1 = 1
Output:

Q = u · P0

1: function PDBLADD(P0, u)

2: Q← P0

3: for i← l − 2 to 0 do
4: Q← PDBL(Q) � Algorithm 4

5: if ui = 1 then
6: Q← PADD(Q,P0) � Algorithm 3

7: end if
8: end for
9: return Q

10: end function

C. Computation Time

The double and add Algorithm 2 needs l times PDBL of

Algorithm 4. The parallelization of this procedure is shown

in Fig. 3a. All squares and multiplications are calculated with

the IDDMM. Modular addition and subtraction is performed

with one unit which takes n + 1 clock cycles. The PDBL

computation time is around fife times the computation time of

IDDMM plus some offset for additions and RAM copy. The

computation time could be reduced to four times IDDMM if an

additional multiplier was used. However, this would result in a

lower utilization ratio of the multiplier. Utilization would fall

from 90% with two multipliers down to 75% if three IDDMMs

were used.
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Algorithm 3 ECC point addition

Input:
X1, Y1, Z1 � point, x1 = X1/Z

2
1 and y1 = Y1/Z

3
1

X2, Y2 � point in affine coordinates (Z2 = 1)
Output:

X3, Y3, Z3 = (X1, Y1, Z1) + (X2, Y2)
1: function PADD(X1, Y1, Z1, X2, Y2)

2: T1 ← Z2
1 � IDDMM(Z1, Z1)

3: T2 ← T1 · Z1

4: T1 ← T1 ·X2

5: T2 ← T2 · Y2

6: Z3 ← X1 − T1 � modular subtraction

7: T2 ← T2 − Y1

8: T4 ← Z2
3

9: T1 ← Z3 · T4

10: T4 ← T4 ·X1

11: X3 ← T 2
2

12: Y3 ← T1 · Y1

13: T3 ← 2 · T4

14: X3 ← X3 + T1

15: X3 ← X3 − T3

16: T4 ← X3 − T4

17: T4 ← T4 · T2

18: Z3 ← Z1 · Z3

19: Y3 ← T4 − Y3

20: return X3, Y3, Z3

21: end function

Depending on u, between 0 and l PADDs are needed during

the PDBLADD. Since u is a random number in most applica-

tions, this paper does the calculations based on the assumption

that l/2 bits of u are 1 and therefore l/2 point additions are

needed for one ECPM. Similar to the point doubling, the point

addition has been parallelized using two IDDMMs (Fig. 3b).

The computation time of six times IDDMM plus an offset

could be reduced with an additional multiplier to five times

IDDMM where the utilization ratio per IDDMM would fall

from 91% to 73%.

The proposed architecture was synthesized and implemented

with Vivado and tested on a Xilinx Kintex-7 FPGA (device

xc7k325tffg900-2). The architecture with k = 32 runs with a

clock speed of 219 MHz whereas the k = 64 version works

with a 147.5 MHz clock. In Table I, the number of clocks

per operation is listed. Because of the lower bound on n of

the Montgomery multiplier, only curves with l ≥ 192 are

listed. Nevertheless, the architecture supports calculations on

smaller curves, but the hardware efficiency is lower. However,

standards using curves with l < 192 will become obsolete in

the next few years.

D. Side Channel Considerations

So far, we have been focusing on design flexibility and

performance. Let us have a closer look on security now. Ob-

viously, Algorithms 2 is vulnerable to simple power analysis

attacks (SPA, see, for instance [17]). An easy way to fix

Algorithm 4 ECC point double

Input:
X1, Y1, Z1 � point, x = X/Z2 and y = Y/Z3

a � constant from curve (often a = p− 3)

Output:
X3, Y3, Z3 = 2 · (X1, Y1, Z1)

1: function PDBL(X1, Y1, Z1, a)

2: Y3 ← Z2
1 � IDDMM(Z1, Z1)

