

2

Agile
Discussion
Guide

This guide is continually evolving as we
uncover better ways of developing software by
practicing and helping others practice Agile.

Subscribe to the Agile Discussion guide email list
to stay up to date with the latest version
LeanDog.com/downloads

Introduction to this guide
vimeo.com/leandog/introduction

3

LeanDog, Inc.
1151 North Marginal Road Cleveland, Ohio 44114

All rights reserved. No part of this book may be reproduced
or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording or by any
information storage and retrieval system, without written
permission from the author, except for the inclusion of
brief quotations in a review.

Copyright © 2015 by LeanDog

3

4

Table of Contents

Agile Manifesto 10
Principles Behind the Agile Manifesto 11
Fundamentals, Roles and Practices 12
Practices Mapped to Values 13
Agile History 14
Agile Culture & Process Case Study: IDEO 15
Oath of Non-Allegiance 16
Company Ecosystem 17
Agile Benefits Realized 18

Agile Concepts 20
Whole Team 21
Open Workspace 22
T-Shaped People 25
Sustainable Pace 26
Information Radiators 27
Frequent Releases 29
Story Card Wall 30
Agile Triangle 32
Cone of Uncertainty 33

Agile Process 35
Kanban 36
Scrum Framework 38
Story Card Writing 40
Estimation & Sizing 42
Sprints/Iterations 43
Customer Collaboration 44

 Introduction to Agile 91

Agile Concepts 192

Agile Process 343

Acknowledgement 7
Preface 8

5

Leadership Role 46
Servant Leadership 47
Six Thinking Hats 48
Collaboration 8 50
Fist to 5 52

Scrum Master / Iteration Manager 54
Daily Scrum/Stand Up 55
Sprint/Iteration Planning 56
Show & Tell 57
Retrospectives 58
Velocity 59
Roadblocks 60

Quality Assurance Role 62
Exploratory Testing 63
Automated Regression Testing 64
Acceptance Test Driven Development 65

Developer Role 69
Collective Code Ownership 70
Continuous Integration 71
Simple & Evolutionary Design 72
Paired Programming (Pairing) 73
Test Driven Development 74
Technical Debt 75
Spikes 76

Leadership 45 4

Scrum Master / Iteration Manager 535

Quality Assurance 606

Developer 68 7

Table of Contents

6

Product Owner Role 78
Value Stream Mapping 79
Demand Management 80
Product Backlog 81
Release Planning 82

User Experience Designer 84
Personas 85
Story Mapping 86
Low-Fidelity Prototyping 87

Recommended Reading List 89
Additional Downloads 92
About this Author 93

User Experience 839

Appendix 8810

Product Owner 77 8

Table of Contents

7 7

Acknowledgement

Angela Harms

The following folks have helped bring this guide to life by contributing content, design, filming
and edits throughout the print book as well as the interactive version.

Michael Norton

Susan Gibson

Matt Volosin

Jodi Carlson

Michael Jebber

James GrenningJeff Morgan

Eric Hankinson

Matt Barcomb

Shane HayesKathryn Guess Joel Helbling

Sahithya Wintrich

Nicole Capuana

Chris Nurre

Jon Stahl

Dan Parks

Pat Kelly

Michael Lutton

Paul Carvahlo

David Shah Matt Fousek Steve Jackson Joel Byler

8

Preface

This guide is a comprehensive introduction to basic Agile terminology, practices, and thinking. While
we have had many customers ask us for a “checklist on Agile”, every team is different and no two
teams practice Agile the same way. This guide serves as a blueprint, not a roadmap. We have defined
and outlined the basic principles and practices of Agile through a discussion about the practices
between you and an experienced LeanDog Agile coach.

Essential
Each practice falls into one of two categories: essential and advanced. Essential practices are crucial
to adopting Agile. Advanced practices, on the other hand, are not critical but greatly improve essential
practices. Regardless of which practices you choose to adopt, we strongly suggest that this guide be
used in the spirit of collaboration. As Agile is about constant improvement, it's very common to adopt
the essential tasks first, and incorporate advanced tasks as you become more comfortable with Agile.

Book Legend

Introduction to Agile

LeanDog
Reading
Recommendations

Advancedvs

Reco
mmen

de
d

Description/
Definition

Video
Links

Quality Assurance

Agile Concepts Developer

Product OwnerAgile Process

User ExperienceLeadership

AppendixScrum Master /
Iteration Manger

9

Introduction
to Agile

Chapter 1

In this chapter
• Agile Manifesto
• Principles Behind the

Agile Manifesto
• Agile Practices
• Practices Mapped to

Agile Values
• Agile History
• Agile Culture & Process

Case Study: IDEO
• Oath of Non-Allegiance
• Company Ecosystem
• Agile Benefits Realized 9

10

Agile Manifesto

10

Agile Manifesto History
In 2001, a group of 17 people who are passionate about simple and minimalistic software practices met
in Snowbird, Utah to discuss their approaches and best processes. These representatives from eXtreme
Programming (XP), Scrum, DSDM, Adaptive Software Development and others “sympathetic to the need
for an alternative to documentation driven, heavyweight software development process” uncovered better
ways of developing software by doing it and helping others do it.

Through collaboration, the Agile Manifesto was created outlining four value statements and 12 principles.
While most people only read the values, it is important that the principles are understood as well. The
values define the overall objectives of the Agile methodology, making up the “WHY in Agile”, while the
principles define the tenets that feed into the values, becoming the “WHAT in Agile”. Finally, the practices
serve as the “HOW in Agile”, providing the blueprint to follow 1.

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

• Individuals and Interactions over Processes and Tools
• Working Software over Comprehensive Documentation
• Customer Collaboration over Contract Negotiation
• Responding to Change over Following a Plan

That is, while there is value in the items on the right, we value the items on the
left more1.

Kent Beck
Mike Beedle
Arie van Bennekum
Alistair Cockburn
Ward Cunningham
Martin Fowler

James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries
Jon Kern
Brian Marick

1 Kent Beck, et al http://www.agilemanifesto.org

The 17 Authors of the Agile Manifesto:

Agile Manifesto Poster
LeanDog.com/free/agilemanifesto.pdf

Robert C. Martin
Steve Mellor
Ken Schwaber
Jeff Sutherland
Dave Thomas

vimeopro.com/leandog/manifesto

11

• Show & Tell
• Demand Management
• Iteration
• Estimation/Sizing

• Frequent Releases
• Product Backlog
• Velocity

Principles Behind the Agile Manifesto

Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter time scale.

Business team and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

The most efficient and effective method of conveying
information to and within a development team is
face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity - the art of maximizing the amount
of work not done - is essential.

The best architectures, requirements, and
designs emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and
adjusts its behavior accordingly1.

Agile Principles Poster
LeanDog.com/free/agile-
manifestoprinciples1.pdf

1 Kent Beck, et al http://www.agilemanifesto.org

1212

Fundamentals, Roles and Practices

LeanDog created the “Fundamentals, Roles and Practices” chart below to give a vision into how the
Agile Values and Principles can be leveraged.

You don't have to implement every practice, but each practice adds value. We encourage you to
explore practices, try them, and evaluate them yourself. Adopting a major company change isn't
always popular, and can cause discord and resistance. This chart helps ease the transition. Not
only does it give a snapshot of the overall Agile methodology, but it clearly defines the practices of
each craft. Once employees understand the purpose of the change, and its importance to both the
company’s goals and their own work responsibilities, they will be more likely to accept the change.

vimeopro.com/leandog/agilepractices

13

Practices Mapped to Agile Values

14

Agile History

1953-1957 1974 1993-1995 2001 2003 2010-Now

Heavyweight
Waterfall
Kanban

Adaptive
Iterative
Spiral

Agile
Manifesto
Created

SAFe
LEAF

Agile/Lean
Concepts

Lightweight
Crystal

eXtreme Programming
Adaptive Software Development

Feature Driven Development
Scrum

Rational Unified Process
Exploratory Testing

Incremental software development methods trace back to 1957. Lightweight software development
methods first appeared in the mid-1990s in reaction to the heavyweight waterfall-oriented methods
that had become commonplace, which critics called heavily regulated, regimented, micromanaged
and over-incremental.

Proponents of these lightweight methods contended that they were returning to development
practices that were present early in the history of software. These early implementations favored
creativity, freedom, self-management and continuous improvement. These methods are now
collectively referred to as Agile development, after the Agile Manifesto was published in 2001.

The term "Lean" was coined to describe Toyota's Production System during the late 1980s by a
research team at MIT. The core idea is to maximize customer value while minimizing waste. In the
early 2000s, companies (especially startups) began applying both Lean and Agile principles together
in order to develop new products (or even new companies) more efficiently and based on validated
customer demand.

15

Agile Culture & Process Case Study: IDEO

1 ABC Nightline, IDEO Deep Dive, http://www.youtube.com/watch?v=M66ZU2PCIcM

The IDEO Deep Dive video on ABC Nightline is about a team at IDEO that reinvented the shopping
cart in one week. While watching the video, ask yourself:

1. How does the process of designing a better product work?
2. What does a process and a culture look like?

Online at: youtube.com/watch?v=M66ZU2PCIcM 1

16

Oath of Non-Allegiance

I promise not to exclude from consideration any
idea based on its source, but to consider ideas
across schools and heritages in order to find
the ones that best suit the current situation.1

An Agile approach focuses on empowered, self-managing teams; autonomy that doesn't need
day-to-day intervention by management 2. Instead, Agile management means protecting the team
from outside interference and removing roadblocks that impede the delivery of business value and
productivity. It is widely accepted that complex systems cannot be predicted 3 and are best managed
using empirical process controls; therefore, management allows self-managing teams to build
systems in an empirical manner 4.

