
Ingenieurbüro David Fischer AG | A Company of the Apica Group

http://www.apicasystem.com

"Load Test Plug-In" Developer Handbook

© 2009, 2010, 2011, 2012, 2015 , 2016 November 13, 2016 All Rights Reserved.

http://www.apicasystem.com/

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 2 / 33

Table of Contents

1 Overview ... 3

1.1 Document Contents.. 3
1.2 Introduction .. 3

2 Properties, Runtime Behavior and Configuration ... 4
2.1 Runtime Environment ... 4
2.2 Plug-In Lifecycle during Test Execution .. 5
2.3 Plug-in Configuration using the GUI ... 6
2.4 Plug-In Lifecycle after Configuration ... 8

3 Developing your own Plug-In ... 9
3.1 Java API Documentation .. 9
3.2 Using Multiple Classes and External Class Libraries .. 9
3.3 Creating the Program Skeleton using the Wizard ... 11
3.4 Programming Plug-In Functionality ... 14

3.4.1 The "LoadtestPluginContext" Class ... 16
3.4.2 The "HttpLoadTest" Class ... 17
3.4.3 Additional Details about the Runtime Environment .. 18

3.4.3.1 Debug Output during Plug-In Execution ... 18
3.4.3.2 Initializing a Plug-In using Imported GUI Variables 18
3.4.3.3 Extracting HTTP Response Data from URL Calls 19
3.4.3.4 Plug-In Execution at the End of a Loop .. 20
3.4.3.5 Using a Plug-In in Cluster Jobs .. 20
3.4.3.6 Integrating Additional (External) Measurement Data 21
3.4.3.7 Sending E-Mails via SMTP ... 26
3.4.3.8 Handling Time Zones and Date Computations ... 26
3.4.3.9 Defining and Releasing Own Types of Errors ... 27
3.4.3.10 Support of Load Generators which are Running in Encrypted Mode 29

3.4.4 Plug-In Programming for High Performance .. 30
3.4.4.1 Pre-computing Results ... 30
3.4.4.2 Disk and Network I/O Operations ... 31

3.5 Example Plug-Ins ... 32
4 Manufacturer ... 33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 3 / 33

1 Overview

1.1 Document Contents

This Handbook consists of two parts.

Part One provides an overview of the Properties, Runtime Behavior, and Configuration
of ZebraTester Load Test Plug-Ins.

Part Two provides information on how to develop ZebraTester "Load Test Plug-Ins".

1.2 Introduction

ZebraTester Load Test Plug-Ins are Extension Modules to the ZebraTester product. Load Test
Plug-Ins are configured using the GUI, and are executed during a Load Test.

In addition to the pre-defined Load Test Plug-Ins delivered with the ZebraTester product,
additional user-defined Plug-Ins can be developed to provide extra functionality to meet
specific needs.

Plug-Ins have the major characteristic of being re-usable. Once developed, a Plug-In can be
re-used in every Load Test program.

The basic framework of a Load Test Plug-In can be easily created by using the Wizard;
however, the completion of the finished Plug-in - coding the necessary functionality - requires
the ability to program in Java. Then, once the Plug-In has been developed, configuring it for
use with a Load Test program does not require programming knowledge; Plug-In configuration
is done with a few mouse-clicks in the GUI.

The execution of a Plug-In takes place on the same machine which is running the Exec-Agent,
and the Load Test program itself. When a Load Test is started, the relevant Plug-In is
automatically transmitted to the Exec-Agent with the Load Test program - no additional prior
configuration of the Plug-In is necessary.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 4 / 33

2 Properties, Runtime Behavior and Configuration

All Load Test Plug-Ins are bound to the Load Test program via the GUI, using the Variable
Handler. Load Test Plug-Ins can:

1. Import GUI Variables

2. Execute its own program code

3. Export GUI Variables

4. Abort an executing Load Test

5. Insert additional measurement data into the Load Test Results.

Example 1: A Plug-in computes a date (MM.DD.YYYY) which is always three days in the
future, relative to the current date. This date is exported as a GUI Variable, and the Variable
is then used in an HTML Form as an input parameter for entering a dynamically-assigned
"booking date".

Example 2: In an online ordering process, the "order number" is first extracted from a URL
call as a GUI Variable, and then passed as input to a Plug-In. The Plug-In writes all "order
numbers" of the simulated users into a file, which is used after the completion of the Load Test
to cancel the simulated orders.

Example 3: A Plug-In continually monitors the progress of a Load Test, and aborts the Load
Test if more than 90% of all Loops fail within a 5 minute period - computed over all virtual
users. In this way, a long-running Load Test can be interrupted if a Web Server collapses and
cannot itself recover.

2.1 Runtime Environment

Plug-Ins are tightly integrated with a Load Test, and provide access to:

- all GUI Variables defined in the Variable Handler. Importing and Exporting GUI Variables
is supported.

- all real-time measurement data of a running Load Test program.

- the data from specific, or all, executed URL Calls of a running Load Test program. This
includes the ability to modify and/or enhance the data before execution, as well as the
ability to perform additional processing on the result data after execution.

- the operating system of the Exec-Agent machine, provided the interfaces are available via
Java. This includes, for example, network connections and files on the file system or disk.

- additional data from the Runtime Environment of a Load Test, such as the current number
of virtual users, the number of current Cluster Members running a Load Test (via Cluster
Jobs), and the cookie storage of individual virtual users.

There are some restrictions; for example, a Plug-In cannot, in general, influence the execution
path of a Load Test program. This means that a Plug-In cannot modify the order of the
executed URL Calls. A Plug-In also cannot correct, after the fact, an error arising as the result
of a (measured) URL Call. However, a Plug-In can turn a successful completed URL Call into
a failed URL Call.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 5 / 33

2.2 Plug-In Lifecycle during Test Execution

A Plug-In is initialized, executed one or more times, and then de-initialized.

Often the Initialization and De-Initialization of a Plug-In involves no special activities; that is,
these steps are often "empty". On the other hand, during a Load Test a Plug-In could be
programmed to perform various functions; for example, accessing a database. In such cases,
the connection to the database would be opened during the one-time Plug-In Initialization,
used during the Load Test to read or write data, and then closed during the one-time Plug-In
De-Initialization.

The timing of the Plug-In Initialization, De-Initialization, and Execution can all be configured
separately and can occur at different times. This timing is tightly coupled with the data the
Plug-In has access to, and is referred to as the Plug-In Scope.

