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Hadoop as an Analytics Platform 
 
 
The past decade has brought significant change to the way organizations store and process data. 
Much of this change is due to the innovation, adoption, and commercialization of Hadoop.  The 
limitations of traditional data infrastructures have led many organizations to move to Hadoop 
for not only new data use cases, but for day-to-day operational workloads as well. 
 
As Hadoop matures, enterprises are starting to use this powerful platform to serve more diverse 
workloads.  Hadoop is no longer just a batch-processing platform for data science and machine 
learning use cases – it has evolved into a multi-purpose data platform for operational reporting, 
exploratory analysis, and real-time decision support. 
 
With the ongoing innovation of the SQL-on-Hadoop and in-memory data processing engines, 
Hadoop is now able to serve business-critical workloads in production.  Hadoop is now ready to 
be the data source for business intelligence (BI) and online analytical processing (OLAP) 
workloads. According to the 2015 Hadoop Maturity Survey conducted by AtScale, Cloudera, 
Hortonworks, MapR, and Tableau, Business Intelligence (BI) is the top use case enterprises plan 
to migrate to Hadoop. 
 
As we learned from the First Edition of our BI on Hadoop Benchmarks, the performance and 
maturity of the top SQL-on-Hadoop engines - Impala, Hive, and SparkSQL - make them all 
suitable candidates to support business intelligence workloads. When combined with the 
continued emergence of BI as the top workload for Hadoop adopters, it becomes clear that the 
adoption use of SQL-on-Hadoop engines to enable BI is a trend that will only continue to grow. 
 

Forrester predicts that 100% of enterprises will adopt 
Hadoop in the next 24 months. 
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In fact, according to the 2015 Hadoop Maturity Survey conducted by AtScale, Cloudera, 
Hortonworks, Mapr, and Tableau, the top Hadoop use case for enterprises is Business 
Intelligence.   
 
Based on this trend, coupled with the positive community reception to our first round of 
benchmarks, we conducted a second round of benchmark testing with the purpose of evaluating 
the progress of existing engines as well as the evaluation of new entrants in the SQL-on-Hadoop 
space.  This document provides a deep look into both the methodology and results of the Second 
Edition of the BI on Hadoop Performance Benchmarks. 

 
Executive Summary: Key Findings 
 
 
The goal of this benchmark is to help technology evaluators select the best SQL-on-Hadoop 
technology for their use cases.  Key findings include: 
 

• SQL-on-Hadoop engines are well suited for Business Intelligence (BI): All tested engines 
- Hive, Impala, Presto, and Spark SQL - successfully executed all of the queries in our 
benchmark suite and are stable enough to support business intelligence workloads. 

 
• There is no single “best engine”: We continue to see different engines shine in different 

areas.  Depending on raw data size, query complexity, and the target number of end-users 
enterprises will find that each engine has its own ‘sweet spot’. 
 

• Version-to-version improvements are significant: The open source community continues 
to drive significant and rapid improvements across the board.  All engines tested showed 
between 2x and 4x performance gains in the six months between the first and second 
edition of the benchmarks.  This is great news for those enterprises deploying BI 
workloads to Hadoop. 
 

• Small vs. Big Data: Impala and Spark SQL continue to shine for small data queries (queries 
against small data sets).  New in this edition, the latest release of Hive LLAP (Live Long and 
Process) shows suitable “small data” query response times.  Presto also shows promise on 
small, interactive queries. 
 

• Few vs. Many Users: Impala continues to shine in terms of concurrent query performance, 
and at the same time Hive and SparkSQL show significant improvements in this 
category.  Presto, new to this edition of the benchmarks, shows the best results in 
concurrency testing. 

 
The majority of this document describes the details of the testing methodology, datasets, and 
queries used to complete this benchmark.  A more technical summary of the benchmark results 
as well configuration details can be found at the end of this paper be found at the end of this 
paper. 
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The BI Benchmark Evaluation Framework 
 
 
The AtScale BI on Hadoop Benchmarks consider the following core elements when evaluating 
how well SQL-on-Hadoop engines satisfy Business Intelligence workloads: 
 

• Performs on Big Data: the SQL-on-Hadoop engine must be able to consistently analyze 
billions or trillions of rows of data without generating errors and with response times on 
the order of 10s or 100s of seconds. 
 

• Fast on Small Data: the engine needs to deliver interactive performance on known query 
patterns return results in no greater than several seconds on small data sets (on the order 
of thousands or millions of rows). 

 
• Stable for many Users: Enterprise BI user bases consist of hundreds or thousands of data 

workers, and as a result the underlying SQL-on-Hadoop engine must perform reliably 
under highly concurrent analysis workloads. 