3: X3 ← Y 2
1

4: Z3 ← X2
1

5: T1 ← a · Y3

6: T3 ← Z3 + Z3 � modular addition

7: T1 ← Y3 + T1

8: T2 ← X1 ·X3

9: T3 ← T3 + Z3

10: Y3 ← T3 + T1

11: T1 ← Y 2
3

12: T3 ← T2 + T2

13: T2 ← X2
3

14: Z3 ← T3 + T3

15: T3 ← Z3 + Z3

16: X3 ← T1 − T3

17: T1 ← Y1 · Z1

18: T3 ← Z3 −X3

19: T4 ← T3

20: T3 ← T2 + T2

21: T2 ← T4 · Y3

22: T3 ← T3 + T3

23: Y3 ← T3 + T3

24: Z3 ← T1 + T1

25: Y3 ← T2 − Y3

26: return X3, Y3, Z3

27: end function

TABLE I: Clock cycles per operation

k l
number of clock cycles

+/-* IDDMM PDBL PADD inversion point mult

32

192 7 76 440 558 15’990 155’354

224 8 94 540 683 22’624 244’009

256 9 114 650 820 31’232 335’360

320 11 160 900 1130 54’400 579’440

384 13 214 1190 1488 86’784 918’029

512 17 346 1890 2348 185’344 1’939’558

521 18 354 2090 2593 208’921 2’181’466

64

192 4 76 431 543 15’990 152’186

224 5 76 434 548 18’368 196’280

256 5 76 434 548 20’992 224’320

320 6 76 437 553 26’240 282’352

384 7 76 440 558 31’488 341’165

512 9 114 650 820 62’464 670’720

521 10 160 770 696 75’545 807’797

*modular addition or subtraction
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Fig. 3: This sequence is used to parallelize the computation

of point double and add formulas using two Montgomery

multiplier and one addition/subtraction instances.

this vulnerability is to extend Algorithm 2 with the following

program stub after line 2:

7a: else then ⇒ ui = 0
7b: dummy ← PADD(Q,P0)
7c: end else

This extension is often referred to as double-and-add-always

algorithm. The insertion of a dummy point addition renders

the processing time for one point multiplication, with fixed

parameter size l, constant for any ui. Using the ECC processor

extended by the above stub lets increase the latency for one

point multiplication by 31%. E.g., the latency for one 256-bit

point multiplication with k = 32 will increase from 1.49ms to

1.96ms. For a much deeper insight about side-channel analysis

of our ECC processor, refer to [18].

IV. ANALYSIS OF THE RESULTS

Many hardware realizations of ECC processors have already

been reported. As commented in [22], about 25% of the

published processors support curves over GF(p). A fair com-

parison between the proposed architecture and other reported

ECC processor is difficult. Older publications like [23] or

[24] use old FPGA technologies that are not comparable with

architecture based on new technologies. Since Vivado does not

support FPGAs older than generation 7, we are not able to

synthesize older technology like Virtex-5 or 6 for comparison

purposes. Furthermore, some publications deal exclusively

with Montgomery multiplication and not with full ECPM.

We will start this section with a comparison of Montgomery

multiplication circuits, before comparing different ECPM

FPGA architectures. The authors did not find any reference

to an implementation with a similar degree of flexibility as

the architecture proposed here. All architectures found with

arbitrary l were limited to pseudo Mersenne prime fields

(e. g. NIST curves) [7], [8]. Other architectures supported

arbitrary fields, but had a fixed size of parameters [5] without

FPGA reconfiguration. However, our ECPM implemented on a

Virtex-7 (xcvu440-flgb2377-1) shows low latency and requires

less FPGA resources than any other implementation.

A. Montgomery Multiplier

As already mentioned in section III, the proposed Mont-

gomery multiplier architecture is based on the IDDMM from

[10]. This is a very suitable implementation to compare.

The multiplier has similar flexibility and functionality to our

realization. In comparison to the IDDMM from [10] we reach

almost double speed because of strong pipelining. On the other

hand,[10] needs much less area. The main reason is that their

implementation need less muxes, because:

• Our implementation uses distributed RAM for storage of

the intermediate results while [10] make use of block

RAM. Block RAM include all logic for parameter index

muxes.

• [10] implements its IDDMM with a constant p′. This

approach reduces the flexibility in the choose of the

Modulus p (without runtime FPGA reconfiguration). If

a p is chosen where p′ becomes 1, all logic around stage

4a - 4d in Fig. 1 can be omitted.

In [19], a high performance multiplier, which calculates

up to nine multiplications in parallel is inttroduced. If the

pipeline is filled in an application, this multiplication has better

performance in the sense of throughput per slice. However,

the multiplier needs over ten times more resources and has

only 3.5 times less laency compared to our 32-bit version. In

addition, architecture [19] has no flexibility with respect to

different operand sizes.

[20] and [21] implemented bitwise Montgomery multipliers,

which are not word based. Bitwise Montgomery multipliers

compute x · yi in a loop during l/d cycles. Bitwise architec-

tures fit well in LUTs, but do not make use of DSP slices.

Whether the DSPs are used or not, they are still on silicon and

paid for whenever FPGA is utilized. Furthermore, development

and design of bit based Montgomery multipliers with flexi-

ble parameter size is difficult without using reconfiguration.

However, [21] has reported low latency especially for large

parameter sizes (the target application is RSA). They reach

half the latency for a 1024 bit MM using eight times more

LUTs in comparison to the purposed k = 64 version.