The following Plug-In Scopes are available:

 global: immediately before, or immediately after, the execution of a Load Test program

 user: when a virtual user is created, or when a virtual user has ended

 loop: at the beginning, or at the end, of a Loop

 URL: before, or after, a Call to a specific URL, as well as before/after all URL Calls.

The most commonly-used Scope during Plug-In Initialization and De-Initialization is global.
The most commonly-used Scope during the execution of a Plug-In is either loop or URL.

List of possible Plug-In Initialization Scopes:

Initialization Scope Plug-In Initialization Plug-In De-Initialization

global Immediately after the start of a
Load Test program

Immediately before the end of a
Load Test program

user Before the creation of each
virtual user, and before the
execution of the user's first
Loop

After the end of each virtual
user, and after the execution of
the user's last Loop

loop Before the execution of each
Loop

After the execution of each
Loop.

Note: De-Initialization also
occurs if the Loop fails.

URL This Scope cannot be used during the Initialization or De-
Initialization phases of the Plug-In lifecycle.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 6 / 33

List of possible Plug-In Execution Scopes:

Execution Scope Before or After Plug-In Execution

global before Immediately at the start of a Load Test
program, but after Plug-In Initialization

global after Immediately before the end of a Load Test
program, but before Plug-In De-Initialization

user before Before the creation of each virtual user,
before the user's first Loop execution

user after After the end of each virtual user, after the
user's last Loop execution

loop before Before each Loop execution, once for each
virtual user

loop after After each Loop execution, once for each
virtual user¹

URL before Before the execution of a specific URL Call,
or before each URL Call

URL after After the execution of a specific URL Call, or
after each URL Call²

¹ the Plug-In will not be executed if the relevant Loop fails; however, Plug-In De-Initialization is
always performed.

² the Plug-In will always be executed, even if a URL Call results in an error.

Note: the Import of GUI Variables occurs immediately before Plug-In execution, and the
Export of GUI Variables occurs immediately after Plug-In execution.

2.3 Plug-in Configuration using the GUI

All available Plug-Ins can be found under MyTests in the Plugins sub-directory.

During Plug-In configuration using the GUI (in the Variable Handler), ZebraTester looks in this
directory, and provides a selectable list of available Plug-Ins. If a new Plug-In is received - by
E-Mail for example - the Plug-In must first be copied into the Plugins sub-directory under
MyTests before it can be selected in the GUI.

Plug-In configuration (that is, adding a Plug-In to a Load Test program) is done via the GUI's
Variable Handler - similar to the definition of an Input File or "User Input Fields" - by using the
"Add Plug-in..." button.

After the Plug-In has been selected in the GUI, the GUI Variables to be imported and/or
exported by the Plug-In must be defined, and the Initialization and Execution Scope must be
specified. Most Plug-Ins will pre-define, or hard-code, the Scopes during development; in this
case, the Scopes will not be selectable in the GUI. An additional Plug-In property, which can
be defined during development, indicates whether or not the Plug-In can be used more than
once in the same Load Test program. If a Plug-In is defined to be usable only once per Load
Test program, the GUI will prevent it from being configured more than once for use with a
given Load Test program.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 7 / 33

Picture: Adding a Plug-In to a Load Test Program:

Picture: Configuring the Imported GUI Variables of a Plug-In:

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 8 / 33

2.4 Plug-In Lifecycle after Configuration

When a Plug-In is configured using the GUI, the compiled Plug-In Java code will be saved in
the same file that the Web Session uses for Web Session storage (in the "*.prxdat" file of the
Web Session). If the Web Session "*.prxdat" file is stored on another computer, the Plug-In
Java code is transferred there as well, and is then available on the other computer.

When a Load Test program is created, the Plug-In is automatically copied out of the Web
Session, and a copy of the Plug-In is made in the Project Navigator directory in which the
Load Test program was created. Before Test Execution, the compiled Load Test program
("*.class" file), including the Plug-In, is zipped. The resulting zip archive itself can be
executed, and the Plug-In will be automatically transferred to the Exec Agent along with the
Load Test program.

During Plug-In development, a new version of the Plug-In may be created in the Plugins sub-
directory under MyTests. The ZebraTester GUI monitors this process, and will detect when a
Web Session contains an older version of a Plug-In. When a new Plug-In is detected, the GUI
will display a user dialog requesting that the new Plug-In be imported into the Web Session.
Note that a new Plug-In version can only the imported when the number of GUI Input and
Output Variables remains unchanged and retain the same meaning. If this is not the case, the
Plug-In must first be manually removed using the Var Handler, and then re-imported to the
Web Session.

In addition to the Web Sessions, the GUI monitors the compiled Plug-Ins in the Load Test
program directories. After a "refresh" in the Project Navigator, older Plug-In versions will be
marked with a yellow exclamation point. The updated Plug-In version can be copied from the
Plugins sub-directory under MyTests to the Load Test program directory by clicking on the
corresponding Plug-In's icon in the Project Navigator. If the number of GUI Input and Output
Variables - including their meaning - in the new Plug-In version is the same as the previous
version, the Load Test program can be started with the new Plug-In version, without the need
for re-creating or re-compiling the Java code.

The internal comparison to see if a Plug-In is obsolete does not use the file date, but
computes a checksum over the compiled Plug-In code. If the checksums are different, the
"new" Plug-In is always considered to be that version currently in the Plugins sub-directory of
MyTests.

Example: Old Plug-In version in the Load Test program Directory – Icon contains a yellow
exclamation point

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 9 / 33

3 Developing your own Plug-In

The first step in developing a new Plug-In is to bind to the ZebraTester Runtime Environment.
This is done using a Wizard which automatically creates a basic Plug-In program framework.
This initial generated Plug-In code is able to be compiled on its own, but does not contain any
inner logic to provide Plug-In functionality.

The second step is to develop the inner logic of the Plug-In. This must be done manually by
coding in Java.

The third, and final step, is to add the Plug-In to a recorded Web Session by using the GUI
Variable Handler.

3.1 Java API Documentation

The class libraries of the Java SDK 6.0 can be used for Plug-In coding. Additional,
ZebraTester specific classes are in package dfischer.utils available.

The API documentation for the dfischer.utils package can be accessed on Windows systems
via Start All Programs ZebraTester Documentation ZebraTester API Javadoc

On Mac OS X and Linux systems the API documentation is installed in the
ZebraTester installation directory Documentation javadoc

3.2 Using Multiple Classes and External Class Libraries

If a Plug-In consists of a single class and itself uses no external libraries, there is
nothing further to be done, and this section can be skipped.