 
We believe that the above three criteria are representative of the primary requirements that 
enterprises across industries including financial services, healthcare, retail, telecommunication 
and healthcare will have to meet in order to successfully execute BI workloads on Hadoop. 
 
To be clear, there are other aspects of SQL-on-Hadoop engines that can and have been 
evaluated in other studies. Breadth of SQL syntax support and engine performance for Data 
Science queries remain relevant evaluation criteria for other SQL-on-Hadoop workloads.  That 
said, the AtScale Business Intelligence benchmark focuses on traditional OLAP-style (On-Line 
Analytical Processing) queries that make extensive use of aggregation functions, GROUP BYs 
and WHERE clauses. 
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Benchmark Data Set  
 
 
AtScale used the Star Schema Benchmark (SSB) data set to perform tests in this benchmark 
study.  This data set is described in greater detail here: 
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF.   
 
This benchmark data set is based on the widely-used TPCH data set and has been modified to 
more accurately represent a data layout (in the form of a star schema) that is common for 
business intelligence workloads. 
 
We used a large scale version of the SSB data set, with a focus on testing queries across large 
tables: the LINEORDER table contains close to 6 billion rows.  Additionally, because big data sets 
on Hadoop often include dimension tables with very high cardinality (an architecturally weak 
spot for traditional Multidimensional-OLAP - or MOLAP - solutions) we also expanded the size 
of the CUSTOMER table to over 1 billion rows. The row counts for each of the tables used in the 
BI benchmarks are shown in Table 1 below. 

Table Name Number of Rows Notes 

CUSTOMER 1,050,000,000 Expanded customer dimension to test large joins 

LINEORDER 5,999,989,709  

SUPPLIER 2,000,000  

PART 2,000,000  

DWDATE 16,799  

 

Table 1: Star Schema Benchmark (SSB) Table Details 

The data layout for the SSB schema and the relationships between the key tables from the 
benchmark are shown in Figure 1 on the following page. 
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Benchmark Data Set (continued)  
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Figure 1: Star Schema Benchmark (SSB) Table Details 
 



 

 

Business Intelligence Query Types 
 

Query 
ID 

Number 
of Joins 

Largest Join 
Table 

Number of 
Group Bys 

Number of 
Filters  

Comments 

Q1.1 1 16,799 0 3 
1 range condition, 1 comparative filter condition directly 
on LINEORDER table 

Q1.2 1 16,799 0 3 2 range filter conditions directly on LINEORDER table 

Q1.3 1 16,799 0 4 
2 range filter conditions directly on LINEORDER table, 2 
conditions on joined table 

Q2.1 3 2,000,000 2 2 filter on p_category (less selective) 

Q2.2 3 2,000,000 2 2 filter on p_brand, 2 values (more selective) 

Q2.3 3 2,000,000 2 2 filter on p_brand, 1 value (most selective) 

Q3.1 3 1,050,000,000 3 3 filter on region (less selective) 

Q3.2 3 1,050,000,000 3 3 filter on nation (more selective) 

Q3.3 3 1,050,000,000 3 3 filter on city (most selective) 

Q3.4 3 1,050,000,000 3 3 filter on city (most selective) and month (vs. year) 

Q4.1 4 1,050,000,000 2 2 
 

Q4.2 4 1,050,000,000 3 3 includes filter on year (more selective) 

Q4.3 4 1,050,000,000 3 3 includes filter on year and nation (most selective) 

 

 

In order to truly simulate a Business Intelligence enterprise environment, 13 queries were 
tested.  The queries used for this benchmark can be summarized into a several higher level query 
patterns, spanning from small dataset complexity to high data volume and sophistication: 
 

• Q1.1 - Q1.3 - “Quick Metric” queries, which compute a particular metric value for a period 
of time.  These queries have a small number of JOIN and minimal/no GROUP BY operations. 
 

• Q2.1 - Q2.3 - “Product Insight” queries, which compute a metric (or several metrics) 
aggregated against a set of product and date dimension attributes.  These queries include 
medium-sized JOIN operations and a small number of GROUP BY operations. 
 

• Q3.1 - Q4.3 - “Customer Insight” queries, which compute a metric (or several metrics) 
aggregated against a set of product, customer, and date based dimensions.  These queries 
include medium and large sized JOIN operations as well as many GROUP BY operations. 