What Does it Mean to "Be Agile?"
Considering that Agile is a set of values and principles, becoming Agile means upholding these values
and principles. It's not about doing one practice (for example Scrum) and declaring that you are Agile.
Instead, it's about continually seeking better ways of delivering software. We coach your company to
adopt this culture and implement practices that are based on the needs of your teams and projects.

LeanDog Signed the Oath of Non-Allegiance so should you
At LeanDog, we uphold the tenets of the Agile Manifesto by studying processes like Lean, Scrum,
Systems Thinking, eXtreme Programming (XP), Organizational Effectiveness, and most importantly,
practicing and giving back to the Agile community. Once you have decided to adopt the Agile
methodology, we hope that you too will sign the Oath of Non-Allegiance.

1 Alistair Cockburn, http://alistair.cockburn.us/Oath+of+Non-Allegiance
2 Kent Beck, et al http://www.agilemanifesto.org
3 Michele Sliger and Stacia Broderick. The Software Project Manager's Bridge to Agility, (Addison-Wesley: 2008)
4 Babatunde A. Ogunnaike and W. Harmon Ray. Process Dynamics, Modeling and Control. (NY: Oxford University, 1994)

vimeopro.com/leandog/oath

17

"Agile Software
Development Ecosystems"
By Jim Highsmith

A company ecosystem represents a big-picture view of the whole organization's environment.
Because an organization is composed of many interconnected parts, understanding the ecosystem
can provide key insights into where bottlenecks may occur during software or business development.
Most importantly, it can reveal areas that may help or hinder an Agile transformation.

Company Ecosystem

vimeopro.com/leandog/ecosystem

18

Agile Benefits Realized

VersionOne, “State of Agile Survey, 2013” Survey includes information for 7042 participants
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf

73%

9%
12%

6%

Getting projects completed is important
to any business, 73% of respondents to
the survey found that their projects were
completed faster after adopting Agile.

92% Managing Changing Priorities
87% Increased Productivity
86% Increase Project Visibility
86% Improve Team Morale
83% Accelerated Time to Market
82% Enhance Software Quality
82% Improve IT & Business Objectives Alignment
82% Reduce Risk
78% Simplify Development Process
74% Improve Engineering Discipline

A 2013 survey by VersionOne found that the top three reasons for adopting Agile were: to increase
productivity, accelerate time to market, and more easily manage changing priorities. Beyond that,
there are a number of other important aspects to a business that can be improved by adopting Agile.

Here are some of the significant benefits reported by organizations as a result of adopting
Agile methodologies, according to the VersionOne study.

19

Agile
Concepts

Chapter 2

In this chapter
• Agile Concepts
• Whole Team
• Open Workspace
• T-Shaped People
• Sustainable Pace
• Information Radiators
• Frequent Releases
• Story Card Wall
• Agile Triangle
• Cone of Uncertainty

19

2020

Agile Concepts

• Do we have everyone on the team that we need?
• Is our team located in the same space?
• Are people broadly skilled, knowledgeable, and able to help each other?
• Do we have the workload set so we don’t need heroic efforts?
• Is it easy for the team and non-team members to understand where we stand?
• Do we have inexpensive and simple ways to communicate?

"The Agile Samurai:
How Agile Masters
Deliver Great Software"
By Jonathan Rasmusson

Essential

Building software using Agile approaches is a “team sport”. The concepts discussed are about the
people; how we work and collaborate together. Enhancing communication and collaboration is a
key theme of many of our concepts.

vimeopro.com/leandog/agile-concepts

21

• Whole team shares workspace
• Team members are 100% dedicated to the team's work, not allocated to

other work outside the team
• Work comes to the team, the team doesn’t form based on the funding of projects
• Avoid shared talent between teams. DBAs and other technical specialists

are available on demand, but are preferably T-Shaped and on the team
• Poly-pairing encouraged
• Team is led, not managed
• Team communicates and collaborates continuously
• Team is accountable for results

• Business partners are co-located with team
• Team is not named after the project or department, instead they have their own

team identity (example: code monkeys, red fish blue fish).

Essential

Advanced

"The Art of Agile
Development"
By James Shore
(Chapter 3)

1 Mary Poppendieck, Poppendieck LLC

Teams must be self-empowered; put
the right people in the right seats.

Why Teams?
Organizational boundaries typically
increase cost by over 25%, creating
buffers that slow down response time
and interfere with communication 1.

The Whole Team Approach states that everyone is accountable for the quality of the product. This
approach brings the entire team together to work as a unit and share responsibility for producing high
quality software. Whole Team is the glue of Agile practices; it holds all the other practices together.

Whole Team

vimeopro.com/leandog/whole-team

2222

Open Workspace

Workspace
• General rule is 150 square feet per team member: adequate space for moving,

sitting, and collaborating
• There are no assigned seats
• Teams do not have other personal space (like cubes)
• Two small breakout rooms are available for meetings or privacy
• White boards, cork boards or flip charts provide a dynamic workspace as

well as privacy for teams
• Team uses open seating to facilitate paired programming and communication
• Leadership sits with the team
• Have teams in a highly visible area, be proud to show the space to customers
• Team Members have a “locker room” to store personal belongings
• Furniture is movable without permission, team has ability to form the space
• Allow picture skins on laptops (family, dogs, sports, etc)
• Allow team to be creative and introduce fun into the workspace

Team
• Noise equals collaboration and communication, quiet is “bad” (Parent’s Ear

Rule: bad sounds are complete silence or kicking & screaming)
• “Hey Team” cooperation when roadblocks are discovered
• Teams sit facing each other, not with backs to each other
• Requires that facilities and leadership understand the goals, and is

engaged with the team
• All rules deserve team discussion

Essential Guidelines

Face-to-face communication is extremely valuable. In an Open Workspace the team uses open
seating to facilitate communication, and shorten feedback loops and ideation. It is the hardest
practice to implement, but transparency and increased communication make it the most valuable.

23

Workspace
• Provide white noise generators
• Food station with coffee nearby, but not on center island
• Rolling tool box for office supplies, clearly labeled and replenished
• Teams should have access to bright desirable spaces and not be relegated to

closed conference rooms and basements
• One large breakout room available for meetings or privacy
• Windows are tools, the team is allowed to have things taped to them and use

dry eraser markers on them
• Two phone booths available for personal conversations

Equipment
• Tables have wheels or can easily be moved
• Power comes from floor or ceiling, not from cubicle walls that don’t move
• Team room has one team phone, not one per person. Provide cell

phones, phone booths, Skype ID’s, etc. to co-workers
• Easy or permanent access to video conference equipment to connect with

customers and other teams. Face-to-face communication is valued highly
• Headphones available for Skype calls, remote pairing
• Wireless networks improve flexibility

Advanced Guidelines

Open Workspace

"Succeeding with Agile:
Software Development
Using Scrum"
By Mike Cohn

2424

Equipment
• Projector(s) or TVs readily available, set up, and ready to use
• Magnetic whiteboards allow teams to slide cards around easily
• Each conference room has a high-quality speaker phone/video conference phone
• Large monitors set up to connect laptops, have two side-by-side
• Toys should be prevalent: fun fosters innovation
• Team members choose type of laptop (Apple or PC) – OK to have both

kinds on the team if the team agrees
• Everyone has laptops to improve mobility, encouraged to take home

and study craft
• Team has easy access to a plotter to print information radiators or TVs to

radiate information digitally
• Printer is capable of printing on index cards
• Have hand sanitizer readily available to prevent spreading germs

 Team (Working Agreements)
• Pick one day a week, perhaps after the Friday daily Stand Up, to clean

the work area for 15 minutes; ensure that visible info is necessary
(look for stale information)

• Music is OK, team agrees on rules around this
• If something isn’t working for facilities management, voice concerns at the

retrospective meeting
• If something isn’t working for the team, it will go on the roadblock wall
• All rules should be prominent in team space (e.g.: leave three feet around

perimeter for fire safety, no cords that people can trip on, etc)

Advanced (continued)

vimeopro.com/leandog/open-space

Open Workspace

25

T-Shaped People

• People are encouraged to learn and pair in all roles
• Collaboration between team members to build T-Shaped People
• Team members cross-train each other in technical and domain specialized

knowledge
• Team creates an environment that facilitates and encourages continual learning
• Activities such as pairing, job shadowing, lunch-n-learns, book clubs, and open

discussions are used frequently
Specialist

"Management 3.0:
Leading Agile Developers,
Developing Agile Leaders"
By Jurgen Appelo
(Chapter 13)

• Anyone on the team can pick up any story card
• Team members are encouraged to pick story cards in areas with which they

are unfamiliar as a learning challenge
• Team will focus learning activities around bottlenecks
• Create cross-team communities of practice around technical specialties,

domain knowledge areas, or any other area of interest

Generalist

Essential

Advanced

A T-Shaped person is an individual who has deep knowledge of a specialized skill set but also has
acquired tangential, related skills. T-Shaped people are also interested in continuously broadening
their knowledge as well as deepening a core skill set. T-Shaped people are also known as
generalizing-specialists or “Renaissance Man” workers.

vimeopro.com/leandog/tshaped-people

2626

Sustainable Pace

• Team members typically works a 40-hour week
• Includes daily work responsibilities, training opportunities and sustainable fun
• Must give enough time to include all regular team activities such as initiation,

planning, development, testing, and deployment
• Avoid the death march or the need for heroic efforts; instead, focus on

repetitive delivery of high-quality software

• Team pace should include enough slack, mental downtime, or development
time to allow for other activities which foster creativity and innovation

• Team is evaluated on performance, not presence (Result-Only Focus)
• All regular work week constraints are removed from the core team

(i.e. All team members are required to be at their desks for work day by 8 a.m.)