If a Plug-In requires the use of additional class libraries - in addition to those available in Java
JDK 6.0 and package dfischer.utils (such as a database driver) - or if a Plug-In consists of
more than one class, these must be available as "*.jar" files before beginning the development
of the Plug-In Main class. Note that the Plug-In Main class can never be part of the Java
package, and must not itself be contained in a JAR Archive.

If additional "*.jar" files are required, proceed as follows:

1. First load any recorded session.

2. Call the "Declare External Resources" Menu from the "Var Handler" menu:

3. Declare (add) all required jar files as External Resources:

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 10 / 33

4. Export the Declarations (they can later be imported in other recorded sessions):

5. You can now start developing your plug-in (see next chapter).

Note: Starting from ZebraTester version 5.0 it's no longer required to make any additions to
the CLASSPATH of the Web Admin GUI. The revised Java "class loader" of ZebraTester will
load all declared jar files instantly (on the fly).

All declarations for external local resources are always stored together with a recorded
session (*.prxdat file) - and also only visible for this recorded session. There is no system-wide
or product-wide declaration available. Therefore, if another recoded session uses the same
plug-in, you have to add the declarations for the external resources again to this other session.
Alternatively, you can also export the declarations and import them later by using the import
and export icons which are located at the top of the window.

Once a load test program is generated, all external resources are automatically zipped
together with the load test program, and the whole ZIP-archive is automatically transferred to
the load generators (Exec Agents). There is no need to pre-install the external resources on
the load generators.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 11 / 33

3.3 Creating the Program Skeleton using the Wizard

The Wizard is available in the Project Navigator Plugins sub-directory under MyTests, and
can be started by clicking on its icon in the Project Navigator:

The following values must be entered in the box at upper left of the above form:

 Plug-In Class Name: name of the Plug-In Java class, without the "*.class" or "*.java" file
extension.

 Allow Multiple Usage: indicates if the Plug-In can be added just once, or many times, in
the same Load Test program or Web Session.

 Plug-In GUI Label: short text (one or two keywords) for the label of the Plug-In. This
label will appear in the GUI associated with this Plug-In.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 12 / 33

 Plug-In Description: detailed description of the Plug-In, also displayed in the GUI. Can
consist of many sentences; however, HTML formatting is not supported. The only extra
formatting supported here is "\n" for a line feed in the displayed text.

In the box positioned at the upper middle of the form, labelled "Plug-In Initialization", the
Initialization Scope can be defined (see Section 2.2 of this document for a description of Plug-
In Scopes). If "arbitrary / assigned by GUI" is selected, the Initialization Scope will not be
pre-defined, and will be selectable in the GUI at the time the Plug-In is added. Note - it is
recommended that this option NOT be selected; that is, whenever possible the Plug-In
Initialization Scope should be pre-defined.

In the box positioned at the upper right of the form, labeled "Plug-In Execution", the
Execution Scope can be defined (see Section 2.2 of this document for a description of Plug-In
Scopes). The "arbitrary / assigned by GUI" option is also available for this Scope; and as
with Initialization Scopes, a pre-defined Execution Scope is recommended.

Next, in the area further down in the middle of the form, the "Plug-In Input Parameter"
definitions can be entered. A maximum of 6 Input Parameters can be defined. Input
Parameters can be defined to be imported as "Mandatory GUI Variables" or "Optional GUI
Variables" using the "Optional Parameter" drop-down list. Note that all definitions of
"Mandatory GUI Variables" must precede any definitions of "Optional GUI Variables".

The form input fields for Plug-In Input Parameters are as follows

 GUI Label: short text (one or two keywords) for the description of the Parameter which
will appear in the GUI.

 local var: name of the local Plug-In Variable in the automatically-generated Plug-In Java
program code. At configuration time, the value of the GUI Variable is copied to this local
Plug-In Variable.

 convert to: defines the data type of the local Plug-In Variable. Note that all GUI Variables
in the Variable Handler are passed to the Plug-In as strings. "Convert To" = "int" indicates
that the imported GUI Variable will be converted to the data type of the (local) "int"
Variable.

 User Input Field: if selected, during Plug-In configuration in the GUI, a new "User Input
Field" will be automatically created, and the value of the new GUI Variable will be set to
the value of the local Plug-In Variable. If not selected, the Input Parameter GUI Variable
must be manually selected in the GUI at Plug-in configuration time.

 default value: sets the default value of the local Variable in the Plug-In Java program
code. If no default value is set, the local Variable will be initialized with the following
default values:

Data Type Initialized Value

String ““ (empy string)

int -1 (minus one)

long -1 (minus one)

float -1 (minus one)

double -1 (minus one)

boolean false

Note: An imported boolean variable will have the value true if the string value of the
corresponding GUI variable contains "1“ or "true“.

In the lower part of the form, the Plug-In Output Parameter definitions can be entered. A
maximum of 4 Output Parameters can be defined. As for Input Parameters, Output
Parameters can be mandatory or optional.

The form input fields for Plug-In Output Parameters are as follows:

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 13 / 33

 GUI Label: short text (one or two keywords) for the description of the Parameter which
will appear in the GUI.

 local var: name of the local Plug-In Variable which will be later assigned the value of the
corresponding configured GUI Variable.

 convert from: defines the data type of the local Variable in the Plug-In Java program
code. Note that all local Variables are exported, after Plug-In execution, to the GUI
Variables as strings.

 default value: sets the default value of the local Variable in the Plug-In Java program
code. If no default value is set, the local Variable will be initialized in the same way as for
Input Parameters (see above table).

After all values have been defined, click the "Save Template and Continue" button at lower
left in the form. In the resulting updated content of the same window, click the "Generate
Plug-In Code" button.

The Plug-In program code is automatically generated in memory. To save the code to a file in
the Plugins Directory, click on the "Save Plug-In Code" button at lower left in the window.

At this time, the Plug-In can be compiled for the first time in the Project Navigator. To re-
compile the Plug-In at any time, click on the grey gear-wheel icon containing a "j" (at the right
of the "*.java" Plug-In file name) in the Project Navigator.