 

During benchmark testing all 13 queries were executed twice; once each in two modes.  Mode 1 
was against the large data set and Mode 2 against the tables comprising AtScale’s Adaptive 
Cache™ (aggregated data generated by the AtScale Engine based on the set of 13 queries 
issued).  This benchmark refers to the AtScale’s Adaptive Cache tables as the aggregated data. All 
queries used in the benchmark were produced by the AtScale Engine based on Tableau 
Queries.  The only differences between the queries between engines were semantic.  To find out 
more about the AtScale semantic layer and query engine, go here. 
 

 
Table 2: Benchmark Query Characteristics 
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Overall Engine Improvement 
 
 
The AtScale architecture is rooted in a belief that the relational query engines that have been 
under development for many years - including Impala, Hive, Spark SQL, and Presto - will 
continue to make improvements at a pace that will outperform what an individual proprietary 
approach could achieve.  We are pleased to find validation of this philosophy in this Second 
Edition of our BI on Hadoop Benchmarks. 
 
As shown in Figure 2, all three SQL engines that were evaluated in both the First and Second 
Editions of the BI on Hadoop Benchmarks, within a period of 6 months, showed significant 
performance gains. 
 
Figure 2: Improvements Between SQL-on-Hadoop Engine Versions 
 

From Hive 1.2 to Hive 2.1 
 

• Performance on large queries improved, on average, more than 340%.  Of the engines 
tested, the version-to-version improvements we saw with Hive 2.1 with LLAP were the 
most significant.  
 

• Small query performance improved over 2X, making Hive with LLAP a much more 
attractive engine for both large and small query patterns.  

 
• The LLAP persistent daemon was the cause of the improvement for Hive. The ability for 

Hive to offload some of the query processing, cache tables and metadata and to off-load 
specific I/O tasks to a persistent daemon all contributed to the performance 
improvements. 
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Overall Engine Improvement (continued)  
 
 
From Spark 1.6 to Spark 2.0 
 

• Large query performance improved, on average, by a factor of 2.4X.  These gains were due 
to the whole stage codegen and parquet reader improvements implemented in Spark 2.0. 
 

• Small query performance remained relatively the same, consistent with previously tested 
excellent performance on small tables. 
 

• Concurrency also was helped by the whole stage codegen and parquet reader 
improvements. 

 
From Impala 2.3 to Impala 2.6 
 

• Large query performance improved, on average, by a factor of 2.8X.  These gains were due 
to implementation of run time filtering and improvements in the parquet reader. 
 

• Small query performance remained relatively the same, consistent with previously tested 
excellent performance on small tables. 
 

• Concurrency continued to be a strong point for Impala, consistent with previous 
evaluations. 
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Large Data Set Results and Observations 
 
 
The table and chart below show the relative performance of Impala, Spark SQL, and Hive for our 
13 benchmark queries against the 6 Billion row LINEORDERS table. 
 
Table 3: Benchmark Query Results for Large Tables 

Query 
Query Execution Time (in seconds) 
Impala 2.6 Spark 2.0 Hive 2.1 (LLAP) Presto 0.152 

Q1.1 5.6 4.8 10.5 10.3 
Q1.2 5.0 3.8 9.1 8.7 
Q1.3 5.6 3.3 9.3 7.9 
Q2.1 8.0 11.8 10.0 12.4 
Q2.2 6.2 11.0 9.3 10.4 
Q2.3 6.0 10.6 9.3 9.8 
Q3.1 12.6 15.5 37.5 35.5 
Q3.2 15.5 15.6 38.1 39.9 
Q3.3 8.0 9.2 28.1 24.9 
Q3.4 7.4 6.8 28.7 15.7 
Q4.1 97.3 64.9 137.6 134.4 
Q4.2 49.1 30.3 131.9 123.8 
Q4.3 26.8 13.2 137.9 135.5 
 

*Note: fastest query time for each row is  highlighted in green 
 
Based on the results of the Large Table Benchmarks shown in Figure 3, there are several key 
observations. Figure 3 represents the results graphically for visual analysis.  
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Large Data Set Results and Observations  (continued)  
 
 

• No single SQL-on-Hadoop engine is best for ALL queries.  Consistent with the findings in 
the First Edition of the BI on Hadoop Benchmarks, Spark SQL and Impala tend to be faster 
than Hive.  For many queries, the performance difference between Impala and Spark SQL 
is relatively small.  Presto 0.152, a newcomer to the Second Edition of the BI on Hadoop 
Benchmarks, shows a performance profile that is very similar to that of Hive 2.1. 
 

• Increasing the number of joins generally increases query processing time.  Going from 
“Quick Metric” to “Product Insight” queries (where the number of joins goes from 1 to 3) 
had the largest query time difference on Hive and Presto.  For very large joins Spark and 
Impala also showed increases in query response time. 