"Practices of an Agile
Developer"
By Venkat Subramaniam
and Andy Hunt

Essential

Advanced

A Sustainable Pace is a constant pace that a development team should be able to maintain
indefinitely, to ensure the team has time to plan, think, rest, and deliver effectively.

vimeopro.com/leandog/sustainable-pace

27

Information Radiators

• Anyone should be able to review the information displayed and
easily understand it

• Key charts include:
• Release Plan & Roadblocks
• Product Value Map
• Burn Up & Velocity
• Story Card Wall
• Unit Test & Acceptance Test Coverage

• Used for continuous communication and information radiation
• Presented in a casual way (no complexity, just charts on walls)
• Team Blocks & Escalation

• Team decides what is visible
• Flow of information is centered around the workspace. The walls should tell a

story to the team and customer
• Charts track everything from future project requests to fully-tested stories
• Other helpful items to be considered:

• Organizational Value map
• Program Demand Management
• Persona Map
• Ideation Wall (to capture and compare new ideas or potential work)

Essential

Advanced

Information Radiators display important project information simply, communicating information even
from across the room. Use Information Radiators to map project statuses so the team knows the
status at all times: what's coded, what's verified and what's to come.

vimeopro.com/leandog/radiators

2828

1. 2.

3. 4.

"I'm glad we all agree"

"Ah!" "I'm glad we're all agreed then"

"Ah!"

"Agile Software
Development: The
Cooperative Game"
By Alistair Cockburn

Information Radiators
Invented around the year 2000
By Alistair Cockburn

Clear Communication

Information Radiators

Clear communication requires a validation of shared understanding. Diagrams, flowcharts, and
other visual aids are an excellent way to ensure that ideas discussed are actually understood in
the intended manner.

29

Frequent Releases

• Working software is frequently delivered to business partners in small,
functional chunks

• Releases are scheduled based on the input and needs of business partners
• Teams strive to reduce the risk of large, “big bang” releases by reducing

the size of each release, and automating the release process to improve
repeatability and minimize the cost of releasing frequently.

• Create a release schedule to help shape the direction of the product or initiative

• At the end of each iteration the software should be ready for production,
the business determines if it is released

• Apply fixed capacity against a fixed date, prioritizing cards by business value.
The capacity and schedule are fixed, but the scope is flexible

• Fixed capacity and fixed scope allow for flexible dates
• The team (including the product owner) must agree on what a completed state

means for individual features and releases

Essential

Advanced

Frequent Releases are intended to shorten feedback cycles and improve responsiveness by
deploying code in short cycles. This improves productivity by providing more opportunities to handle
new or changing requirements, or adjusting priorities of planned work in response to business or
user needs.

vimeopro.com/leandog/frequent-releases

"The Art of Agile
Development"
by James Shore
(Chapter 8)

"Practices of an
Agile Developer"
By Venkat
Subramaniam
and Andy Hunt
(Chapter 4)

Reco
mmen

de
d

3030

Story Card Wall

• Must be on a physical wall in the team’s space
• Positioned in a clean, well-lit place
• All team members move cards
• Cards should be written, not printed (easy to change vs. edit tool/reprint)
• The definition of ‘complete’ should be clear
• Personal WIP limits: no more than one card per person can be in play at a time
• Everyone on the team can read and explain the story card wall
• Use color coding to differentiate cards of different work types - legend Minimal

Marketable Feature Sets (MMF)

"User Stories
Applied: For
Agile Software
Development"
By Mike Cohn

Essential

Reco
mmen

de
d

The Story Card Wall is an information radiator tool used in the team's workspace. It is an effective way
to display the status of each card in its current iteration. The story card wall is broken up into columns
reflecting each function necessary to the process. Story cards can be index cards or Post-its®.

vimeopro.com/leandog/story-card-wall

31

Story Card Wall

• Portable magnetic dry erase card walls are the best
• Enough room around wall for team to gather
• Pictures on magnets show card owner
• Retrospective items on wall are not necessarily part of a Story Card Wall.

However, some teams do maintain an area to list topics that team members
want to discuss at an upcoming retrospective.

• Stand up should be in front of wall
• Visual sign explain specific transition criteria for cards to move between

statuses on the board (e.g. what has to be done/verified for each card in
“Development” before it can move to “Testing”)

• Anything in progress has a name attached to it
• Cards are easy to read from a distance
• Team establishes an overall team WIP limit (in addition to personal WIP limits)

to reflect team’s sustainable capacity
• Team writes “Created”, “Started”, and “Completed/Accepted” dates on cards

to facilitate tracking of lead time / cycle time
• On-Hold Metrics: Some teams keep track of “Hold” time - i.e. when a card

cannot be worked on continuously once it has been started. Cards are
annotated with hash marks to represent any full- or half-day increments
during which the card had to be placed “On Hold” for some reason.
(Some overlap with Roadblocks, but sometimes reveals/highlights different
process problems)

Advanced

32

Agile Triangle

1 "Agile Project Management: Creating Innovative Product" by Jim Highsmith

Question should be: "Can we release this product now?"
• Look at the value of a functionality over implementing all the requirements
• Quality today - current iteration or release of product
• Quality tomorrow - release that continues to respond to business changes

both anticipated and un-anticipated
• Constraints - scope, schedule, cost - not unimportant, but not the goal

of the project

Essential

Agile teams are often asked to be "adaptive, flexible, or agile," but also asked to stick with a
plan. A traditional plan is based on scope, schedule and cost. An agile triangle turns the triangle
upside down and has very different goals of customer delight, building quality products while
speeding up the development process. The Agile Triangle in simpler words changes the way we
view success 1.

33

Cone of Uncertainty

• Estimates at beginning of project are very vague
• Estimates and project plans need to be re-estimated on a regular basis
• Uncertainties should be built into the estimates
• Uncertainties should be visible in project plans

Essential

The Cone of Uncertainty describes the amount of uncertainty during different time periods of a
project. At the beginning of a project, it's hard to estimate activity with a high level of accuracy and
confidence because little is known about the product or the results. As you begin researching and
developing the product, the uncertainty level will decrease.

34

Agile
Process

Chapter 3

In this chapter
• Agile Process
• Kanban
• Scrum Framework
• Story Card Writing
• Estimation & Sizing
• Sprints/Iterations
• Customer Collaboration

34

3535

Agile Process

• Recognize that current processes, organizational structures, culture and
approaches are usually the key causes of throughput/quality problems - not
your people

• Coach your people on finding problems and challenges: finding, identifying and
talking about problems is EXPECTED

• Based on the problems and challenges that are being highlighted, we can pick
processes and approaches to help resolve them

"The Agile Samurai:
How Agile Masters
Deliver Great Software"
By Jonathan Rasmusson

Essential

There are several popular models: eXtreme Programming (XP), Scrum, Crystal, Kanban,
and others. All have a common solution for improving the outcomes of software development
through concepts like “the minimum responsible amount” of many artifacts. Consider specific
circumstances to figure out what might be the best fit for each situation. The LeanDog Agile
Discussion Guide gives you an idea of the many tools and approaches that are available for
addressing specific challenges that your team may encounter.

vimeopro.com/leandog/agile-process

36

Kanban

In the 1950’s, Taiichi Ohno began using Kanban in Toyota’s primary machine shop. Translating to
“signboard” or “billboard”, Kanban is a visual scheduling system that helps a team determine what to
produce, when to produce it, and how much to produce.

Essential

"Kanban: Successful
Evolutionary Change
for your Technology
Business"
By David J Anderson

• Visualize workflow and picture the product in each state—from concept
to deployment

• Limit work in progress (WIP) to prevent your team from becoming
overwhelmed, and keep progress continuous and steady.

• Manage flow in order to allow and prepare for changes that will occur
within the iteration

• Make team, queue and practice policies explicit so your team knows how
to participate properly, ensuring a smoother iteration

• When a TEMPORARY surplus in capacity occurs, give precedence to helping
other team members complete any work already in progress, before taking on
new tasks/cards

vimeopro.com/leandog/kanban

37

Kanban

Delivery Rate =
Work in Progress

Lead Time
Decrease WIP in order to decrease cycle time (delivery rate).
Smaller stories in process will come out faster.

Cycle Time

Advanced
• Implement feedback mechanisms like operations review, mentorship and daily

production meetings to ensure demands are being met while identifying where
improvements can be made

• Improve collaboratively with a scientific approach: continuous reflective
analysis paired with small adjustments, encouraging timely evolution at a
sustainable pace

• Periodically review/revisit team WIP limits with team, customers and
stakeholders, especially when changes to team’s composition occur

• WIP limits are intended to facilitate the flow of work through the team by
making it easy to decide whether or not the team is ready to take on new
work. As such, WIP limits should never be used as a negotiation tool - only as
a collaboration tool

38

Scrum Framework

1 Scrum Alliance, http://www.scrumalliance.org/pages/what_is_scrum
Picture source: Scrum Alliance, http://www.scrumalliance.org/pages/what_is_scrum

Get the full guide from scrumalliance.org

• A product backlog is created and prioritized by the product owner
• The product owner selects story cards from the product backlog and adds

them to the sprint backlog, deciding what cards get implemented
• A sprint (or iteration) is a short amount of time to get a significant amount of

work done. Team selects the duration, LeanDog recommends 1-2 weeks
• The team meets each day to assess their progress; a “daily scrum”
• The Scrum Master keeps the team focused on their goals
• At the end of each sprint, the work that was selected from the product backlog

should be released to the customer, put on a store shelf, or shown to a
stakeholder

• Every sprint ends with a sprint review and retrospective
• When a new sprint begins, the team selects another group of story cards from

the product backlog
• The cycle repeats until there are no more story cards to be played in the product

backlog, budget is unavailable, or the deadline has passed. Using the scrum
process ensures that the most valuable parts of the product are built first

Essential

Scrum is an Agile development model that consists of small teams working interdependently.
The teams work together, but focus on their own tasks and must be capable of self management
and decision-making. Scrum is based around a “sprint,” which is generally a 1-4 week period
for delivering a working part of the system. At the end of a sprint the results are delivered, then
reviewed, and the next sprint is started 1.

vimeopro.com/leandog/scrum-framework

39

Ill
us

tra
tio

n
by

 J
ef

f P
at

to
n

Scrum Framework

40

Story Card Writing

• Cards are handwritten
• Cards should follow the format: "In order to (X), As a (Y), I want (Z);" these are

the Values, Roles, and Goals of the card requested feature
• Spike cards exist (see Spike practice for definition)
• Follow INVEST rule (see next page)
• Story cards should represent a vertical slice of the application and deliver

business value
• Story cards are sized to fit an iteration
• Use the 3 C's: the Card, the Conversation AND the Confirmation
• The definition of "done" must be clear

• Developer pairs with BA/product owner to write cards
• Utilize Story Mapping (see page 90) as a tool to identify stories and priorities

"User Stories Applied:
For Agile Software
Development"
By Mike Cohn

Essential

Advanced

A Story Card is the unit of each deliverable for an Agile team. Story Cards include a sentence or
two describing a needed function. Rather than representing detailed requirements, story cards are a
“placeholder for a conversation”. Story cards are testable and include acceptance criteria. The details
are elaborated upon via conversation between the customer, and the delivery team.

