Internal Knowledge Representation for Conversational AI

Zachary Brown & William Myers Brigham Young University

What makes a good conversation?

- 1. How do we process what the user says?
- 2. How can we create a response in a naturally-worded way?
- Given several different responses, how do we pick the most relevant one?

- 1. How do we process what the user says? <u>Understanding</u>
- 2. How can we create a response in a naturally-worded way?
- Given several different responses, how do we pick the most relevant one?

- How do we process what the user says? - <u>Understanding</u>
- How can we create a response in a naturally-worded way? - <u>Generating</u>
- 3. Given several different responses, how do we pick the most relevant one?

- How do we process what the user says? - <u>Understanding</u>
- How can we create a response in a naturally-worded way? - <u>Generating</u>
- Given several different responses, how do we pick the most relevant one? - Selecting

understanding generating selecting

System Architecture

System Architecture - Understanding

Illustration credit to Pixar Animation Studio and their film "WALL-E"

System Architecture - Generating

System Architecture - Selecting

understanding generating selecting

Knowledge Graphs:

Using Graphs to Understand and Generate Text

- General Knowledge
- High-Level and Low-Level Topic Identification
- User and Self Modelling
- Knowledge Disambiguation and Conflict Resolution

Graph Nodes and Edges

Graph Nodes and Edges

Graph Nodes and Edges

User said "I like J.R.R. Tolkien.":

- 1) Look for a node named "J.R.R. Tolkien" in the knowledge graph
- 2) Grab all edges and nodes connecting to the <u>J.R.R. Tolkien</u> node
- 3) Now you know:
 - a) <u>J.R.R. Tolkien</u> is a <u>person</u>
 - b) J.R.R. Tolkien wrote The Hobbit
- 4) Repeat steps 1-3 for the nodes connected to the <u>J.R.R. Tolkien</u> node for more information:
 - a) <u>The Hobbit</u> belongs to the genre called <u>Fiction</u>

General Knowledge: Understanding Text

User said "I like J.R.R. Tolkien.":

- 1) You now know that:
 - a) <u>J.R.R. Tolkien</u> is a <u>person</u>
 - b) J.R.R. Tolkien wrote The Hobbit
 - c) <u>The Hobbit</u> belongs to the genre called <u>Fiction</u>
- Given these facts and that the user 'likes' <u>J.R.R. Tolkien</u>, it's straightforward to create templates for generating text:
 - a) "Since you like <u>node1</u> and <u>node1</u> <u>edge node2</u>, do you also like <u>node2</u>?"
- 3) In this case, we get:
 - a) "Since you like J.R.R. Tolkien, and J.R.R. Tolkien Writes in the Genre Fiction, do you also like Fiction?"

General Knowledge: Generating Text

User said: "I like J.R.R. Tolkien." You said: "Since you like J.R.R. Tolkien, and J.R.R. Tolkien Writes in the Genre Fiction, do you also like Fiction?"

How do you know the topic of the conversation?

- Topics are hierarchical:
 - The <u>Fiction</u> topic has subtopics, one of which is <u>The Hobbit</u>
- Topics are sometimes never said:
 - J.R.R. Tolkien is a topic within the <u>Person</u> topic

Solution:

- Count number of edges leading to nodes
- Layer topics
- Consider having 'meta-topics' determined by combinations of edges present in the conversation

User said: "I like J.R.R. Tolkien."

User and Self Modelling: Understanding Dialogue

Text can be generated by trying to connect the <u>EVE</u> node to the <u>User</u> node. If the User likes something that connects to a node that EVE doesn't like, we could use the following:

Template:

 "But node1 edge2 node2 and node2 edge3, so why would you edge1 node1?

Map:

{"User": "you", "Likes": "like",
"Dislikes": "is boring",
"Writes in the Genre": "wrote"}

To obtain:

 "But J.R.R. Tolkien wrote Fiction and Fiction is boring, so why would you like J.R.R. Tolkien?"

User and Self Modelling: Generating Text

User said: "I like J.R.R. Tolkien."

EVE said: "But J.R.R. Tolkien wrote Fiction and Fiction is boring, so why would you like J.R.R. Tolkien?"

Dislikes

EVE

User said: "Good point, I typically don't like fiction."

We appear to have a conflict in our knowledge graph, so we ask for clarification; if the user likes something directly connected to something they dislike:

Template:

 "How can you <u>edge1 node1</u> if you <u>edge2 node2</u>?"

Map:

 {"User": "you", "Likes": "like", "Writes in the Genre": "wrote", "Dislikes": "dislike"}

EVE said: "How can you like J.R.R. Tolkien if you dislike Fiction?"

