Implementation of a voice trigger using low-power Arm processors

> Laurent Le Faucheur Principal Engineer laurent.lefaucheur@arm.com

> > Voice Summit (Voice.ai) Newark, NJ July 25, 2018

© Arm 2018 Limited

What we will cover today

- 1. Arm portfolio
- 2. Power consumption per use-case
- 3. Signal processing coupled with NN
- 4. Securing your firmware and data
- 5. Questions

Arm computing is everywhere

arm

Market trends – acceleration of technology deployment

Devices with Arm processors

Diverse applications need diverse compute

Cortex-A Highest performance

Designed for high-level operating systems

Cortex-R Faster responsiveness

Designed for high performance, hard realtime applications

Cortex-M Smallest/lowest power

Designed for discrete processing and microcontrollers **19Bn** Arm-based

processors shipped in 2017

SecurCore Tamper resistant Designed for physical security

Voice interactions use-cases – processor and architecture options

Voice-triggered device and application	Distance	Voice Processing	Voice Processors
MIC Audio Front End (edge capture)	Hands- free	1 MIC. Simple Voice Activity Detection. No KWS support . Audio sample are streamed to voice service client AP. Possibly battery operated. (Always ON). Avoid far-field issues. Limited noise immunity	Cortex-M0
Smart Voice Controller	Hands- free	1 MIC. VAD with a small command-set recognition for service activation (lights, door, watch). Possibly battery operated. Cloudless	Cortex-M3
Smart Voice Controller Headphone, Wearable	Hands- free	1/2 MIC Smart Voice Controller with enhanced audio processing (wind noise removal) and sensor fusion compute. Battery operated. Cloudless	Cortex-M4
Smart Speaker	Far-field	Multi MIC smart device with enhanced audio processing capability for noise cancelling, beam forming and barge-in audio player use case. Cloud based voice service. Power plug.	Cortex-M7 Cortex-Ax
Smart Speaker (autonomous)	Far-field	Smart speaker with autonomous ASR/NLU services via NN algorithm implementation. Cloudless support. Power plug	
Smart Home Hub	Far-field	Autonomous Smart Hub with sensor fusion (audio/video/radar) to support rich home services. Cloudless support. Power plug	Cortex-Ax NN Copro

arm

Variety of voice triggered devices

There are several system requirements for always-on

- Battery-operated devices have a focus on **power consumption**
- Hubs have a focus on audio capture and rendering **signal-processing performance**

Examples of voice-triggered devices powered by Cortex-A53, Cortex-A9, Cortex-A7, and Cortex-M3 processors

Power optimization for always on

© Arm 2018 Limited

Microphones - overview

Two areas of sound pressure for smart-speakers:

- Below 72dBSPL: automatic gain control, beamforming and noise reduction is recommended
- Above 72dBSPL: speech is sent to the recognizer with minimal signal processing

Floor noise	Level at 2m	Level at 50cm	Level at 30cm	MRP (-4dBPa)	Speech crest	Overload
30dB	54dB	66dB	72dB	90dB	106dB	125dB

9

Speech and audio detection stages

Power optimization comes from the activation of a progressive number of features

"VAD": Voice Activity Detector

Power numbers for battery operated voice / sound triggers

Sound trigger using Voice Activity Detection (VAD)

One MIC activated at 0.200mA	= 0.2000
Light VAD (0.06MHz) 100% of time @0.1mA/MHz	= 0.0060
Application 6MHz 1% of time (during 1s) @0.1mA/MHz	= 0.0060
Oscillator, Quiescent current, Deep-Power-Down periods	= 0.0060
Radio communication 0.01% (9 seconds)	= 0.0060

Total = ~0.2 mA (assuming one voltage domain) <= > 1 year (9000hours) with a 2500mAh battery

Question : how would you implement a sound detection device having a 3 years life time from a single AA?

Power numbers for battery operated voice / sound triggers

Question : how would you implement a sound detection device having a 3 years life time from a single AA?

3 years = 26k hours, AA battery capacity is 2500mAh Average current consumption is about 0.1mA (the microphone consumes 0.2mA !)