41

• Independent
Story Cards should be independent of each other

• Negotiable
The card should be a short description of the deliverable without too many details. The
details should be worked out during the “conversation” phase

• Valuable
Each story must be of value to the customer and have a value
given to it

• Estimable
In order to plan and prioritize, developers need to be able to
ballpark or estimate the effort to complete the story

• Small
Ideally the story should be small typically taking no more than 2-3 days

• Testable
If you cannot test it then you will never know when you are done, so a story needs to be
testable for confirmation to take place

Invest Rule

Business Value: In order to ________
User Role/Persona: As a __________
Goals/Perform Something: I want to _______

Or, Alternate Format:
As a (who)
I Want (what)
So that (why)

Values, Roles, & Goals

The 3 C's

User stories have three critical aspects:
• Card

Stories are written on cards. Each card does not contain all of the information, but just
enough to show the requirements of the feature. Cards are used during planning.

• Conversation
The requirements on each card are communicated from the customer to the delivery
team members through conversation: exchange of thoughts, opinions, and feelings.
These conversations happen many times before/during release planning, during iteration
planning, and again when the story is ready for implementation.

• Confirmation
After running acceptance tests and confirming with the customer that the
tests were successful, a card has been completed.

Story Card Writing

42

Estimation & Sizing

• Use relative sizes
• Planning Poker - Story Points, T-shirt sizes, etc.
• Team understands it’s not just time, it’s complexity
• Very few large cards
• Cards which the team feels are too large/complex to complete within an

iteration should be broken down into smaller / less complex cards
• Re-estimate when significant new information is uncovered, as it changes

 complexity
• Management understands differences of size/estimating vs. hours
• Re-estimate in the event of team changes
• Make all cards as small as possible
• Consider all cards small “By Definition”
• Rewrite / breakdown / decompose card when a smaller slice is found.

"Agile Estimating &
Planning"
By Mike Cohn

Essential

Estimating and Sizing are techniques for evaluating the size / complexity of delivering features in
order to facilitate planning and guide investment decisions. A good planning process based on a
reliable estimation and sizing approach reduces risk and uncertainty, supports better decision making,
establishes trust and conveys information.

vimeopro.com/leandog/estimation

• Measure and account for “Card Growth”
between planning and delivery (e.g. 1 card
in the backlog may turn into, on average,
1.25 cards delivered, due to some fraction of
the cards being able to be decomposed into
smaller slices when we discuss them in detail
with the product owner)

Advanced

43

Sprints /Iterations

• Work is organized to be completed in short time frames (1 - 2 weeks)
• Story cards worked on during an iteration must meet the team's definition of

done and get Product Owner acceptance to be considered complete
• Team gets credit for functional, tested and approved code

• Unplanned work is noted at retrospectives

A Sprint / Iteration is a set period of time for measuring a development team's throughput. Sprints/
Iterations are one to two weeks in length with shorter iterations being the goal.

Sprint/Iteration Process Flow

Essential

Advanced

vimeopro.com/leandog/sprints-iterations

44

Customer Collaboration

• Customer must be clearly identified, and roles and responsibilities clearly defined
• Customer may take the form of customer proxy, product owner, business

stakeholder, end-user or any combination of these roles. Customer owns the
responsibility of driving work in the team that meets overall product goals and
objectives for software being built and delivered by focusing the team’s efforts on
the highest priorities, highest business value features, and stories for release

• Customer works closely with team to break features down to stories
• Customer determines minimal marketable features and signs off on completed

stories supporting those features for release
• Grooming of product backlog is a collaborative effort between customer and

team to adapt to changing product goals and objectives
• Customer listens to the team, the team listens to the customer
• The definition of "done" must be clear

• Create personas as a tool to better understand customers and their expectations
• Co-locate with the team to increase collaboration and communication
• Attend all team meetings (stand-ups, retrospectives, sprint planning)

"Collaboration:
How Leaders
Avoid the Traps,
Create Unity,
and Reap Big
Results"
By Morten Hansen

Reco
mmen

de
d

Essential

Advanced

Customer Collaboration is the practice of including your customer throughout development. Only the
customer can tell you what they want, and collaboration allows you to listen to their needs instead
of guessing at what they need. The customer drives the requirements, prioritization, and review of
work. While it is not always possible to have customers on site, you must make interaction with them
a priority.

vimeopro.com/leandog/customer-collaboration

45

Leadership

Chapter 4

In this chapter
• Leadership Role
• Servant Leadership
• Six Thinking Hats
• Collaboration 8
• Fist to 5

45

4646

• Practice servant leadership
• Establish team based decision processes
• Enjoy seeing team learn
• Remove roadblocks

• Leads by example by practicing Agile practices such as:
• Daily Stand-ups
• Information Radiators
• Retrospectives
• Making work visible
• Limiting work in progress
• Open workspace

Essential

Advanced

In order to support the successful adaptation of Agile and uphold its values, principles and
practices, an organization's leadership needs to create a culture of continuous improvement. This
section covers servant leadership, an important leadership style along with other collaboration
techniques that allow teams to self organize and make decisions. It is important that the entire
organization, from the top down, understands the notion of servant leadership and agrees on a
team-based decision-making process.

Leadership Role

47

Servant Leadership

Page source: "Seven Pillars of Servant Leadership: Practicing the Wisdom of Leading by Serving"
by James W. Sipe & Don M. Frick

"Seven Pillars of Servant
Leadership: Practicing
the Wisdom of Leading by
Serving" By James W. Sipe
& Don M. Frick

Seven Pillars of Servant Leadership
• Person of character - maintain integrity, demonstrate humility and serve

a higher purpose
• Puts people first - displays a servant's heart, is mentor-minded, and

shows care and concern
• Skilled communicator - demonstrates empathy, invites feedback,

communicates persuasively
• Compassionate collaborator - expresses appreciation, builds teams,

and negotiates conflict
• Foresight - visionary, displays creativity, and exercises sound

judgement
• System thinker - comfortable with complexity, demonstrates

adaptability, and considers the "Greater Good"
• Leads with moral authority - granted by others

Essential

A servant leader is an individual who puts others first. They are good communicators, collaborators,
systematic thinkers, and lead with moral authority. A leader with moral authority is one who is worthy
of respect, inspires trust and confidence, and establishes a quality standard for performance. They
accept and delegate responsibility, share power and control, and create a culture of accountability.

vimeopro.com/leandog/servant-leadership

4848

Six Thinking Hats

 Six Thinking Hats:
• White Hat: calls for information known or needed. “The facts, just the facts.”
• Yellow Hat: symbolizes optimism. Under this hat you explore the positives

and probe for value and benefit.
• Black Hat: is judgment - the devil's advocate, or why something may not

work. Spot the difficulties and dangers; where things might go wrong.
Probably the most powerful and useful of the hats, but a problem if overused

• Red Hat: Signifies feelings, and intuition. When using this hat you can
express emotions and feelings, and share fears, likes, dislikes, loves,
and hates.

• Green Hat: focuses on creativity: the possibilities, alternatives, and new
ideas. It's an opportunity to express new concepts and new perceptions.

• Blue Hat: is used to manage the thinking process. It's the control
mechanism that ensures the Six Thinking Hats® guidelines are observed

• The four major benefits of Six Thinking Hats®
• Power – the group is looking and working in the same direction
• Time saving – thinking in parallel prevents argument and saves time
• Removal of ego – minimizes emotion, creates focus
• One thing at a time – minimizes confusion created by argument

"Six Thinking Hats"
By Edward de Bono

Page source: "Six Thinking Hats" by Edward De Bono

Essential

Reco
mmen

de
d

Four people try to describe a house: one stands in front, one in back, one on each side. They
can’t agree on the correct view. We've all been in that situation. The Six Thinking Hats® creates
an environment that encourages “parallel thinking” (versus argument) where everyone in the
discussion looks in the same direction at the same time.

vimeopro.com/leandog/6-thinking-hats

49

Six Thinking Hats

Download Our App

LeanDog
Agile Tools

50

 Here is our adaptation, which might be better described as the levels of
 collaboration: “The 7 Levels of Authority” (plus the Joker)

Page source: Michael "Doc" Norton's blog: http://www.docondev.com/2012/04/collaboration-8.html
Page source: Jurgen Appelo Delegation 7 content: http://www.management30.com/delegation-poker/

• Tell: I know exactly what I want and we need to do it this way
• Sell: I consider this to be my responsibility, but I will get buy-in from others
• Consult: I want your insight but I will decide how we do the work
• Agree: I want to work together
• Advise: I want to give you insight and let you do the work
• Inquire: I trust you to do the work but I want to understand so I can support you
• Delegate: I will support whatever decision you make
• Joker: You are violating the agreement that we have made earlier

"Management 3.0 Leading
Agile Developers, Agile
Leaders" By Jurgen Appelo

Essential

Collaboration 8 is a slight twist on Jurgen Appelo’s “7 Levels of Authority”. We use it as a fast and
simple means of identifying who should be involved in the decisions, creating operating agreements
and making personnel involvement publicly visible. The Joker card is a LeanDog addition. This card is
played when someone sets expectations one way, but does not continue to play by that agreement.