Picture: Creating a Program Skeleton
("*.java" Code)

Picture: Re-compiling the
Plug-In

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 14 / 33

3.4 Programming Plug-In Functionality

The Wizard is used (among other things) to create the following Plug-In methods:

 Initialization public void construct(Object context)

public void construct(Object context)

{

 // LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

}

 Execution public void execute(Object context)

public void execute(Object context)

{

 logVector = new LogVector();

 LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

}

 De-Initialization public void deconstruct(Object context)

public void deconstruct(Object context)

{

 // LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

}

Note: Usually only the Execution execute method will need to be enhanced with program

code.

Depending on the Execution Scope, the Wizard will create sample code in the execute

method. This sample code is enclosed by // vvv --- sample code --- vvv and

// ^^^ --- sample code --- ^^^. This code must be replaced by own program code, and

removed.

Access from the Plug-In to the Runtime Environment of a Load Test program occurs via the
class LoadtestPluginContext, and the current instance of this class is passed to each Plug-In
method.

A full description of the LoadtestPluginContext class can be found in the ZebraTester Java
API Documentation.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 15 / 33

Important: Methods within the LoadtestPluginContext class may not return a valid return
value, depending on how the Plug-In Initialization Scope and Execution Scope are chosen
(CONTEXT_SCOPE_GLOBAL, CONTEXT_SCOPE_USER, CONTEXT_SCOPE_LOOP or CONTEXT_SCOPE_URL).
The ZebraTester Java API Documentation provides a description for each method, under
"See Also", which specifies the Scopes for which the method returns valid values during Plug-
In execution.

Example: the getCookieHandler() method only returns a valid Return Value when the Scope

is CONTEXT_SCOPE_LOOP or CONTEXT_SCOPE_URL.

More information on Scopes can be found in section 2.2 of this document.

If the Initialization Scope or Execution Scope is not set using the Wizard
(arbitrary / assigned by GUI option selected), these must be specified during Plug-In
execution. The method getContextScope() has been provided for this purpose.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 16 / 33

3.4.1 The "LoadtestPluginContext" Class

This section contains a description of a few selected methods of the LoadtestPluginContext
class. Full documentation for this class can be found in the ZebraTester Java API
Documentation.

Method Description Allowed Scopes

getContextScope() Returns the current Scope at Runtime.
Only necessary when the Scope is
NOT set using the Wizard.

all Scopes

getPerformanceData() Provides access to the current
measurement data.

Example: The method
PerformanceData.getPassedLoops()

can be used to determine how many
Loops, measured over all virtual users,
have been successfully executed up to
the current time.

all Scopes

getHttpLoadTest() Provides access to additional data from
the Runtime Environment. For details,
see the next section.

all Scopes

getHttpTestURL() Provides access to data from the
currently running URL Call.

Example: Using the method
HttpTestURL.

getRequestHeaderObject().appendHead

er

Field() an additional HTTP Request

Header Field can be inserted into a
URL Call.

CONTEXT_SCOPE_URL

getThreadStep() Returns the index of the currently
executing URL Call.

Example 1: the index can be used as
an Input Parameter to the method
PerformanceData.

getPerformanceDataRecord() in order

to access detailed statistical
measurement data from the URL.

Example 2: the index can be used as
an Input Parameter to the method
PerformanceData.

getPageInfoTextOfUrl() in order to

retrieve the text of a Page Break
belonging to a URL.

CONTEXT_SCOPE_URL

setContinueInnerLoopFlag()

Forces a continue in a Inner Loop
(jump back at the start of the Inner
Loop)

CONTEXT_SCOPE_URL

setBreakInnerLoopFlag()

Forces a break in a Inner Loop (jump
out of the Inner Loop)

CONTEXT_SCOPE_URL

markUrlAsFailed(<Text>) Turns a successful passed URL Call
into a failed URL Call (trigger a red
colored error)

CONTEXT_SCOPE_URL

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 17 / 33

3.4.2 The "HttpLoadTest" Class

This section contains a description of a few selected methods of the HttpLoadTest class. Full
documentation for this class can be found in the ZebraTester Java API Documentation.

Method Description

contentToDiskFile(HttpTestURL

testURL, String filename)
Writes the content of an executed URL Call (HTTP
Response content) to a file on disk. This method supports
also load generators which are running in encrypted mode.

writeToDiskFile(byte[]

binaryData, String filename)
Write data to a file on disk. This method supports also load
generators which are running in encrypted mode.

contentFromDiskFileDecrypt(

String filename)
Read data from a disk file. This method supports also load
generators which are running in encrypted mode.

getClusterMemberLocalId() For Cluster Jobs, this method returns the number of the
relevant Cluster Member (Exec Agent). Cluster Member
numbering is zero-based; therefore, the first Cluster
Member will have the number = 0, the second will have the
number = 1, and so forth.

With a Cluster Job, the same Plug-In is executing in
parallel on each Cluster Member; therefore, it may be
necessary (with the help of this method) to restrict certain
Plug-In actions to a specific Cluster Member.

triggerAbort() Causes an abort of a running Load Test program, without
losing the statistical measurement data collected to the
point of interruption; that is, the "*.prxdat" file will still be
created.

getSymmetricEncryptContext() Get the context for encrypting and decrypting files of the
load test job, or return null if the load generator is not
running in encrypted mode.

See also
dfischer.utils.SymmetricEncrypt.getCipherOutputStream(..)
and
dfischer.utils.SymmetricEncrypt.getCipherOutputStream(..)

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 18 / 33

3.4.3 Additional Details about the Runtime Environment

3.4.3.1 Debug Output during Plug-In Execution

The standard System.out.println() method should never be used for debug output inside the
Plug-In execute method, as this would lead to log messages for different virtual user Loops
being jumbled together in the Load Test Job log file. The logVector.log() method should be
used instead.

Note: In the construct and deconstruct methods it is not possible to use the logVector.log()
method; therefore, only the System.out.println() method can be used in these methods.

In order to have a complete debug output from a Load Test program, including debug output
from any Plug-Ins, the field "Debug Options" must be set to "debug loops (including var
handler)" in the GUI menu "Project Navigator - Execute Load Test" at the start of a Load Test.

Note: For a later execution of an actual Load Test, this option should be reset to
"none -recommended".

Debug output is written to the corresponding Load Test Job "*.out" file. If a program crash
occurs during a Load Test due to an error in a Plug-In, the output is written to the Load Test
Job "*.err" file.