 
• Increased query selectivity resulted in reduced query processing time (which may 

reduce the total amount of data that needs to be included in the query processing steps). 
Both Impala and Spark show performance improvements as query selectivity 
increases.  The sensitivity to selectivity is consistent with earlier versions of Impala, while 
Spark shows improvements vs. earlier versions.  Hive and Presto are much less sensitive 
to query selectivity. 

 
• JOIN operations between very large tables increased query processing time for all 

engines. As expected, joining two large tables was an expensive operation for all engines. 
This was particularly true when involving the 1 Billion-row CUSTOMERS table. 
 

• As the number of joins increases, Impala and Spark SQL are more likely to perform 
best.  Consistent with our earlier benchmarks, Impala and Spark SQL tend to outperform 
Presto and Hive for queries involving larger joins. 

 
Figure 3: Benchmark Query Results for Large Tables 
 



 
 

 

Small Data Set: Characteristics & Results 
 

 
Business Intelligence architectures rely on caching mechanisms in the form of in-memory stores, 
pre-materialized data structures, and aggregate tables.  As such, a complete set of Business 
Intelligence benchmarks needs to evaluate the performance of the execution engines against 
such acceleration mechanisms. 
 
In order to evaluate each of the engines for the benchmarks the team re-executed the Large 
Table Queries after the tables comprising the AtScale Adaptive Cache were generated.  These 
tables contain aggregated measures for the attributes included in the original raw data queries, 
but (due to these aggregations) contain fewer rows of data.  Note - AtScale Adaptive Cache tables 
are stored on the Hadoop cluster in the form of Parquet or ORC tables, and can be queried by any SQL 
on Hadoop engine. 
 
AtScale Adaptive Cache™ technology provides two key functions: 
 

• Cache creation: after the first queries have been executed, the AtScale engine uses 
heuristic functions to determine if it is optimal to store related query result sets to 
accelerate the processing of future queries.  If so, one more aggregate tables may be 
created in the Adaptive Cache. 
 

• Cache management: after the first caching results have been stored, the AtScale engine 
manages the Adaptive Cache result sets to optimize for new queries, incorporate new 
data entering the Hadoop cluster and to remove low-value aggregate tables. 

 
The Table 4 shows the performance of these engines against such aggregate tables. 
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Small Data Set: Characteristics & Results (continued) 
 
 
Table 4: Benchmark Query Results for Cache Tables 
 

Query 
Query Execution Time (in seconds) 
Impala 2.6 Spark 2.0 Hive 2.0 LLAP Presto 0.152 

Q1.1 0.2674 0.4795 2.0752 0.3595 

Q1.2 0.2983 0.4798 2.0772 0.3841 
Q1.3 0.6424 0.6978 2.1079 0.4856 
Q2.1 3.137 3.3371 4.3056 3.9627 
Q2.2 2.2093 2.279 4.2811 3.2376 
Q2.3 2.3541 2.2519 4.2756 2.7475 

Q3.1 1.6381 1.1865 3.2781 2.3797 

Q3.2 2.5693 1.642 8.0862 1.9072 
Q3.3 2.1285 1.2819 2.2755 1.9804 
Q3.4 2.4062 2.5785 5.471 3.7276 
Q4.1 3.4521 5.577 6.9383 5.9396 
Q4.2 4.0494 5.3763 7.6193 6.501 

Q4.3 4.3873 3.582 4.5264 3.4225 
 

*Note: fastest query time for each row is  highlighted in green 
 

AtScale Adaptive Cache: Summary of Results 
 
Our benchmark results indicate that both Impala, Spark SQL and Presto perform best on the 
AtScale Adaptive Cache tables, effectively returning query results on our 6 Billion row data set 
with query response times ranging from from under 300 milliseconds to several seconds.   
 
With Hive 2.1 and the inclusion of LLAP, we also see a significant improvement in Hive query 
performance against the smaller tables, with an average speedup of ~2X.  With this latest round 
of benchmark testing we feel that all four SQL-on-Hadoop engines can be legitimate options for 
both the large and small table query engines. 
 
Figure 4 showcases the roughly similar query performance profiles of all 4 engines when 
benchmarked against the aggregate cache tables. 
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Our benchmark results also illustrate significant performance gains that can be realized from 
AtScale’s Adaptive Cache™ technology, with query performance for the same query improving 
by as much as 50X.  In real-life deployments on larger data sets (on the order of 100s of Billions of 
rows) AtScale customers have seen performance gains over 100-200X as a result of this 
technology. 
 

Small Data Set: Characteristics & Results (continued) 
 
 
Figure 4 showcases the roughly similar query performance profiles of all 4 engines when 
benchmarked against the aggregate cache tables 
. 
 