Collaboration 8

vimeopro.com/leandog/collaboration-8

51

Collaboration 8

Download Our App

LeanDog
Agile Tools

5252

Fist to 5

The Fist to Five approach combines the speed of thumbs up/down with the degrees of agreement.
Using this approach, people vote using their hands and fingers to represent their degree of support.

• Fist - A "no" vote, a way to block consensus. "I need to talk more on the
proposal and require changes for it to pass."

• 1 Finger - "I need to discuss certain issues and have some suggestions."
• 2 Fingers - "I am more comfortable with the proposal but would like to

discuss some minor issues."
• 3 Fingers - "I’m not in total agreement, but feel comfortable to let this decision or

proposal pass without further discussion."
• 4 Fingers - "I think it’s a good idea/decision and will work for it."
• 5 Fingers - "It’s a great idea and I will be one of the leaders implementing it."
• If anyone holds up fewer than three fingers, they should be given the

opportunity to share their concerns with the team.
• Teams continue the Fist-to-Five process until they achieve consensus

(a minimum of three fingers or higher) or determine they must move on to
the next issue.

• There must be a reasonable level of trust and cooperation amongst the group
• Ensure that everyone understands the voting system.

Page source: Fletcher, A. (2002). FireStarter Youth Power Curriculum: Participant Guidebook. Olympia, WA:
Freechild Project.

"Agile Project Management:
Creating Innovative
Products" By Jim Highsmith

Essential

vimeopro.com/leandog/fist-to-5

53

Scrum Master /
Iteration Manager

In this chapter
• Scrum Master /

Iteration Manager
• Daily Scrum/Stand Up
• Sprint / Iteration Planning
• Show & Tell
• Retrospectives
• Velocity
• Roadblocks

Chapter 5

53

5454

Scrum Master / Iteration Manager

Agile Project Management with Scrum, Ken Schwaber

• Remove barriers between the development and the product owner,
ensuring the development is directly driven by the product owner.

• Assist the product owner how to maximize return on investment (ROI),
and meet their objectives through Agile approaches

• Improve the lives and productivity of the development team by facilitating
creativity and empowerment

• Team champion of the process
• Influences practices and Agile values and principles without command

and control activity
• Internal team coach and protector of the team
• Does not promise or schedule work on behalf of the team
• Keep information about the team's progress up to date and visible

to all parties
• Identify, raise up and remove roadblocks

"The Agile Samurai:
How Agile Masters
Deliver Great
Software"
By Jonathan
Rasmusson

"The Human
Side of Agile"
By Gil Broza

Essential

This person is the servant leader of the team sometimes known as Scrum Master or Iteration
Manager. A key part of their role is helping the team adhere to the Agile values and principles. Once
the team has agreed to certain approaches to their work, it's up to the Iteration Manager to remind
the team of those commitments.

vimeopro.com/leandog/iteration-manager

Reco
mmen

de
d

55

Daily Scrum/Stand Up

• No stale roadblocks exist
• Debts help reinforce values at Stand Up (i.e.: late to Stand Up / playing with toys /

pass to someone who went)
• Happens daily, regardless of priorities
• Sound signal to start Stand Up (Alarm / cow bell /gong)
• Team selects Stand Up time
• Team member records the roadblocks on the whiteboard so they are visible

and cannot be ignored
• Team members are allowed to “Pass” if they have no new information to share

and no roadblocks

• Collaborative activity with core team to share what they're working on and any
roadblocks that are preventing forward progress on a story

• Occur daily at the same time for 15 minutes or less
• Address what was done yesterday / what will be done today / roadblocks
• Everybody attends and shows up on time
• Includes the customer so they can be informed and make adjustments
• There is no Stand Up leader - team facilitates

Pictures source: Xavier Quesada Allue. Visual management. [Online] http://www.xqa.com.ar/visualmanagement/2009/04/
daily-scrum-against-the-board/, 4/19/09.

Essential

Advanced

The Daily Stand Up is an Agile ceremony where the team meets for no more than 15 minutes every
morning. Each person on the team reports briefly on what they did yesterday, what they are going to
do today, and any concerns or roadblocks they are facing. Daily Stand Ups reduce the need for team
meetings. They encourage accountability, as team members are aware of all work going on. Stand
Ups also allow for mid-course corrections, encourage the team to solve problems on their own and
help to notify managers early if there are any roadblocks.

vimeopro.com/leandog/standup

56

Sprint /Iteration Planning

• Product Owner pulls stories from the product backlog to be played during
 the iteration

• Meeting includes the Iteration Close
• Review of work completed during iteration, including roadblocks
• Review of cards not completed during iteration
• Velocity

• Meeting includes the Iteration Open
• New story cards are reviewed for business intent/completeness
• Team signs up for available work hours
• Target velocity is established

• Business partners understand velocity and work within the budget to select
 stories that will be played in the new iteration

1 Jim Highsmith, http://jimhighsmith.com/2011/11/02/velocity-is-killing-agility/
Picture Source: http://d2lkacpp4m5oo7.cloudfront.net/wp-content/uploads/2010/05/AH-sprint-planning-meeting2.JPG

Essential

The Sprint / Iteration Planning meeting is held at the beginning of each new iteration to break down
each of the features scheduled into individual stories. At the start of a new iteration, available work
hours and projected velocity are set, the team reviews any card not completed in the prior iteration,
business intent for new cards is established, the team re-estimates cards if necessary and the
team determines what cards fit the new iteration and assigns them.

“Over-emphasis on velocity causes problems because of its wide
[use] as a productivity measure[ment]. The proper use of velocity

is as a calibration tool, a way to
help do capacity-based planning,
as Kent Beck describes in Extreme
Programming: Embrace Change.” 1

“The ultimate expression of agility
from a software perspective is

continuous delivery and deployment. Our goal should not be
productivity, but to design and deploy a great customer experience
quickly—again and again over time.” 1

vimeopro.com/leandog/sprint-iteration-planning

"Succeeding with Agile:
Software Development
Using Scrum"
By Mike Cohn

57

Show & Tell

• Core team, business owner and supporting roles demonstrate working code and
acceptance tests completed during the iteration

• Customers attend
• Customer approves that the implementation met expectations
• Whole team attends
• Customer prioritizes changes immediately

"The Art of Agile
Development"
By James Shore

Essential

Show and Tell is a demonstration of features completed during a sprint/iteration. This provides a
forum for team members, customers and other stakeholders to review progress, provide feedback
on new features and prioritize any changes needed to the delivered features. By using Show and
Tell, teams maintain accountability to the customer.

vimeopro.com/leandog/show-and-tell

58

Retrospectives

• Core team applies continuous improvement principles to team activities; team
 discusses what went well and what didn't go well during the iteration to
 determine what needs to be improved

• Goal is to stress continuous improvement. Experimental changes, even those
 that fail, are encouraged

• All team members attend retro and assess how things went during the previous
 iteration

• Format includes a version of “what worked” and “what didn't work”
• Team decides which items to focus on; output lists actions
• Progress on action items is tracked and published
• Conducted after every iteration

• Use safety checks to indicate that team members feel safe to bring up
difficult topics

• Team holds spontaneous retrospectives for significant issues
• Team experiments with alternative formats

(e.g. Lean Coffee, Six Thinking Hats, etc.)

Essential

Advanced

Retrospectives are meetings that take place after each iteration and are designed to help the team
find ways to improve their processes and output. This meeting should be a safe environment in which
to talk about what worked and what didn't work. The team votes on whether the items discussed
during the retrospective should become cards to be played in the coming iteration.

vimeopro.com/leandog/retrospectives

"Agile
Retrospectives:
Making Good
Teams Great"
By Esther Derby &
Diana Larsen

Reco
mmen

de
d

59

Velocity

• Must be measured
• If a card is not finished within a sprint/iteration, the card and points are carried

to the next sprint/iteration
• Never take partial credit, don't split points across sprints/iterations;

"not done" means zero points in the iteration even if only one hour of work
is required to finish

• The team’s previous velocity is used as the first guess of a future velocity
• Well understood by the whole team: "What was your velocity for

the last sprint/iteration?"
• Managers look at burn up charts, not velocity
• Point method must be consistent within the team; does not have to be

consistent across the teams
• Velocity adjusted based on holidays and large team absences

"Agile Estimating
& Planning"
By Mike Cohn

Velocity is the
amount of work
the team can get
completed in one
sprint/iteration

When a team and their environment are healthy, velocity should stabilize after 3-6 iterations to a
predictable number range. A highly volatile velocity 5 or 6 iterations is an indicator that the dynamics
around or within the team has not stabilized and warrants further inspection and adaptation.