3.4.3.2 Initializing a Plug-In using Imported GUI Variables

Imported GUI Variables of a Plug-In are transferred (each time) immediately before execution;
that is, immediately before the Plug-In execute method is called.

A situation can be imagined where a Plug-In would need access to a GUI Variable during
Plug-In Initialization; that is, when the construct method is called. This is not supported.
A work-around would be to perform a "lazy" Initialization, where the construct method does
not actually do any Initialization, and the execute method first checks to see if the Plug-In has
been Initialized. In the first call to the execute method this would not be true, and the Plug-In
could be Initialized using a GUI Variable. Each subsequent call to the execute method would
skip the Initialization. An example code fragment is given below:

[...]

/**

* Load test add-on module.

*/

public class TestPlugin implements LoadtestPluginInterface

{

 private String vInitialParameter = ""; // input parameter #1

 private int vNormalInputParameter = -1; // input parameter #2

 private boolean pluginInitialized = false;

 private String vOutputParam = ""; // output parameter #1

 private LogVector logVector = null; // internal log vector

[...]

 public void construct(Object context)

 {

 }

[...]

 public void execute(Object context)

 {

 logVector = new LogVector();

 LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 19 / 33

 if (!pluginInitialized)

 {

 // initialize plug-in by using parameter #1

doInitialize(vInitialParameter);

 pluginInitialized = true;

 }

 [...]

 }

[...]

3.4.3.3 Extracting HTTP Response Data from URL Calls

If it is necessary to extract data from the HTTP Response Header or HTTP Response Content
of a URL Call, the Plug-In Execution Scope URL / after can be specified. In this case, care
must be taken when programming the execute method because the Plug-In will also be called
when a URL Call fails; that is, there may be no data for the Plug-In to process. Consider the
example when a timeout occurs and there is no Response Data, or if instead of a 200 HTTP
Response Code, a 500 "Internal Server Error" is received from the Web Server.

In order to avoid a Plug-In "crash", which would bring down the Load Test program as well, a
check should be made to ensure that a valid Server Response has been received before
trying to extract data from the HTTP Response.

To assist in this process, the LoadtestPluginContext class has a method urlPassed(). This
method returns true if and only if during a Load Test the current URL Call does not return an
error, as defined in the GUI Configuration Menu "HTTP Response Verification".

In this case, "does not return an error" means:

 The correct HTTP Response Code was received by the URL Call

 The Response contained the correct MIME type (e.g. TEXT/HTML)

 The verification of the received data content, in terms of data size or the presence of a
specified text fragment, was successful

The following code fragment illustrates the correct way to access the HTTP Response data
content of a URL Call:

 public void execute(Object context)
{

LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

if (pluginContext.urlPassed())

 {

HttpTestURL httpTestURL = pluginContext.getHttpTestURL();

String content = httpTestURL.getContentString();

[...] // Processing of the Response Data

}

[...]

}

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 20 / 33

3.4.3.4 Plug-In Execution at the End of a Loop

Note that a Plug-In is not executed at the end of a Loop if an exception occurs during a URL
Call inside the Loop, as this would cause the entire Loop to fail. This means that if an error
occurs, and the Plug-In Execution Scope is loop / after, the Plug-In execute method will not
be executed.

If the Plug-In also has the Initialization Scope loop, the deconstruct method will always be
called. This will occur for this Initialization Scope at the end of each Loop, whether or not an
error occurred in the Loop.

In this case, the Plug-In deconstruct method will always receive a current instance of the
LoadtestPluginContext class. Using the loopPassed() method, it can be determined, from
inside the deconstruct method, if a Loop failed or not. In the case of a failed Loop, access is
be provided to the URL Call which caused the failure by calling method getHttpTestURL().

3.4.3.5 Using a Plug-In in Cluster Jobs

In the case of Cluster Jobs, a Plug-In will execute in parallel in all Exec Agents of the Cluster.

If a special action is required to execute only once for the entire Cluster Job, the Plug-In must
be bound to a single Exec Agent in the Cluster. To do so, the Plug-In can access the required
Exec Agent ID Number by calling the method HttpLoadTest. getClusterMemberLocalId().
This method returns zero-based Exec Agent IDs; that is, the first Cluster Member is Number
0, the second is Number 1, and so on.

As a Cluster can theoretically consist of a single Exec Agent, the Plug-In should be bound to
the first Cluster Member (ID = 0) to ensure it is always executed. In the case of normal Exec
Agent Jobs, which are not executed using a Cluster, the method getClusterMemberLocalId()
returns the value -1.

The following code fragment demonstrates how a single action per Job can be executed from
a single Exec Agent, irregardless of whether the Job is an Exec Agent Job or a Cluster Job:

public void execute(Object context)

{

LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

 HttpLoadTest httpLoadTest = pluginContext.getHttpLoadTest();

 int clusterMemberLocalId = httpLoadTest.getClusterMemberLocalId();

 if ((clusterMemberLocalId == -1) || (clusterMemberLocalId == 0))

 {

 // action is executed by only one Exec Agent

 [...]

 }

}

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 21 / 33

3.4.3.6 Integrating Additional (External) Measurement Data

Using a Plug-In, it is possible to collect additional measurement data during a Load Test, and
display these data later in the GUI (Menu "Load Test Result Detail - Statistics and Diagrams").

In this case, it does not matter if the measurement data stems from internal data sources
(such as data extracted from a URL Response in the Load Test program) or from external
data sources. The only condition is that these additional measurement data be available
during the execution of the Load Test program. Measurement data from external systems can
also be included in the Load Test Results ("*.prxres" file), provided the appropriate Plug-In
programming is performed.

The last point in time that additional measurement data can be integrated is just before the
end of the Load Test program; that is, when each virtual user has completed its last Loop.
The relevant Plug-In Initialization Scope is therefore global, and the insertion of the additional
measurement data occurs in the Plug-In deconstruct method.

The collection of additional measurement data can be done at any time during the Load Test,
provided that for each measurement an instance of the class
dfischer.utils.DataCollectionSequence is first created. The caption in the GUI for the
related Measurement Diagram is provided to the constructor of this class. The parameters to
this constructor are as follows:

- sequenceId: an arbitrary, unique number in the data sequence

- diagramTitle: title of the Diagram in the GUI

- diagramSubTitle: subtitle of the Diagram in the GUI

- yAxisLabel: caption of the Y-Axis in the Diagram

- sequenceContext: not used in this case, always set to null

After an instance of DataCollectionSequence has been created, the individual measurement
values of the Measurement can be inserted using repeated calls to the method
addItem(DataCollectionFloatItem floatItem). An instance of the class
DataCollectionFloatItem must be created before each call to addItem, and the constructor
for DataCollectionFloatItem has the following two parameters:

- timeStamp: time of the measurement, expressed in milliseconds since 1970. If the
current time is desired, System.currentTimeMillis() can be used.

