

SIGS SE February 2017

Keep your fingers off my keys today & tomorrow

Marcel Dasen VP Engineering

Securosys SA

Keys?

Encryption keys

- asymmetric e.g. RSA, ECC public/private key pairs for wrapping
- symmetric e.g. AES, RC4, 3DES
 keys
- Signature keys
 - asymmetric e.g. DSA, ECDSA public/private key pairs for signing (of object hashes)
 - hash algorithms e.g. SHA-2, SHA-3
- * Certificates
 - digitally signed public keys

The digital "certificate"

Subject identifier: securosys.ch Issuer identifier: swisssign.com Subject public key, e.g. RSA 4096 Public validity period "checksum" = hash of above Issuer signature, e.g. RSA 4096 Issuer signature validation key, e.g. RSA 4096 Subject private key

Issuer signature key

Secured

Key and Certificate Generation

- A CSR requires to
 - generate a key pair
 - safely store the private key for later usage
 - CA requires to (after RA assures validity of CSR)
 - sign CSR with the secret key
 - safely store the secret key
- CA issues the Certificate
- Keys can be "revoked" thus revocation list CRL are required

Keys have to be managed!

Key Management

- Typically trust is organized hierarchically
- Even in simple PKI case multiple key pairs are involved
- Different applications have different policies. This is best organized using multiple issuing certificates
- Keys can be "revoked" thus each CA needs to generate (and sign) revocation lists

"qualifizierte" elektronische Signatur

Codified in ZertES (SR 943.02), equivalent codifications in all EU countries [3]

* issuing device (CC EAL4+, FIPS140-2 L3, or equivalent) and audited procedures (CP/CPS)

Where are cryptographic keys used?

- Payment infrastructure
 - payment card
 - Clearing, Settlement (e.g. SIC)
- * "geregelte" digital signature
 - MWST
 - ✤ e-GOV/HEALTH/PASS,...
- Web server authentication
 - (e.g. https), "SSL" certificates
 - EV-certificates

- Infrastructure Services
 - ✤ IPSEC/SSL VPN
 - * DNSSEC
 - SMTP(mail)
- Personal digital signatures
 - S/MIME (email)
 - ssh, login
- Data Storage
 - * TDE (Oracle, SQL Server)
 - drive encryption
 - Cloud storage and service (CASB)

Private & Secret Key Storage

Unix (& Linux)

- Keys are typically stored in files, e.g. in users home directory
- Keys are protected by user / group file permissions
- privileged users (e.g. "root") can access everything

dasen\$ ls -al .ssh

drwx	1	dasen	staff	264	Jan	27	2015		
drwxr-xr-x+	1	dasen	staff	1792	May	12	16:21		
-rw	1	dasen	staff	1766	Jan	27	2015	id_	rsa
-rw-rr	1	dasen	staff	400	Jan	27	2015	id	rsa.pub

Microsoft Windows

The managed Key Store

- Dedicated Module storing encryption keys
- Device protects keys against loss and thus serves as the Trust Anchor for the infrastructure.
- One central place to store private and secret keys

Private and secret keys never leave the Security Module

On premise IT with PKI

Cloud Security

The Post Quantum World

- Asymmetric public key algorithms
 - RSA (integer factorization) broken by Shor's algorithm
 - DSA, DH, ECDSA, ECDH (discrete logarithm) broken by derived Shor algorithm
- Symmetric key algorithms
 - * AES, 3DES, ...
 - strength reduced from n-bits to n/2-bits by Grovers algorithm
 - SHA(-256) strength reduced n-bits to n/2-bits

... but...

Algo	qubits	runtime	expected # qubits to break
RSA	2n	c * n^3	~6000qb @ RSA3072
ECC	f'(n)(f(n)	c * n^3	~3000qb @ ECC512
AES	c * n	O(2^(n/2))	~6500qb @ AES 256

State of the Art: Today O(10) qubits

Proos and Zalka, 2008 Grasses et. al, 2015

...when should we worry?

- Assuming MOORE's "law", we will have to worry in 20-50y from now.
- But does it apply at all?

securosys

MOORE'S LAW

Quantum Computers are NOT on a predictable technological scaling path, but assume new DISRUPTIVE technologies.

If I worry anyhow ?

- Use Protocols mostly based symmetric (AES) cryptography
 - AES
 - Kerberos
 - Safely lock away the key (e.g. HSM)
- Use long key sizes for asymmetric algorithms
 - gives you more time to transition to new algorithms
- Be prepared for post quantum algorithms
 - Future signatures and keys may consist of much longer bit strings,
- Use upgradable crypto hardware and software

Should I wait for PQC ?

- Various Research efforts on going
 - EU SAFEcrypto
 - http://www.safecrypto.eu
 - NIST PQCrypto
 - http://csrc.nist.gov/groups/ST/post-quantum-crypto
- Candidates for PQC

* ...

- & Lattice-based (NTRU, BLISS, LWE)
- Code-based (McEliece)

These crypto systems are years away from adoption

Address Current Threats!

- Harden your infrastructure
- Use PKI with strong cryptography
- Manage your keys
- Work with trusted suppliers

Summary

- Digital keys are a crucial part of the digital world.
- Keys must be safeguarded.
 You want to know where and when they are accessed
- Keys must be managed
- PKI is the state of the art
- Keys are trusted if generated with a trustworthy key generator.
- PQC is not ready for adoption

Security technologies FOR COMMUNICATIONS SYSTEMS

Do I care? What are the risks?

securosys

- * Loss of "qualifiziertes Zertifikat", "geregeltes Zertifikat" signature certificate private key
 - * Legally binding signatures can be issued

Loss of communication certificate private keys

- * interception possibility (eaves dropping, man in the middle)
- potentially conflict with data protection laws

Loss of storage keys

- * loss of intellectual property,
- business continuity cost (e.g. after loss of credit card holder data)
- potentially conflict with data protection laws
- * Loss of "SSL" certificate private key (e.g. EV certificate)
 - Web site, email impersonation => attack vector
 - Risk for reputation with customers / partners

Integration of a trust anchor

Generating and managing keys

- Use a secure key generation device (HSM)
 - Hardware random number generator
 - Validated encryption algorithms
- Keep private keys in protected storage
 - Hardware security module
- Use a Software CA or Windows built-in CA