User said: "Because J.R.R. Tolkien was my grandfather."

Knowledge Disambiguation and Conflict Resolution

Summary: Knowledge Graphs

Pros:

- Easy to Template
- Enables scalable internal representation of vast amounts of data
 - ~ ~ 50 million items
- Straight forward to map out and add new functionality

Cons:

- Naming Conventions
- Time intensive maintenance
- Must try to envision every possible template for user interaction
- Not scalable for broad tasks such as human conversation

understanding generating selecting

Text Embeddings:

Using Vector Representations of Text to Understand and Select

- What makes a sentence interesting?
- Predicting what the user would like to hear
- Semantic meaning

Text Embeddings

- Map complex data like English text to a numerical representation more suitable for computers.
- Position (distance and direction) captures semantic meaning in these spaces
 - Semantically similar ideas are close
 - Dissimilar ideas are far apart
- Uses:
 - As input for neural networks (e.g. for classification)
 - Directly for NLP tasks

Uses of Text Embeddings for Understanding

Vector Representations of Words https://www.tensorflow.org/tutorials/word2vec

Semantic Similarity

Classification

Selection

Which is the best response?

Where are you from?

- New York.
- I grew up in California.
- Have you ever been to California?
- I am from California.
- Yes.
- Babies are usually born in a hospital.
- Manhattan.
- NY.
- Cali.
- I love Star Wars.
- California.
- I grew up in Santa Fe, but my family just moved to Salt Lake City.
We will use:
Google's Universal Sentence Encoder
Our Chit Chat dataset

Embed user's input

Where are you from? Universal **→** [0.124, 1.34,9] Sentence Encoder Where are you from?

Find most similar utterances to user's input

Find closest *n* points in Chit Chat dataset.

Get their responses

Get the response vectors from Chit Chat dataset for each point.

Construct analogy vectors

Subtract the closest *n* points from their responses.

Construct analogy vectors

Average the vectors and extend it by the average norm

Estimate ideal response vector

Add re-lengthed average analogy vector to user's input.

Rank candidate outputs by distance to ideal vector

Where are you from?

0.789	I am from California.		
0.843	California.		
0.845	Cali.		
0.855	I grew up in Santa Fe but my family just moved to Salt Lake City.		
0.864	I grew up in California.		
0.899	NY.		
0.925	New York.		
0.998	Manhattan.		
1.058	Yes.		
1.082	Have you ever been to California?		
1.112	I love Star Wars.		
1.203	Babies are usually born in a hospital.		

Rank candidate outputs by distance to ideal vector

Where were you born? 1.065

65 California.

- 1.106 Cali.
- 1.131 NY.
- 1.132 New York.
- 1.158 Manhattan.
 - 1.18 | I am from California.
 - 1.21 | I grew up in California.
- 1.231 | I grew up in Santa Fe but my family just moved to Salt Lake City.
- 1.277 Have you ever been to California?
- 1.375 Babies are usually born in a hospital.
- 1.394 Yes.
- 1.487 | I love Star Wars.

Summary: Text Embeddings

Pros:

- Captures semantics
- Semantic similarity is very useful
- Building block to build many different ML models on

Cons:

- Doesn't readily generate text:
 - Currently can't decode from the vector space - nearest neighbor searches are the best we have

understanding generating selecting

Deep Methods:

Using Machine Learning for End to End Text Understanding, Generation, and Selection

- Novel text generation
- End to End
- Robust

Recurrent Neural Network (RNN)

ullet

ullet

 \bullet

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Latent Variable Hierarchical Recurrent Encoder -Decoder (VHRED)

Sequential text generation

Pros:

- Contextual integrity improved
- Mimic good data

Cons:

• Difficult to train

Convolutional Sequence to Sequence (ConvS2S)

Non-sequential text generation

Pros:

- Parallelizable
- Faster Training
- Mimic good data

Cons:

 More complex loss function than sequential generators

Convolutional Sequence to Sequence Learning (2017) https://arxiv.org/pdf/1705.03122.pdf

Summary: Deep Methods

RNN	VHRED	ConvS2S	
Sequential text generation	Sequential text generation	Non-sequential text generation	CON:
 Pros: Simple loss function Mimic good data Cons: Difficult to train 	 Pros: Contextual integrity improved Mimic good data Cons: Difficult to train 	 Pros: Parallelizable Faster Training Mimic good data Cons: More complex loss function than sequential generators 	 Lack of good d Can't 'seed' for targeted result PRO: Potential for self-play

data

Unanswered: How do we produce targeted text with ML?

Unanswered: How do you score a conversation?

What makes a good conversation?

Thank you.

pcc.cs.byu.edu

Questions?