- floatValue: Measurement value.

Note: Ensure that measurements occurring before the start of the Load Test program are not
included in the GUI Diagram. If data, including timestamps, from external systems are
imported, the Plug-In should first determine the time difference between the local system and
the external system, and use this difference to adjust the external system timestamp.

After all data has been collected, these data must be inserted into the Load Test Result. This
is done by repeatedly calling the method
PerformanceData.addDataCollectionSequence(DataCollectionSequence), once per
Measurement; that is, once per instance of DataCollectionSequence. Access to the current
instance of PerformanceData is provided by the Plug-In Context, which is an instance of the
class LoadtestPluginContext provided as a parameter to the Plug-In construct, execute,
and deconstruct methods.

../../../ProxySniffer/doc/javadoc/dfischer/utils/DataCollectionFloatItem.html
../../../ProxySniffer/doc/javadoc/dfischer/utils/DataCollectionFloatItem.html
../../../ProxySniffer/doc/javadoc/dfischer/utils/DataCollectionFloatItem.html

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 22 / 33

Example 1: The following simple example shows how to collect additional measurement data
from an URL Call and how to add these data to the load test result:

[...]

import dfischer.utils.DataCollectionSequence;

import dfischer.utils.DataCollectionFloatItem;

/**

 * Load test add-on module.

 */

public class AdditionalDataExample implements LoadtestPluginInterface

{

 private LogVector logVector = null;

 private DataCollectionSequence simpleSequence = new DataCollectionSequence(1,

"Wait Time for Receiving the first Byte of Response", "", "Milliseconds", null);

 [...]

 /**

 * Execute plug-in after URL call.

 *

 * Intrinsic plug-in implementation.

 */

 public void execute(Object context)

 {

 logVector = new LogVector();

 LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

 HttpTestURL httpTestURL = pluginContext.getHttpTestURL();

 if (pluginContext.urlPassed())

 {

 DataCollectionFloatItem waitTimeForFirstByteItem = new

DataCollectionFloatItem(System.currentTimeMillis(),

httpTestURL.getResponseHeaderWaitTime());

 simpleSequence.addItem(waitTimeForFirstByteItem);

 }

 }

 [...]

 /**

 * Finalize plug-in at end of load test.

 */

 public void deconstruct(Object context)

 {

 LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

simpleSequence.addClusterOption(DataCollectionSequence.
CLUSTER_OPTION_MERGE_FLOAT_ITEMS_TO_SUM, "Merged Cluster Data");

 pluginContext.getPerformanceData().addDataCollectionSequence(simpleSequence);

 }

 [...]

} // end of class

The following screenshot shows how the additional measurement data would be displayed in
the GUI. If more than one Measurement is inserted in the Load Test Result, a drop-down list is
provided above the diagram to allow the selection of the desired Measurement. All additional
measurement diagrams are also included in the PDF report.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 23 / 33

Hint: in this example, instances of DataCollectionFloatItem are used to store the values. This
means that the X-axis of the diagram is already determined and reflects the point in time when
the values have been measured. It is also recommended that you predetermine how the data
are merged at cluster level. This can be done by using the method DataCollectionSequence.
addClusterOption(<int option>).

As an alternative you can use instances of DataCollectionYZFloatItem which allows you to
control the unit of the Y-axis as well as the unit of an additional Z-axis. Each instance of
DataCollectionYZFloatItem contains three dimensions which are:

X-Dimension: time stamp (determined)

Y-Dimension: value no. 1 (discretionary useable)

Z-Dimension: value no. 2 (discretionary useable)

As a consequence of adding instances of DataCollectionYZFloatItem to a
DataCollectionSequence, the GUI can show for each of such a data collection three different
diagrams in the load test result: XY-diagram, XZ-diagram, and YZ-diagram. However, only the
YZ-diagram shows the correlation between "value no. 1" and "value no. 2".

The DataCollectionSequence contains a special constructor to support
DataCollectionYZFloatItem which allows you to label both axis and also allows you to
predefine if the GUI should show all three diagrams or should show the YZ-diagram only.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 24 / 33

Example 2: The following more complex example demonstrates how, using a local Plug-In
thread, external measurement data can be integrated into a Load Test result. This example
Plug-In has the global Initialization Scope. The local thread will be started in the Plug-In
construct method when the Load Test program is started, and will be stopped in the Plug-In
deconstruct method at the end of the Load Test program. The collection of the measurement
data occurs inside the thread's run() method. Immediately after the local thread is (probably)
stopped, the measurement data is inserted into the Load Test Results. The deconstruct
method will only wait for a maximum of 10 seconds at the end of the thread in order that the
end of the Load Test program not be delayed too long. If the local thread continues to run after
this point, it does not matter as the Load Test program itself will end, outside the Plug-In code,
via a System.exit() call - and this will cause the Java Virtual Machine running the Load Test
Job to exit.

[...]

import dfischer.utils.DataCollectionSequence;

import dfischer.utils.DataCollectionFloatItem;

/**

 * Load test add-on module.

 */

public class ExternalMeasuringData extends Thread implements LoadtestPluginInterface

{

 private LogVector logVector = null;

 private PerformanceData performanceData = null; // load test result

 private Thread dataCollectThread = null; // data collecting thread

 private DataCollectionSequence dataCollectionSequence = null; // external data

 [...]

 /**

 * Initialize plug-in at start of load test.

 */

 public void construct(Object context)

 {

 LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

 performanceData = pluginContext.getPerformanceData();

 // start data collecting thread

 dataCollectThread = new Thread(this);

 dataCollectThread.start();

 }

 /**

 * Thread - used to collect external measuring data

 */

 public void run()

 {

 // create data structure for external data and define GUI diagram settings

 dataCollectionSequence = new DataCollectionSequence(1, "Database Calls", "",

 "Calls per Second", null);

 // collect external measuring data in a loop

 while (!isInterrupted())

 {

 // get external data snapshot

 float externalValue = 10.0f; // <<< actual value of external data

 // [add your own code here to

 // accumulate external data]

 // add external data snapshot to data collection

 DataCollectionFloatItem dataItem =

 new DataCollectionFloatItem(System.currentTimeMillis(), externalValue);

 dataCollectionSequence.addItem(dataItem);

 // sleep for one sampling interval. The sampling interval is

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 25 / 33

 // arbitrary configurable on the GUI when starting the load test

 try

 {

 sleep(performanceData.getSamplingInterval() * 1000);

 }

 catch (InterruptedException e)

 {

 interrupt();

 }

 }

 }

 /**

 * Execute plug-in at start of load test.