112



TABLE II: Montgomery multiplier implementation comparison

reference arbitrary FPGA area max. freq. size(p) latency remarks

size LUTs MULTs (MHz) (bits) (μs)

this work yes Virtex-7 1917 9 225

192 0.338

k = 32

256 0.507

384 0.951

512 1.54

1024 5.31

this work yes Virtex-7 2343 32 161

384 0.472

k = 64512 0.708

1024 2.149

[10] yes Virtex-5 250* 11 107.9

256 0.74 k = 32, Arch2-Ver4

512 2.66 *unspecified number of LUTs,

1024 10.07 estimation taken from Fig. 13a

[10] yes Virtex-5 704 33 68.2

256 0.35

k = 64, Arch2-Ver4512 1.17

1024 4.21

[19] no Virtex-6 19362 108 197.7 256 0.147 max 9 calculations in parallel

[20] no Virtex-7 2361 0 152.7 256 1.68 Radix-2, d = 1

[21] no Virtex-6
10276

0 222.2
512 0.585

d = 4
20527 1024 1.16

TABLE III: Elliptic curve point multiplication implementation comparison

reference arbitrary FPGA area frequency size(p) latency remarks

size curve LUTs MULTs (MHz) (bits) (ms)

this work yes any Virtex-7 6816 20 225

192 0.69

k = 32
256 1.49

384 4.08

521 9.70

this work yes any Virtex-7 8273 64 161
384 2.12

k = 64
521 5.02

[7] yes NIST Virtex-5 6115 7 251.3

192 1.71

256 3.95

384 11.81

521 28.04

[8] yes NIST Virtex-6 32900 289 100

192 0.30

256 0.40

384 1.18

521 1.6

[5] no any Stratix-II

6200* 92 160.5 192 0.44

9177* 96 157.2 256 0.68 RNS

12958* 177 150.9 384 1.35 *ALM, kind of 8-input LUT

17071* 244 145 512 2.23

[9] no NIST Virtex-4
1825* 26 487 224 0.45

*4-input LUT
2589* 32 490 256 0.62

[6] no any Virtex-5 3657* 10 263 256 0.86 *slices, each with 4 LUTs

[25] no any Virtex-II
1694* 2 108.2 no 29.83

*slices, each with 2 4-input LUTs
1947* 7 68.2 256 15.76

B. Elliptic Curve Point Multiplication

So far, we have not been able to find any ECPM architec-

tures supporting arbitrary parameter sizes and prime fields in

the literature. There are implementations with arbitrary prime

fields and generic parameter size such as the one described

in [5]. Other reported ECC processor implementations support

flexible parameters, but they are fixed to a single curve family.

E. g., [7] and [8] are specified exclusively for NIST curves.

A comparison can be found in Table III.

Direct comparison between [7] and the proposed k = 32
version is relatively fair. [7] is disadvantaged due to the older
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Virtex-5 technology, while their modular reduction scheme is

fixed to the NIST pseudo Mersenne primes, which gives some

advantages in area and speed. Both need roughly equivalent

number of LUTs. Our architecture needs twenty instead of

seven DSP slices. However, our latency is nearly three times

lower.

The ECC processor from [8] is the fastest implementation

presently found in the literature. It is designed as high speed

ECPM and performs four times faster than our architecture for

a 256 bit scalar multiplication. The price for this performance

is the need for five times more LUTs and fifteen times more

DSP slices.

In [5], a completely different approach to the modular

reduction problem is presented. It describes an ECC processor

based on the Residue Number System (RNS). Although the

underlying 90nm Stratix-II FPGA means a serious disadvan-

tage in comparison to our state of the art FPGA, the realization

reaches half the latency compared to our solution. However,

the RNS implementation needs much more embedded multi-

pliers and cannot change the parameter size without FPGA

reconfiguration.

In [25], a compact microcoded ECC processor has been

introduced. Its small size is traded off with high processing

latency. As in our design, arbitrary curves are supported as

long as the parameter size is 256 bits or smaller. The utilization

of microcode would suggest that changing the parameter

size during runtime could theoretically be possible. With it,

their design would provide a similar flexibility as our design.

However, the authors did not elaborate any further.

V. CONCLUSION

In this paper, a highly flexible ECC processor architecture

over GF(p) has been presented. The proposed design takes

advantage of the high-performance DSP48E slices available

on Xilinx FPGAs to increase performance. It parallelizes the

PADD and PDBL operations. Modular addition, subtraction

and Montgomery multiplication run in parallel. Modular in-

version uses Fermat’s theorem. The Virtex-7 implementation

of the proposed ECC processor requires 6818 LUTs and 20

DSP48E slices. It runs at a clock frequency of 225 MHz on

a Virtex-7 FPGA. It supports arbitrary curves in short Weier-

strass form up to 1024 bits without the need to reconfigure the

hardware. The proposed ECC processor calculates the ECPM

with size 192, 224, 256, 384 and 521 in 0.69, 1.08, 1.49,

4.08 and 9.7 ms respectively. To the best of our knowledge,

the proposed ECC processor is the only implementation that

supports arbitrary prime field without the use of hardware

reconfiguration.
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