Essential

Velocity is a simple, yet powerful method to consistently measure and track the rate a team delivers
business value in each iteration. It is measured by counting the completed cards from the iteration
that is ending. Then the velocity is used to determine and plan upcoming sprints/iterations and
estimate time of completion.

vimeopro.com/leandog/velocity

60

Roadblocks

• Date on the card denotes roadblock's inception
• Break roadblocks into columns of progress
• Create an escalation process for roadblocks in the event someone needs help
• Purpose of roadblock wall is clearly defined
• Senior management understands that roadblocks exist and where to find them

• Displayed on a wall in each team area
• Roadblocks are prioritized and completed in order
• Reviewed at end of each iteration/sprint
• When in progress, there should be an owner on the card
• Are declared during stand up

Essential

Advanced

A roadblock is an obstacle that is standing in the way of the team. Management should be aware
of roadblocks early so they are quickly resolved and the rest of the card can be completed in a
timely manner.

vimeopro.com/leandog/roadblocks

"Succeeding with Agile:
Software Development
Using Scrum"
By Mike Cohn

61

Quality
Assurance

Chapter 6

In this chapter
• Quality Assurance Role
• Exploratory Testing
• Automated Regression

 Testing
• Acceptance Test Driven

 Development

61

6262

Quality Assurance Role

• Continually improve the tests with refactoring (including data)
• Work with the product owner and developer to establish a plan for providing

 business value
• Understand the business intent of the story card which help define tests to

measure the effectiveness of the story implementation
• Collect and organize story tests into an automated

 test suite that becomes the regression test
• Run and define exploratory tests and communicates results

• Undertake testing craftsmanship to help maintain development speed,
 quality, and efficiency

• Commit to be one of the “Three Amigos” / “Fantastic Four”, with excellent
collaboration between product owner and developers

• Assist with defining features and specifications with Acceptance Test Driven
 Development (ATDD)

• Automate ATDD tests
• Pair with a fellow team members to ensure someone else knows that

section of the application, and hold each other to high levels of test quality

"Agile Testing:
practical Guide
Testers and Agile
Teams"
By Lisa Crispin &
Janet Gregory

Essential

Advanced

Reco
mmen

de
d

A Quality Assurance role is one where team members are responsible for inspecting and/or
validating the product delivered both within the context of a story and as a whole.

63

Exploratory Testing

• Manual tests that occur during and after the story is developed
• Used to catch the edge cases that aren’t caught in automation
• Integral part of the quality strategy for a team or a project
• Involves the tester before the story card is implemented and throughout

delivery of the story card

• Is never “done”
• Is usually executed against a “charter”
• May be constrained to a time-boxed session between 30 and 120 minutes

"Explore It!"
By Elisabeth Hendrickson

Essential

Advanced

Exploratory Testing is a method of questioning and learning about the product as you design and
execute tests, as opposed to following a predefined script. This is considered a mode of simultaneous
learning, test design and test execution that values the tester as a critical part of the test process.

vimeopro.com/leandog/exploratory-testing

6464

Automated Regression Testing

What is "ility" Testing?
Testing concerned with qualities such as security, maintainability,
interoperability, compatibility, reliability, and installability1.
Learn More in "Agile Testing" by Lisa Crsipin

• An iterative activity to build up a regression test suite by creating tests prior
 to writing code

• Tests are executed every time code is checked into the code repository,
 resulting in immediate feedback on the health of the overall code base

• Scripts are created for regression testing
• Automated tools run the scripts for regression testing
• Automated testing with duplicable test data generation
• Test entire application, both new and existing functionality, at least once

 per sprint/iteration
• In order to keep up with development efforts, regression testing must be

automated
• Most development efforts are on existing applications. If you do not have

 great test coverage, where do you start?
• With buggy or trouble areas
• If no trouble areas, then start with the critical application areas
• Any new functionality

Essential

• See the Acceptance Test Driven Development process for more guidance on
 improving the effectiveness and efficiency of regression testing

Advanced

"Agile Testing:
practical Guide
Testers and Agile
Teams"
By Lisa Crispin &
Janet Gregory

Reco
mmen

de
d

Automated Regression Testing is a testing process focused on detecting defects introduced into the
software at the earliest possible opportunity while eliminating repetitive manual labor. Automated
Regression Testing uses a comprehensive suite of automated tests to confirm the proper operation
of each feature in the application, and notifies the team if one or more features of the software is
not operating correctly.

1 "Agile Testing: practical Guide Testers and Agile Teams" By Lisa Crispin & Janet Gregory

vimeopro.com/leandog/automated-regression-testing

65

Acceptance Test Driven Development

• Requirements are captured as combinations of free-form specification and
Gherkin scenarios that describe how the system should behave when completed.
These scenarios become the Acceptance Tests

• Just prior to the development of a story, the product owner, tester and developer
meet to refine and add any missing Acceptance Tests. We call this a "Three
Amigos" meeting

• Automation of the Acceptance Tests must be completed prior to the completion
of development

• Developer focuses on making the Acceptance Tests pass. Together with the
tester, their focus throughout this effort is to prevent defects

• Story is functionally complete once all Acceptance Tests pass
• Acceptance Tests run continuously to act as a regression test
• The definition of "done" must be clear

• Tester automates Acceptance Tests at same time as the developer writes code.
 They are in constant collaboration during this effort

Feature: Checkout out after selecting a puppy

 In order to complete my online adoption
 as a customer of the puppy adoption site
 I want to be able to checkout by providing necessary information

 It is important to capture the necessary information we require to
 process the adoption. We need to create a screen that captures the
 name, address, email address and payment type of the customer.
 Scenario: Name is a required field
 Given I am on the puppy adoption site
 When I adopt a puppy leaving the name field blank
 Then I should see the error message "Name can't be blank"
 Scenario: Thank you message should be displayed when adoption completed
 Given I am on the puppy adoption site
 When I complete the adoption of a puppy
 Then I should see "Thank you for adopting a puppy!"

Essential

Advanced

Acceptance Test Driven Development (ATDD) is a practice in which the team discusses the
acceptance criteria, then creates a set of clear acceptance tests before development begins.
It ensures that the team has a shared understanding of what is being developed. It requires a
significant shift in how the team members interact with each other. The transition to ATDD can
be a challenge, but the payback is significant.

Please Enter Your Details:

6666

PO

Product Owner, Quality
Assurance, and Developer
collaborate to review the
specification, make any
necessary adjustments and
add missing requirements
and edge cases.

The story is deemed functionally complete
when all acceptance tests pass and and they
have been added to the regression suite.

Acceptance Test Driven Development Process

Acceptance Test Driven Development

67

"Cucumber & Cheese:
A Testers Workshop"
By Jeff Morganvimeopro.com/leandog/atdd

Acceptance Test Driven Development

Current Process

Step 1

The product owner writes initial requirements in the form of specifications and scenarios.
Other supplemental artifacts such as low-fidelity prototypes and possible wireframes are ac-
ceptable, but the core functional requirements must be captured in scenarios.

Step 2

Just prior to story development, the product owner, tester and developer (Three Amigos)
and UX if available (Fantastic Four) meet to review and finalize the scenarios. At this time,
the tester typically introduces edge cases that were absent from original scenarios. The
developer can also take this opportunity to discuss other possibilities and alternatives that
might simplify the delivery. At the end of this meeting, the product owner agrees that the
story is complete once scenarios pass.

Step 3

The developer and tester focus on preventing defects and making all scenarios pass.
Ideally, the tester automates the scenarios at the same time the developer is writing code.
Once all scenarios are automated, the tester can initiate exploratory testing on application
and continue to provide feedback to the developer. This collaboration continues until all
scenarios pass and both parties feel they have tested all aspects of the story.

Software development has come a long way, but the focus remains on project management
and developer practices. For most, Quality Assurance (QA) is still about defect detection
instead of defect prevention.

ATDD Poster
LeanDog.com/free/attdposter.pdf

68

Developer

Chapter 7

In this chapter
• Developer Role
• Collective Code Ownership
• Continuous Integration
• Simple & Evolutionary Design
• Paired Programming (Pairing)
• Test Driven Development
• Technical Debt
• Spikes

68

6969

Developer Role

• Understands the business intent of the story card
• Works with the product owner and tester to come up with an approach on

how to provide the value
• Save both test and code in a repository
• Build code to satisfy the tests and conditions of the story
• Write and code with the purpose of clearly communicating the intent to the

next developer that will look at the code, and be satisfied that what you have
coded is ready for production use

• Build tests that measure whether or not the implementation is working
• Continually improve the test and code base with refactoring
• Pair with a fellow developer to ensure someone else knows this section of

the application, and hold each other to high levels of design and code quality

• Undertake software craftsmanship to help maintain development speed,
quality and efficiency

• Commit to be one of the “Three Amigos”/ “Fantastic Four” and encourage
collaboration between product owner and quality assurance

• Build code to get acceptance tests to pass (ATDD - Acceptance Test
Driven Development)

"Clean Code:
A Handbook of
Agile Software
Craftmanship"
By Robert C. Martin

Essential

Advanced

Reco
mmen

de
d

A developer is responsible for creating high-quality working code that meets the expectations of the
product owner.

70

Collective Code Ownership

• All developers are responsible for the code; everyone has the ability to change
the code

• Developers commit to writing outstanding new code from the start, instead of
doing a half-hearted job and expecting someone else to fix the mistakes

• Check egos at the door
• Works best when coupled with Paired Programming and

Test Driven Development
• Eliminate knowledge silos by encouraging developers to work in unfamiliar

areas of code

Collective Code Ownership
We are members of a community that owns the code

Anyone can modify any code at any time
Team has a single style guide and coding standard

Original authorship is immaterial
Plentiful automated tests increase confidence and safety

"Practices of an
Agile Developer"
By Venkat Subromanian
& Andy Hunt

Essential

Collective Code Ownership is a practice where all team members share responsibility for code
quality. It also allows each developer to change any piece of the code at any time. Collective Code
Ownership also helps to eliminate “specialization”, as everyone is expected to fix problems when
they are discovered.

vimeopro.com/leandog/collective-code-ownership

7171

Continuous Integration

• System is built and all unit tests run at least once a day
• The entire build and test run takes no more than ten minutes
• Team is notified whenever a build fails
• Fixing a broken build is the team's highest priority

• A system is built and all tests are run every time a developer checks in code
• Visual indicators in the room that show the build status

Essential

Advanced

Continuous Integration is the practice of ensuring all code changes are compatible with the existing
shared codebase by assimilating each change into the codebase as soon as possible after a
developer submits the change. The entire system is tested in order to confirm the health of the code
and verify that the changes made are compatible with the shared codebase. Testing is performed
using an automated, scripted process known as “the build”.