 *

 * Intrinsic plug-in implementation.

 */

 public void execute(Object context) // no action in this method

 {

 }

 /**

 * Finalize plug-in at end of load test.

 */

 public void deconstruct(Object context)

 {

 // stop data collecting thread

 dataCollectThread.interrupt();

 try

 {

 dataCollectThread.join(10000);

 }

 catch (InterruptedException e) {}

 // add external measuring data to load test result

 performanceData.addDataCollectionSequence(dataCollectionSequence);

 }

 [...]

} // end of class

Note: If the additional measurement data is retrieved solely from a URL Response, or
computed from already existing ZebraTester measurement data, a local thread is not required.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 26 / 33

3.4.3.7 Sending E-Mails via SMTP

E-Mails can be sent from within a Plug-In by using the dfischer.utils.SmtpMessage class.
This requires the availability of an SMTP E-Mail Relay Server which accepts the forwarding of
such E-Mails. As most E-Mail systems will not allow the sending of E-Mails from anonymous
or unauthenticated users (or programs), it is possible to provide an E-Mail username and
password.

The below program fragment illustrates how to send an E-Mail in HTML format via an SMTP
E-Mail Relay:

String htmlMessage = "<body><html>firstsecond

blue sea</body></html>";

SmtpMessage smtpMessage = new SmtpMessage(smtpHost);

smtpMessage.setSmtpAuthentication(authUsername, authPassword);

smtpMessage.markHtmlMessage();

smtpMessage.setDebug();

smtpMessage.send(from, to, subject, htmlMessage);

System.out.println("--- waiting for completion ---");

smtpMessage.waitForSendCompletion();

// debug message transfer

String[] debugOutput = smtpMessage.getDebugOutput();

for (int x = 0; x < debugOutput.length; x++)

 System.out.println(debugOutput[x]);

3.4.3.8 Handling Time Zones and Date Computations

Date computations in Plug-Ins can be performed, as customarily done in Java, by using the
java.util.GregorianCalendar class. This must be initialized with the Time Zone currently
configured in ZebraTester in order that the computations are correct. Use the class
dfischer.utils.ZoneTime.getGregorianCalendar() to get the current date in the ZebaTester
Time Zone.

Example:

[...]

import java.util.Calendar;

import java.util.GregorianCalendar;

import dfischer.utils.ZoneTime;

[...]

// get current date and time in configured ZebraTester time zone

GregorianCalendar cal = ZoneTime.getGregorianCalendar();

// add 3 days to current date

cal.add(Calendar.DAY_OF_YEAR, 3);

// get future date

int futureDay = cal.get(Calendar.DAY_OF_MONTH); // value range 1..31

int futureMonth = cal.get(Calendar.MONTH); // value range 0..11, 0 = January

int futureYear = cal.get(Calendar.YEAR);

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 27 / 33

3.4.3.9 Defining and Releasing Own Types of Errors

Plug-ins, which are bound to one or to all URLs can turn a successful URL call into a "red"
error. In such a case the current loop of the simulated user is aborted and the user continues
to execute the next loop.

Example:

/**

 * Execute plug-in after URL call.

 *

 * Intrinsic plug-in implementation.

 */

public void execute(Object context)

{

 logVector = new LogVector();

 LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

 if (firstCall)

 {

 // definition of plug-in specific error types

 pluginContext.getPerformanceData().setErrorStatusTypeTranslation(HttpTestURL

.STATUS_TYPE_PLUGIN_ERROR_CODE_1, "No Connection to External Service");

 pluginContext.getPerformanceData().setErrorStatusTypeTranslation(HttpTestURL

.STATUS_TYPE_PLUGIN_ERROR_CODE_7, "Internal Plug-In Error");

 firstCall = false;

 }

 if (...)

 {

 // report plug-in specific "red" error and abort current loop of

 // simulated user -> continue with next loop of simulated user

 pluginContext.markUrlAsFailed(HttpTestURL.STATUS_TYPE_PLUGIN_ERROR_CODE_1,

"Plug-In Error Message Text A");

 }

 if (...)

 {

 // report plug-in specific "red" error and abort current loop of

 // simulated user -> continue with next loop of simulated user

 pluginContext.markUrlAsFailed(HttpTestURL.STATUS_TYPE_PLUGIN_ERROR_CODE_7,

"Plug-In Error Message Text B");

 }

}

Up to 10 different error types can be defined by a plug-in
(STATUS_TYPE_PLUGIN_ERROR_CODE_0 - STATUS_TYPE_PLUGIN_ERROR_CODE_9)
and each released error can contain an own text description about the error.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 28 / 33

The plug-in specific errors are shown in the "normal" charts and tables of the load test result
details (together with all other measured errors):

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 29 / 33

3.4.3.10 Support of Load Generators which are Running in Encrypted Mode

If a load generator runs in encrypted mode (ExecAgent startup option -encryptJobs or
-encryptJobsOrigin) then all disk-files of the load test jobs are always encrypted. This means
that the data must be decrypted when reading them form a file, and must be encrypted when
writing them to a file. This rule applies also to load test plug-ins.

This sounds complicated, but it's quite easy to support load generators running in encrypted
mode. And you can program your plug-in in such a way that both, normal load generators and
load generators running in encrypted mode are both supported by the same plug-in.

