SIGS Special Event in Bern About and Beyond PKI 9.02.2017

The Quantum Apocalypse

How quantum computers can really influence the cryptographic world

Dr. François Weissbaum VBS, FUB Kryptologie

Content

- 1. What is a Quantum Computer?
- 2. New Algorithms for Mathematics
- 3. Influences on Cryptography:
 - a) Symmetric Algorithms
 - b) Hash Functions
 - c) Asymmetric Algorithms
- 4. Algorithms for PKI
- 5. Research on Post Quantum Cryptography

What is a Quantum Computer?

Classical computer:

- memory made up of bits
- each bit is either 1 or 0
- fully deterministic

A quantum computer:

- memory made up of qubits
- A single qubit can represent a one, a zero, or any quantum superposition of those 2 qubit states
- a pair of qubits can be in any quantum superposition of 4 states
- three qubits in any superposition of 8 states

The Bloch Sphere

image from Wikipedia

 The <u>Bloch sphere</u> is a representation of a <u>qubit</u>, the fundamental building block of quantum computers

What is a Quantum Computer?

February 9, 2017

New Algorithms for Mathematics

Which problems can be solved if a universal quantum computer would be available?

New Algorithms

Shor's algorithm (Peter Shor,1994) is a quantum algorithm for integer factorization. It runs in polynomial time

Classical factoring algorithm runs in subexponential time

Shor's algorithm can also be used to compute discrete logarithm in polynomial time

New Algorithms

Grover's algorithm (Lov Grover,1996) is a quantum algorithm that finds with high probability a unique given value in a domain of possible values.

If *N* is the number of possible values, Grover's algorithm will find the given value in about $O(\sqrt{N})$ evaluations

Grover's algorithm could brute-force a 128-bit symmetric cryptographic key in roughly 2⁶⁴ iterations

Influences on Cryptography

What are the security consequences if a universal quantum computer would be available?

Influences on symmetric algorithms

Only Grover's Algorithm can be applied against symmetric ciphers

One has to double the length of the key to reach the same level of security

A brute force attack with a classical computer against a 128 bit symmetric cipher

- is theoretically equivalently secure to
- A brute force attack with a quantum computer against a 256 bit symmetric cipher against

AES-128 -> AES-256

Influences on hash functions

Only Grover's Algorithm can be applied against hash functions

Hash functions with 384 bit ore more are theoretically quantum safe

Controversy on Hash functions with 256 bit (cf. paper of D. Bernstein): If one has a machine with about 2⁸⁶ Qubits, he can built an attack with a complexity about 2⁸⁶ steps Such an attack would also be feasible with 2⁸⁶ classical CPU Do we have really an advantage with a quantum computer vs. classical?

Influences on hash functions

SHA-384 and SHA-512 SHA3-384 and SHA3-512 are quantum safe

A practicable attack against SHA-256 or SHA3-256 is not possible in a foreseeable future

Influences on asymmetric algorithms

Shor's Algorithm can be applied against factorization and discrete logarithm problems

If a universal quantum computer exists, **all** today standard asymmetric algorithms will not be secure!

Influences on asymmetric algorithms

Algorithms that are not resistant to a universal quantum computer:

- RSA
- Elliptic Curve
- Diffie-Hellmann
- ElGamal

Algorithms for PKI

Which Cryptographic Primitive will be needed to build a standard PKI?

To build a standard PKI, one needs only 2 algorithms

1. Hash Function

2. Digital Signature Algorithm

Classical example: 1. SHA-256 2. RSA-2048 ← Problem

Possible solutions

 Replace a PKI with a central system (central key infrastructure), that works only symmetric

2. Find a new asymmetric algorithm that is *Quantum Safe*

Central Key Infrastructure

When Alice wants to communicate securely with Bob, she must first contact the central key infrastructure to define a session key

The session key can be then used to encrypt or to authenticate the communication

Centralized and Symmetric Solution

Central Key Infrastructure problems

- Number of keys
- Availability
- Protection against hackers
- Access Control for Administrators of the central system

A new asymmetric Algorithm

Researchers (Mathematicians and Cryptographers) are now studying new mathematical directions to find algorithms that are Quantum Safe

A new asymmetric Algorithm: an example

In its Chrome Browser, Google has implemented a post quantum keyexchange algorithm (to replace the Diffie-Hellman protocol)

The New Hope Algorithm can build a small number of connections between the browser and Google servers

It is an unauthenticated key-exchange

Research on Post-quantum Cryptography

Are there asymmetric algorithms that are quantum safe?

There are 4 Main Directions

1. Hash-based Cryptography

2. Code-based Cryptography

3. Lattice-based Cryptography

4. Multivariate Quadratic Equations (MQ) Cryptography

Hash Based Signature

Merkle tree with path A and authentication path for i = 2

Image from https://en.wikipedia.org/wiki/Merkle_signature_scheme

Binary Hash Chain

RLR {101}

Image from https://en.wikipedia.org/wiki/Hash_chain

February 9, 2017

Dr. F. Weissbaum

Hash-Based Cryptography

Pro:

- Well-known Primitives that are secure (SHA-512 or SHA-3)

Contra:

 Need a huge number of public keys (for each message, you need a new public key...)

Image from <u>https://fr.wikipedia.org/wiki/Code_correcteur</u>

SIGS

- Code Based Cryptosystems use an error correcting code
- The ciphertext is a codeword of the given code to which some errors have been added
- Only the owner of the private key can remove the errors

McEliece cryptosystem. The algorithm is based on the hardness of decoding a general linear code, which is known to be NP-hard

Pro: - Starting with an NP-Hard Problem

Contra: - For resiliency against quantum computers, the size of public key is about 8 MB

Lattice-Based Cryptography

It's based on lattices:

Image from <u>http://www.physics-in-a-nutshell.com/article/4</u>

"Learning with Errors": variant of latticebased cryptography; security proofs demonstrate that breaking the cryptography is equivalent to solving known hard problems on lattices.

Lattice-Based Cryptography

Shortest Vector Problem (SVP):

Closest Vector Problem (CVP)

Images from https://en.wikipedia.org/wiki/Lattice_problem

Multivariate Quadratic Equations (MQ) Cryptography

Based on multivariate polynomials over a finite field F

Polynomials of degree two are used generally (quadratics polynomials)

Solving systems of multivariate polynomial equations is proven to be NP-hard or NP-complete.

Multivariate Quadratic Equations (MQ) Cryptography

Techniques are now strong and stable

Provides the shortest signature among post-quantum algorithms

Time for Quantum Computing?

The most optimistic physicists say that the quantum computer will be built in 10 to 15 years

- Today, there is no threat for:
- Authentication processes
- "Standard" Signature
- Encryption of information that is not long-term sensible

There is a threat for:

- Encryption of information that is long-term sensible
- Signature that must be valid in more than 10 years

The National Institute of Standards and Technology (NIST) is now accepting submissions for quantum-resistant public-key cryptographic algorithms.

The deadline for submission is **November 30, 2017.**