vimeopro.com/leandog/continuous-integration

"Jenkins
Continuous
Integration
Cookbook
By Alan Berg

"Continuous
Integration:
Improving
Software
Quality and
Reducing Risk"
By Paul M. Duvall

Reco
mmen

de
d

72

Simple & Evolutionary Design

• “Simple is best” approach to software design where refactoring is an integral
part of the code simplification process

• Believes in doing “the simplest thing that works”
• Avoid building unnecessary architecture
• Design is done just in time and evolves with the app
• Spikes are used to mitigate risk in design or investigate a new domain

"Growing Object-
Oriented Software
guided by tests"
By Steve Freeman

Essential

Simple & Evolutionary design is a system which minimizes the amount of up-front design done
before coding begins. Instead, the design of the system grows as it develops, emphasizing simple
architectures and designs that provide adaptability to change. Simple designs also allow teams to
have increased velocity as they spend more time providing customer value.

vimeopro.com/leandog/simple-and-evolutionary-design

7373

Paired Programming (Pairing)

• All code is produced by a pair of developers working together on one story
 at one workstation

• It's encouraged for all roles to pair with anyone, anytime - switching every
 few hours is optimal

• Pairs change frequently, and very few knowledge silos exist
• No coding without a pair partner
• Don’t underestimate good hygiene
• Environment supports pairing: desks are easy to access, office doesn't

 have obstacles or obstructions
• Developers do not have their backs to the team, they sit beside or

 across from each other

"The Art of Agile
Development"
By James Shore

"The Cost & Benefits of
Pair Programming"
By Alistair Cockburn

Essential

Reco
mmen

de
d

Paired Programming is the technique of joining two team members at one computer. With two
minds in constant collaboration, paired programming encourages sharing knowledge and catching
bugs early by continual code review. The knowledge moves across the team more quickly and
ensures that the best practices are followed.

vimeopro.com/leandog/paired-programming

Recommended article:

• Frequent pair switching - switch pairs every 2-4 hours
• Remote Pairing
• Pairs use focusing techniques (e.g. Pomodoro) to stay on task

Advanced

74

"Test Driven
Development:
By Example"
By Kent Beck

Reco
mmen

de
d

Test Driven Development

• Tests are written prior to any code
• TDD workflow:

• Write a failing test
• Write code to make the test pass
• Refactor and continue cycle until the system fulfills all required

functionality and satisfies all known use cases
• Forces testable designs/architectures
• Produces clean code
• Tests to provide a safety net as application design evolves

Essential

Test Driven Development is a software development technique where developers write a test prior to
any new application code and use short development cycles to design the product. There are three
stages: (1) Write a failing test, (2) Write code to make it pass, (3) Refactor and continue cycle until
the developers cannot think of any more tests. Using TDD results in fewer defects, and provides a
fast feedback loop, allowing for fearless refactoring of the system.

vimeopro.com/leandog/tdd

7575

Technical Debt

• Clean code
• Good test coverage
• A learning objective
• Payback plan
• A truly informed product owner

• Technical debt is tracked / acknowledged / disclosed
• Technical debt is continuously minimized

"Working Effectively
with Legacy Code"
By Michael Feathers

Essential

Advanced

Technical Debt is the gap between the right solution and the solution that currently exists. As
technical debt accrues, the more difficult it becomes to reconcile the differences and deliver what is
needed. Technical debt can be incurred as a strategic initiative, but needs to be repaid within only a
few iterations.

vimeopro.com/leandog/technical-debt

76

Spikes

• Time-boxed
• Few in number
• A learning / discovery objective
• Code produced should be thrown away
• Results should be communicated back to the team and product owner

along with demos
• Pulled forward in the release plan to reduce risk
• Played with enough leeway to adapt the plan
• Incorporate spikes into planning
• Estimate the spike like anything else

Essential

A Spike is a time-boxed experimental story card that is included in the iteration cycle to determine
an estimate, but stops short of completing the story. Spikes are an excellent way to try out
something quickly, and are usually a few hours to a couple days in length.

vimeopro.com/leandog/spikes

"The Art of Agile
Development"
By James Shore

"User Stories
Applied:
For Agile
Software
Development"
By Mike Cohn

Reco
mmen

de
d

77

Product
Owner

Chapter 8

In this chapter
• Product Owner Role
• Value Stream Mapping
• Demand Management
• Product Backlog
• Release Planning

77

7878

Product Owner Role

Agile Project Management with Scrum, Ken Schwaber

• Decides what will be built and in which order
• Defines the features of the product or desired outcomes of the project
• Orders the product backlog to best achieve goals and missions
• Prioritizes features and outcomes according to market value
• Facilitates release planning ceremony with iteration manager
• Adjusts features, outcomes and priority as needed
• Accepts or rejects work results

Essential

The product owner represents the stakeholders and acts as the voice of the customer. They are
accountable for ensuring that the team delivers value to the business. The product owner writes
customer-centric items (typically user stories), prioritizes them, and adds them to the product
backlog. Scrum teams should have one product owner, and while they may also be a member of the
development team, it is recommended that this role not be combined with that of scrum master.

vimeopro.com/leandog/product-owner-role

"Agile Product
Management with Scrum:
Creating Products that
Customers Love"
By Roman Pichler

79

Value Stream Mapping

• Flow of activities begins with the customer's need and ends when the need is
 satisfied

• Identify the target product, product family or service
• Draw a current state value stream map illustrating current steps, delays and

 information flows required to deliver the target product
• Assess the current state value stream map in terms of creating flow and

 eliminating waste
• Draw a future state value stream map

Essential

Value stream mapping is a type of flow chart used to design and analyze the flow of information
needed to bring a product to the customer. Mapping allows you to discover waste, then construct a
plan to eliminate it.

vimeopro.com/leandog/value-stream-mapping

80

Demand Management

See the Whole - Lean Software Development
Standard Workflow: From Idea to Production

• Regular User Summits bring all users together in order by value to discuss
their goals

• Project demand funnel is visible to team
• Cards are ordered by highest value
• Everyone understands concept of Minimal Marketable Feature (MMF) or

 Minimal Usable Feature (MUF)

• Customer personas are present and considered
• Story Mapping technique is used and understood by everyone

Essential

Advanced

Demand Management helps organizations deliver the most value from their capacity by adopting
continuous portfolio alignment, incorporating pull-based thinking, and limiting work in progress (WIP).

vimeopro.com/leandog/demand-management

81

Product Backlog

• Just enough product backlog to create product without unnecessary features
• Must be visible
• Uses concept of Minimal Marketable Feature Sets (MMFS)
• Must prioritize and organize backlog by business value
• Backlog is regularly reviewed and maintained
• Not a requirements list
• Team and Customer collaborate on prioritization, to ensure that technical

complexity, duration, and cost of features are understood to the extent that
they impact business value

• Customer has final decision authority around prioritization of features.

Michele Sliger and Stacia Broderick, "The Software Project Manager's Bridge to Agility"

"The Software
Project Manager's
Bridge to Agility"
By Michele Sliger

Essential

The Product Backlog is a high-level list of all potential features prioritized by business value for the
customer.

vimeopro.com/leandog/product-backlog

82

Release Planning

• Core team, business owner, and supporting roles drive out product features,
details, and stories for release; anything not deemed part of the release will
either be out of scope, or moved to a future release

• Planning the next release is a joint effort between business partners and team
• Release plans map out several iterations to package releases and maximize

business value
• Spikes are used to identify and mitigate risk, risk is pulled forward
• Produce burn up/down charts
• Lay out cards in order of feature importance
• Team agrees to a planning velocity which is used to create the Release Plan

"Product Release
Planning:
Methods, Tools
and Applications"
By Guenther Ruhe

• Release Planning is a continuous activity for regularly scheduled releases
• Suggest a rolling release planning window
• Suggest a separate Release Planning Meeting with product owners to

prioritize next set of features to work on for upcoming releases

The team should review plan and ask the
following Questions:

• Is there enough work for all pairs?
• Are any pairs stepping on others?
• Are highest risk cards being played first?
• Are the most valuable features coming out first?
• Are there any dependencies which are missing?

Essential

Advanced

Reco
mmen

de
d

A Release Plan is an evolving roadmap that sets delivery goals for high-level feature sets. It will
provide the team with an overview of the release and what is required to make the release a
success. The plan should include the key features, goals, responsibilities, and risks.

vimeopro.com/leandog/release-planning

83

User
Experience

Chapter 9

In this chapter
• User Experience Designer
• Personas
• Story Mapping
• Low-Fidelity Prototyping

83

8484

User Experience Designer

Essential

Advanced

The User Experience (UX) Designer(s) are responsible for defining, designing and testing the
experiences and interactions that users of the system engage with. UX is a broad spectrum of skills
that include information architecture, user research, data analysis, content strategy, visual design
and usability. All of these elements come together to craft a measurable user experience.

• Start with the problem and business objective
• Follow the 80/20 rule by focusing on the core functionality, or "happy path"
• Stay one step ahead of the team, before development work begins
• Do just enough design
• Iterate your designs (refactoring is to be expected)
• Test and validate with users
• Communicate with your team
• Define success metrics

• Stay 1-2 sprints/iterations ahead of development
• Design spikes
• Cross-functional pairing
• Facilitate ideation sessions and encourage the team to participate
• Co-located to be part of the team
• Define styles and patterns for common elements early in the process
• Visualize the workflow or interactions
• UX design reviews

Picture source: Peter Morville of Semantic Studios put together this concept of the UX Honeycomb in 2004

"Universal Methods
of Design: 100 Ways
to Research Complex
Problems, Develop
Innovative Ideas,
and Design Effective
Solutions"
By Bruce Hanington &
Bella Martin

"Agile Experience:
A Digital Designer's
Guide to Agile, Lean,
and Continuous
Improvement"
By Lindsay Ratcliffe &
Marc McNeill

Reco
mmen

de
d

85

• Customer base is depicted visually
• Personas are based on a subset of the customer profile
• Understand your customer clearly
• Provide an instance of user types
• Take scenarios from personas
• Avoid mirror personas and elastic users
• Design each part of the interface for just one persona
• Should “wiggle” under the pressure of development
• No more than three primary personas for the entire system
• Describe current situation of customer profile, describe goals, needs of the

profile, and how will application being created add value to person

Linda Cole, Home Buyer:

Situation:
• 34 years old
• Current home not large enough
• Drives kids to school each morning

Goals:
• Move into a bigger house
• Better life for her kids than she had

Value:
• Our web app will show her the
 availability of homes in the area.
• App allows user to access
 information about available homes

Page source: Jeff Patton, http://www.agileweboperations.com/pragmatic-personas-concrete-examples-of-your-users

Essential:

Personas are profiles of the customers who will be using your product. They are an important
tool that helps reduce waste by ensuring all features are necessary. Personas typically include:
behavior and usage patterns, goals and motives, knowledge or skills, and sometimes the person's
role and demographic. Personas are not made-up, but researched thoroughly. The goal is to define
the target audience you are designing the system for.