Before reading or writing any data from/to disk you have first to call:

SymmetricEncryptContext encryptContext = HttpLoadTest.getSymmetricEncryptContext();

If this method return null, then the load generator is running in normal mode and you can read
and write the data as usual.
If this method don't return null then the load generator runs in encrypted mode and you have
to construct the output and input streams by using the methods:

InputStream in = dfischer.utils.SymmetricEncrypt.getCipherInputStream(InputStream is,

SymmetricEncryptContext encryptContext);

OutputStream out = dfischer.utils.SymmetricEncrypt.getCipherOutputStream(OutputStream

os, SymmetricEncryptContext encryptContext);

Programming Example - Writing Data to a File:

import dfischer.utils.SymmetricEncrypt;

…

BufferedOutputStream bout = null;

try

{

 if (getSymmetricEncryptContext() != null)

 bout = new BufferedOutputStream(SymmetricEncrypt.getCipherOutputStream(

 new FileOutputStream(filename), getSymmetricEncryptContext()));

 else

 bout = new BufferedOutputStream(new FileOutputStream(filename));

 bout.write(fileData);

}

finally

{

 if (bout != null)

 bout.close();

}

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 30 / 33

3.4.4 Plug-In Programming for High Performance

The execution time of the Plug-In itself does not influence the measured response times;
however, the Plug-In will use CPU resources on the local machine, and this can reduce the
number of virtual users which can be simulated by the Exec Agent (because the CPU will
become overloaded earlier). Refer to the document "Guide to the Successful Execution of
Load Tests", Chapter 4, point 4 for more information.

3.4.4.1 Pre-computing Results

In order to reduce the CPU overhead of a Plug-In as much as possible, all repetitive code
(code which returns the same value for repeated calls to the execute method) should be
designed to compute the return value only in the first run, and store the result locally in the
Plug-In for subsequent runs. Later calls to this code can simply return the locally-stored value
and avoid re-computing the result.

In order to do this kind of optimization without a large effort, the java.util.HashMap class is
ideal. The missing internal synchronization in this class is not a hindrance, as the execution of
the Plug-In will be synchronized by ZebraTester itself..

Example:
For each URL Call, the Web Page (text of the Page Break) must also be determined.

The non-optimized code looks like this:

 public void execute(Object context)

 {

 LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

 PerformanceData performanceData = pluginContext.getPerformanceData();

int threadStep = pluginContext.getThreadStep();

String pageName = performanceData.getPageInfoTextOfUrl(threadStep);

[...]

In the above code, the text of the Page Break is computed each time using the current URL
index (threadStep). This indicates that in ZebraTester only the writing and collection of
measurement data is already CPU-optimized, not the reading of measurement results.

To optimize the code, the Page Break is retrieved only once, and stored in a HashMap. The
optimized code looks like this:

import java.util.HashMap;

public class TestPlugin implements LoadtestPluginInterface

{

 HashMap pageInfoMap = new HashMap();

 [...]

 public void execute(Object context)

 {

 LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

 PerformanceData performanceData = pluginContext.getPerformanceData();

int threadStep = pluginContext.getThreadStep();

 String pageName;

 Object o = pageInfoMap.get(new Integer(threadStep));

 If (o != null)

 pageName = (String) o; // Use the stored value

 else

 {

 // Compute the result the first time and store it for later use

 pageName = performanceData.getPageInfoTextOfUrl(threadStep);

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 31 / 33

 pageInfoMap.put(new Integer(threadStep), pageName);

 }

 [...]

This is only an example. This type of optimization is possible in many programming cases
which involve repetitively-executed code, and where the result can be pre-determined. It is
worth it to consider which values can be computed beforehand, and which cannot.

3.4.4.2 Disk and Network I/O Operations

I/O operations do not usually require much CPU; however, internal operating system
processes involve asynchronous Events which - depending on the volume of I/O operations -
can make the entire operating system slower, and cause almost all operations to require a
longer time to complete individual system routines.

In order to optimize I/O operations in Plug-Ins, the execute method should avoid the frequent
opening and closing of I/O connections. The connection should be opened only in the first call
to execute - or alternatively in the construct method. After the connection is opened, all I/O
operations should use this open connection. Finally, the connection should be closed in the
deconstruct method.

For disk I/O operations which create a file during a Load Test, it can be useful to store all file
data during the Load Test in memory (e.g. using java.util.ArrayList or
java.io.PrintWriter(java.io.ByteArrayOutputStream)), and then write the file out to disk in
the deconstruct method. Note that this would only be advisable if the data is not too large. A
rule of thumb is that a Plug-In should not store more than approximately 50 MB in its local
memory.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 32 / 33

3.5 Example Plug-Ins

Examples (*.java source code) of ready-to-use Plug-Ins can be found in the Project
Navigator Directory "MyTests \ Plugins“.

Note: When ZebraTester is re-installed, these ready-to-use Plug-Ins are overwritten. If the
Plug-In code has been modified, save the modified "*.java" files under different names in the
"MyTests / Plugins“ directory - and do not forget to make appropriate adjustments to the
Plug-In class names in the source code.

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbüro David Fischer AG All Rights Reserved Page 33 / 33

4 Manufacturer

Ingenieurbüro David Fischer AG, Switzerland | A company of the Apica Group

Product Web Site: http://www.zebratester.com

Apica AB: http://www.apicasystem.com

All Rights Reserved.

http://www.zebratester.com/
http://www.apicasystem.com/

	1 Overview
	1.1 Document Contents
	1.2 Introduction

	2 Properties, Runtime Behavior and Configuration
	2.1 Runtime Environment
	2.2 Plug-In Lifecycle during Test Execution
	2.3 Plug-in Configuration using the GUI
	2.4 Plug-In Lifecycle after Configuration

	3 Developing your own Plug-In
	3.1 Java API Documentation
	3.2 Using Multiple Classes and External Class Libraries
	3.3 Creating the Program Skeleton using the Wizard
	3.4 Programming Plug-In Functionality
	3.4.1 The "LoadtestPluginContext" Class
	3.4.2 The "HttpLoadTest" Class
	3.4.3 Additional Details about the Runtime Environment
	3.4.3.1 Debug Output during Plug-In Execution
	3.4.3.2 Initializing a Plug-In using Imported GUI Variables
	3.4.3.3 Extracting HTTP Response Data from URL Calls
	3.4.3.4 Plug-In Execution at the End of a Loop
	3.4.3.5 Using a Plug-In in Cluster Jobs
	3.4.3.6 Integrating Additional (External) Measurement Data
	3.4.3.7 Sending E-Mails via SMTP
	3.4.3.8 Handling Time Zones and Date Computations
	3.4.3.9 Defining and Releasing Own Types of Errors
	3.4.3.10 Support of Load Generators which are Running in Encrypted Mode

	3.4.4 Plug-In Programming for High Performance
	3.4.4.1 Pre-computing Results
	3.4.4.2 Disk and Network I/O Operations

	3.5 Example Plug-Ins

	4 Manufacturer