Solution : activate the PDM clock of the microphone by bursts of 10ms and let it idle during 40ms A digital microphone recovers its sensitivity within ~8ms after power-up and clocking You will analyze the last 2ms of the burst to check sound-pressure variations from last bursts

Arm key differentiation for always-on operations

Small processor with minimal **dynamic power** (*)

Several level of sleep modes

Efficient signal processing on Cortex-M0+ thanks to **14 x 32 bits registers** and a **single-cycle 32x32** multiplier

Thumb mode with high code/data density

Firmware R&D investments are preserved

Ease of **dual-sourcing**

(*) Cortex-M0+ : 4µW/MHz @40LP, 2.46CoreMark/MHz Cortex-M3 : 11µW/MHz @40LP, 3.34CoreMark/MHz Cortex-M7 : 33µW/MHz @28HPM, 5 CoreMark/MHz https://developer.arm.com/products/processors/cortex-m

Signal processing

© Arm 2018 Limited

Voice control building blocks

Practical example of a low-power VAD (voice activity detection)

Cortex-M0+ with low-power VAD computations

Question : how would you implement this VAD at less than 0.1MHz on a Cortex-M0+ with a 16kHz input sampling rate ?

Practical example of a low-power VAD

Cortex-M0+ with low-power VAD computations

Question : how would you implement this VAD below 0.1MHz on a Cortex-M0+ with a 16kHz input sampling rate ?

A CPU load of 0.1MHz with an input sampling rate of 16kHz means 6 cycles per sample !

Solution : break the Shannon rule

decimate the input rate by taking one sample over 16, without pre-filter this will create a new signal with spectral components folded in the low-frequency range and finally compute the energy (first order IIR applied on absolute values) take the min and max of the observation and create the soft criterion every 16ms the cycle count comes down to about 30 per sample at 1kHz rate.

Developing NN Solutions on Cortex-M

Model Deployment on Cortex-M MCUs

- Running ML framework on Cortex-M systems is impractical
- Need to run bare-metal code to efficiently use the limited resources
- Arm NN translates trained model to the code that runs on Cortex-M cores using CMSIS-NN functions
- CMSIS-NN: optimized low-level NN functions for Cortex-M CPUs
- CMSIS-NN APIs may also be directly used in the application code

A versatile DSP ecosystem for Cortex-M

Fundamental DSP Functions on Cortex-M

-> available for free!

CMSIS-DSP library				
Filters	Controller functions			
Basic math functions	Interpolator functions			
Statistical functions	Matrix functions			
Support functions	Complex math functions			
Fast math functions	Transforms			

Examples of ecosystem solutions and partners

Security

© Arm 2018 Limited

Keyword spotting - security

arm

Keyword spotting - security

Critical assets

Arm's security vision

- Security needs to be built from the ground up... and at the core of every device
- No single point of ownership, whole IoT value chain needs to share the responsibility
- Simple and seamless integration of security from foundational architecture to cloud service is key

Arm Platform Security Architecture

Analyze

Architect

Threat models & security analysis

Hardware & firmware architecture specifications

Implement

Firmware source code

••••

arm

25 © Arm 2018 Limited

Arm portfolio lets you secure your R&D investment and go to market faster.

Resources

- CMSIS-NN paper: <u>https://arxiv.org/abs/1801.06601</u>
- CMSIS-NN blog: <u>https://community.arm.com/processors/b/blog/posts/new-neural-network-kernels-boost-efficiency-in-microcontrollers-by-5x</u>
- CMSIS-NN Github link: <u>https://github.com/ARM-software/CMSIS_5/</u>
- KWS (Keyword Spotting) paper: <u>https://arxiv.org/abs/1711.07128</u>
- KWS blog: <u>https://community.arm.com/processors/b/blog/posts/high-accuracy-keyword-spotting-on-cortex-m-processors</u>
- KWS Github link: <u>https://github.com/ARM-software/ML-KWS-for-MCU/</u>
- ArmNN: <u>https://developer.arm.com/products/processors/machine-learning/arm-nn</u>
- ArmNN SDK blog: <u>https://community.arm.com/tools/b/blog/posts/arm-nn-sdk</u>
- <u>https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/white-papers/the-power-of-speech</u>

The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

arm

Thank You! Danke! Merci! 谢谢! ありがとう! **Gracias!** Kiitos!