"About Face 3:
The Essentials of
Interaction Design"
By David Cronin, Robert
Relmann, Alan Coopervimeopro.com/leandog/personas

Personas

86

• Early stage of progressive elaboration
• Team uses note cards to depict the features and their flow in the system
• Start at the Epic level and continue on down into user stories,

then into features
• Features are organized by value order
• Discovery and Prioritization
• Used early on, not an ongoing practice
• Technique can be applied to reverse engineer an application
• A good tool for getting people to think through what they are asking for

Essential

Story mapping is the highest level in the ideation process and should be completed first. It includes
every feature you want in your product. A story map is categorized by size, then grouped together by
features that are linked or related.

Story Mapping

vimeopro.com/leandog/story-mapping

"User Story Mapping:
Discover the Whole Story,
Build the Right Product"
By Jeff Patton

87

Low-Fidelity Prototyping

• Initial version of user interface is created manually
• Rapid iterations and prototypes with team members
• Build the software and encourage interaction

• Creation of storyboards that represent a larger portion of the project
• Lightweight, no tools, fast

Low-Fidelity Prototyping is a tool used to create a mock-up that is quick and incomplete, but has the
characteristics of the target product. It's simple and requires minimal effort to quickly produce the
prototype and test broad concepts.

Essential:

Advanced:

"Sketching User
Experiences: Getting
the Design Right and
the Right Design"
By Bill Buxton

vimeopro.com/leandog/low-fidelity-prototyping

88

Appendix

88

89

Recommended Reading List

The LeanDog team has a recommended
reading list detailing which books are best
for the Business Analyst, Quality Assurance,
Management, Developers, Scrum Masters,
and Product Owners. Each of these
have helped us further our knowledge of
practicing Agile in not only our software
development, but our company as a whole.

"Agile Estimating
and Planning"
By Mike Cohn

BA MGMT PO SM

Recommended For:
Business Analyst

Quality Assurance

Management

Developer

Scrum Master

Product Owner

User Experience

BA
QA

MGMT
DEV

SM
PO
UX

"An Agile Adoption
and Transformation
Survival Guide"
By Michael Sahota

"Agile Project
Management: Creating
Innovative Products"
By Jim Highsmith

"Agile Retrospectives:
Making Good Teams Great"
By Esther Derby &
Diana Larsen

EveryoneBA PO

"The Agile Samuai:
How Agile Masters
Deliver Great Software"
By Jonathan Rasmusson

"Agile Testing: A Practical
Guide for Testers and
Agile Teams"
By Lisa Crispin &
Janet Gregory

"The Art of Agile
Development"
By James Shore &
Chromatic

"Apprenticeship Patterns:
Guidance for the Aspiring
Software Craftsman"
By Dave Hoover &
Adewale Oshineye

"The Clean Coder:
A Code of Conduct
for Professional
Programmers"
By Robert C. Martin

"Clean Code: A Handbook
of Agile Software
Craftsmanship"
By Robert C Martin

"Everyday Scripting
with Ruby: for Teams,
Testers, and You"
By Brian Marick

"Extreme Programming
Explained: Embrace
Change"
By Ken Beck,
Cynthia Andres

BA QA PO

DEV

BA QA DEV SM PO UX

QA DEV QA DEV QA DEV

QA DEV QA DEV SM PO UX

QA DEV

"Cucumber & Cheese:
A Testers Workshop"
By Jeff Morgan

90

Recommended Reading List

"Management 3.0:
Leading Agile Developers,
Developing Agile Leaders"
By Jurgen Appelo

"Leading Lean Software
Development: Results are
Not the Point"
By Mary Poppendieck &
Tom Poppendieck

"Hacking Vim 7.2"
By Kim Schulz

"Agile Software
Development Ecosystems"
By Jim Highsmith

DEV MGMTMGMT MGMT PO SM

"The Pragmatic
Programmer: From
Journeyman to Master"
By Andrew Hunt &
David Thomas

"Pragmatic Guide to Git"
By Travis Swicegood

"The Passionate
Programmer: Creating
a Remarkable Career in
Software Development"
By Chad Fowler

"Metaprogramming
Ruby: Program Like
the Ruby Pros"
By Paolo Perotta

DEV

"Specfication by
example"
By Gojko Adzic

"The Software Project
Managers: Bridge to Agility"
By Michele Sliger
& Stacia Broderick

"User Stories Applied:
For Agile Software
Development"
By Mike Cohn

"Succeeding with Agile:
Software Development
using Scrum"
By Mike Cohn

DEV

DEV

 BA PO

 BA DEV

QA DEV

BA MGMT DEV SM PO UX

DEV

DEV

"About Face 3:
The Essentials of
Interaction Design"
By David Cronin,
Robert Relmann,
Alan Cooper

"Sketching User
Experiences: Getting
the Design Right and
the Right Design"
By Bill Buxton

"Product Release
Planning: Methods,
Tools and Applications"
By Guenther Ruhe

BA PO SM DEV UX UX UX

"The Goal"
By Eiyahu M. Goldratt

91

"Agile Software
Development: The
Cooperative Game"
By Alistair Cockburn

"Growing Object-Oriented
Software guided by tests"
By Steve Freeman

"Agile Experience: A Digital
Designer's Guide to Agile,
Lean, and Continuous
Improvement"By Lindsay
Ratcliffe & Marc McNeill

"Seven Pillars of Servant
Leadership: Practicing
the Wisdom of Leading
by Serving"
By James W. Sipe
& Don M. Frick

"Test Driven Development:
By Example"
By Kent Beck

"Practices of an
Agile Developer"
By Venkat Subramaniam
and Andy Hunt

"Jenkins Continuous
Integration Cookbook"
By Alan Berg

"Six Thinking Hats"
By Edward de Bono

"Continuous Integration:
Improving Software
Quality and Reducing Risk"
By Paul M. Duvall

MGMT DEV

DEVDEV

"Kanban: Successful
Evolutionary Change for
your Technology Business"
By David J Anderson

BA DEV SM PO UX

BA QA SM PO UX

UX

MGMT

BA MGMT SM PO

BA MGMT PO UX

QA DEV

QA BA SM PO

BA DEV SM PO UX

QA DEV

"100 Ways to Research
Complex Problems,
Develop Innovative Ideas,
and Design Effective
Solutions" By Bruce
Hanington & Bella Martin

"Explore It!: Reduce Risk
and Increase Confidence
with Exploratory Testing"
By Elisabeth Hendrickson

"Agile Product
Management with Scrum:
Creating Products that
Customers Love"
By Roman Pichler

"Collaboration: How
Leaders Avoid the Traps,
Create Unity, and Reap
Big Results"
By Morten Hansen

UX

"The Human Side of Agile"
By Gil Broza

"User Story Mapping:
Discover the Whole Story,
Build the Right Product"
By Jeff Patton

Recommended Reading List

92

Bring best practices into your world today with
these tools you can use to streamline product
development and delivery.

Posters & Signs you can print:
• Agile Signs & Posters
• Agile Principles Poster
• Agile Manifesto Poster
• Information Radiators & Wall Signs

Available at LeanDog.com/downloads

Download Our App
LeanDog Agile Tools
Use our mobile collaboration cards to help
you estimate, plan, and gain consensus.

Cards included:
• Six Thinking Hats
• Collaboration 8
• Fist to Five
• T-Shirt Sizing

Additional Downloads

93

LeanDog is redefining smart
design and delivery; guiding
the path to transformation
and developing software
solutions to change lives.

We began in 2008 with one simple
goal: Put together 20 brilliant
minds, and have a blast creating
groundbreaking software. We’ve
found a lot more than 20 great
minds since then. Our skill set has

grown to include expert coaching, training and embedded collaboration,
along with our thriving design and delivery studio.

LeanDog offers a fine-tuned approach to product development that cuts
through barriers and ensures a focus on delivering the greatest value
to the business. And we know that communication is everything. That’s
why we work hard to promote the kind of collaboration that transforms
cultures and brings ideas to market faster.

We’re out there daily sharing these insights with the world – Lean, Agile
and a pocketful of other philosophies that drive quality. And we practice
what we teach every day in our software development studio.

We chose a 120-year old boat as our headquarters to inspire greatness
– in ourselves, our community and in our clients. As soon as you step on
our boat, you realize that we think, act, work, and do things differently.
We hope to inspire you to continually learn and grow with us.

LeanDog.com • 216.236.4705 • info@leandog.com
Connect with us:

About this Author

LeanDog.com
(216) 236-4705

We Are Always Adding to the Guide.
Subscribe to the email list to stay up to date.
Check out what else we have to offer at
LeanDog.com/downloads.

Learn the fundamentals of Agile in two half-day
interactive sessions to start practicing immediately.
Find out more at LeanDog.com/training.

Ready to Learn? We're Ready to Teach.