Figure 4: Benchmark Query Results for Cache Tables 
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The chart above shows how the 4 tested engines perform for the “Quick Metric” queries (Q1.x 
quereis from Table 1) as simultaneous concurrent query volumes increase.  As in the First 
Edition of the benchmarks,  
 

Concurrent Query Results 
 
 
Business Intelligence (BI) workloads often involve many data workers issuing queries at the same 
time. Concurrency is therefore a key factor when evaluating performance of a BI platform. And 
with an increasing number of enterprises deploying more and more production BI workloads 
against Hadoop platforms, there is an increasing focus on how SQL-on-Hadoop engines support 
concurrent query workloads.   
 
To properly assess engine performance against concurrent queries, AtScale tested each 
benchmark query with a range concurrent users. A test was executed for each of the 13 queries 
with each test simultaneously submitting 1, 5, 10, or 25 queries simultaneously.  Since 
production BI workloads consistently execute against aggregate tables, the results published 
below are for queries against the AtScale Adaptive Cache aggregate tables (the “small data set” 
results discussed above). 
 
 
Figure 5: Concurrency Profile for Quick Metric Queries 
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Concurrent Query Results (continued) 
 
 
While all engines were able to scale to support up to 25+ concurrent users, we did observe 
different behaviors from the various engines tested. Impala’s performance scaled better than 
Spark SQL or Hive as the number of concurrent users increased  these results are consistent with 
AtScale’s experience using Impala in real-world customer deployments. Presto’s MPP 
architecture also delivers excellent concurrent query scaling results, showing virtually no 
degradation with up to 25 concurrent Quick Metric queries.  It is worth noting that both Presto 
and Impala were able to satisfy the 25 concurrent user workload and maintain an average query 
response time of under 1 second. 
 
In addition to looking at dashboard style queries represented by the Quick Metric benchmarks, 
we also looked at the concurrency profile for more complex analytic queries (represented by 
queries Q2.x through Q4.x in Table 1).  The results are shown in Figure 6. 
 
Figure 6: Concurrency Profile for Quick Metric Queries 

 

 
The results are as follows: 
 

• All engines demonstrate consistent query performance degradation under concurrent 
workload.   
 

• There were no query failures for any of the engines tested, up to 25 concurrent queries.  
 

• While all engines can effectively handle a large number of concurrent analytic queries, 
Spark, Impala, and Presto maintain a better average performance profile vs. Hive as 
concurrent query workload increases. 
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Cluster Environment & Engine Configurations 
 
 
In order to evaluate the base performance of the SQL-on-Hadoop engines we compared the 
performance of Cloudera Impala, Hive-on-Tez, and Spark SQL, and Presto running against a 
retail data set as defined in the initial section of this document. 
 
The test environment was an isolated 12 node cluster with 1 master node, 1 gateway node, and 
10 data nodes.  
 
Benchmark Cluster Configuration Details 

RAM per node 128G 

CPU specs for data (worker) nodes 32 CPU cores 

Storage specs for data (worker) nodes 2x 512mb SSD 
 

The SQL-on-Hadoop engine benchmarks were performed by running each engine individually 
against the same based Hadoop cluster configuration and data set.  Details about engine-specific 
configurations and settings are below: 

 

Impala Configuration 

Impala Version 2.6 

File Format Parquet 
Workers 10 
Memory per worker 110G 
--num_hdfs_worker_threads 32 
--max_cached_file_handles 3000 
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SparkSQL Configuration 

Spark Version 2.0.1-SNAPSHOT 

File Format Parquet 
Workers 70 
Memory per worker 16G 
Cores per worker 4 
Spark.kryoserializer.buffer.max 512 
 
 

Hive LLAP Configuration 

Tez Version 0.8.5 
Hive Version 2.1 
File Format ORC 

LLAP Settings 
--instances 10 --cache 50000m --xmx 
55000m --size 110000m --executors 32 

hive.execution.mode llap 
hive.llap.execution.mod all 
hive.llap.io.enabled true 

 

Presto Configuration 

Presto Version 0.152 
File Format ORC 

Nodes 
1 coordinator 
10 worker 

Memory per node 110G 
sink.max-buffer-size 10GB 
hive.force-local-scheduling true 
distributed-joins-enabled false 

NOTE: AtScale used default out-of-the box configuration settings and virtual machine instances to execute this benchmark. 
These results should be considered an assessment of relative engine performance and not a rigorous or complete 
performance evaluation of any single engine.  While we did attempt to properly tune and configure each engine for optimal 
performance using publicly available best-practices and documentation, AtScale received no assistance from any other 
vendors. 
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