Ingenieurbiro David Fischer AG | A Company of the Apica Group
http://www.apicasystem.com

/.. ZebraTester

"Load Test Plug-In" Developer Handbook

© 2009, 2010, 2011, 2012, 2015, 2016 November 13, 2016 All Rights Reserved.

http://www.apicasystem.com/

ZebraTester V 5.5

Load Test Plug-In Developer Handbook

Table of Contents

1

2

3

4

L0 A= YR 3
1.1 DOCUMENT CONENES. ..cuti ittt ettt e et e ettt e ettt e e e e et e e e e et e aeeaa e aeeeenns 3
07 | 170 To 1§ [ox 1 o o H TR 3

Properties, Runtime Behavior and Configuration..............ccccoeiiiiiiiiiiiiiiiin e, 4
2.1 RUNtME ENVIFONMENT. ... e e e e e e e e e e e eeeaaa e e e e eeeeeenne 4
2.2 Plug-In Lifecycle during Test EXECULION..........cccoevuiiiiiiie e e e 5
2.3 Plug-in Configuration using the GUIoooiiiiiiiii e 6
2.4 Plug-In Lifecycle after Configuration..............cccccovviiiiiiiiiiiiiie 8

Developing YOUr OWN PIUG-IN.......ooiiiiiiiiiieieeeeeeeeeeeeeeeeee et 9
3.1 Java APl DOCUMENTALIONcutiiiiiiiiiiiiiiiiiiiieiette ettt ettt e e et e e e e e e e e e e e e aeeeeees 9
3.2 Using Multiple Classes and External Class Libraries..........ccccccovvvvviiiiiiiiiiiiiiiiiiiiinnnn, 9
3.3 Creating the Program Skeleton using the Wizardccoovvviiiiiiiiiiiiiiiiiiiiiiiiiieee, 11
3.4 Programming Plug-In FUNCLONAlItY.........ccoooiiiiiiiiiee i 14

3.4.1 The "LoadtestPluginConteXt" Class..........ccceiiieeeiiiiiiiiiiiii e 16

3.4.2 The "HtpLoAdTeSt" CIASSuuuuuuiiiiiiiiiiiiiiiiiiiii e 17

3.4.3 Additional Details about the Runtime Environment............ccceevvveiiiiieeeeeeivinnnnnn. 18

3.4.31 Debug Output during Plug-In EXECULIONcccoiviiiiiiiiiieeeeceeeiiiie e 18
3.4.3.2 Initializing a Plug-In using Imported GUI Variables................ccooeeeiii. 18
3.4.3.3 Extracting HTTP Response Data from URL Calls..............ccoooeeieieiieeeeeee. 19
3.4.3.4 Plug-In Execution at the End of @ LOOPoviieiiiiiiiiiiee e 20
3.4.35 Using a Plug-In in ClUSter JOBSoouviiiiiiieeeieeiee e 20
3.4.3.6 Integrating Additional (External) Measurement Dataccccceeeveeeeeeennnes 21
3.4.3.7 Sending E-Mails Via SMTP.........oouiiiiii e 26
3.4.3.8 Handling Time Zones and Date Computations.........ccccoeeevvvvviiiiiiieeeeeeeeennnns 26
3.4.3.9 Defining and Releasing Own Types Of EIfOrS........coooeeeeeiiieieeeeeeeeeeeeeeeeeen 27
3.4.3.10 Support of Load Generators which are Running in Encrypted Mode 29
3.4.4 Plug-In Programming for High Performance............cccccoooiiiiiiiiiiii e, 30
3441 Pre-computing RESUISccooiiieeeeeeeeeeee e 30
3.4.4.2 Disk and Network 1/O OPErationSccooeeeeeieeeeeeeeeee e 31
3.5 EXAMPIE PlUG-INS ... et aaaaaaaae 32
1Y =T U =Tt (B PP 33

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 2/ 33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

1 Overview

1.1 Document Contents

This Handbook consists of two parts.

Part One provides an overview of the Properties, Runtime Behavior, and Configuration
of ZebraTester Load Test Plug-Ins.

Part Two provides information on how to develop ZebraTester "Load Test Plug-Ins".

1.2 Introduction

ZebraTester Load Test Plug-Ins are Extension Modules to the ZebraTester product. Load Test
Plug-Ins are configured using the GUI, and are executed during a Load Test.

In addition to the pre-defined Load Test Plug-Ins delivered with the ZebraTester product,
additional user-defined Plug-Ins can be developed to provide extra functionality to meet
specific needs.

Plug-Ins have the major characteristic of being re-usable. Once developed, a Plug-In can be
re-used in every Load Test program.

The basic framework of a Load Test Plug-In can be easily created by using the Wizard;
however, the completion of the finished Plug-in - coding the necessary functionality - requires
the ability to program in Java. Then, once the Plug-In has been developed, configuring it for
use with a Load Test program does not require programming knowledge; Plug-In configuration
is done with a few mouse-clicks in the GUI.

The execution of a Plug-In takes place on the same machine which is running the Exec-Agent,
and the Load Test program itself. When a Load Test is started, the relevant Plug-In is
automatically transmitted to the Exec-Agent with the Load Test program - no additional prior
configuration of the Plug-In is necessary.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 3/33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

2 Properties, Runtime Behavior and Configuration

All Load Test Plug-Ins are bound to the Load Test program via the GUI, using the Variable
Handler. Load Test Plug-Ins can:

1. Import GUI Variables
Execute its own program code
Export GUI Variables
Abort an executing Load Test

a > D

Insert additional measurement data into the Load Test Results.

Example 1: A Plug-in computes a date (MM.DD.YYYY) which is always three days in the
future, relative to the current date. This date is exported as a GUI Variable, and the Variable
is then used in an HTML Form as an input parameter for entering a dynamically-assigned
"booking date".

Example 2: In an online ordering process, the "order number" is first extracted from a URL
call as a GUI Variable, and then passed as input to a Plug-In. The Plug-In writes all "order
numbers" of the simulated users into a file, which is used after the completion of the Load Test
to cancel the simulated orders.

Example 3: A Plug-In continually monitors the progress of a Load Test, and aborts the Load
Test if more than 90% of all Loops fail within a 5 minute period - computed over all virtual
users. In this way, a long-running Load Test can be interrupted if a Web Server collapses and
cannot itself recover.

2.1 Runtime Environment
Plug-Ins are tightly integrated with a Load Test, and provide access to:

- all GUI Variables defined in the Variable Handler. Importing and Exporting GUI Variables
is supported.

- all real-time measurement data of a running Load Test program.

- the data from specific, or all, executed URL Calls of a running Load Test program. This
includes the ability to modify and/or enhance the data before execution, as well as the
ability to perform additional processing on the result data after execution.

- the operating system of the Exec-Agent machine, provided the interfaces are available via
Java. This includes, for example, network connections and files on the file system or disk.

- additional data from the Runtime Environment of a Load Test, such as the current number
of virtual users, the number of current Cluster Members running a Load Test (via Cluster
Jobs), and the cookie storage of individual virtual users.

There are some restrictions; for example, a Plug-In cannot, in general, influence the execution
path of a Load Test program. This means that a Plug-In cannot modify the order of the
executed URL Calls. A Plug-In also cannot correct, after the fact, an error arising as the result
of a (measured) URL Call. However, a Plug-In can turn a successful completed URL Call into
a failed URL Call.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 4/ 33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

2.2 Plug-In Lifecycle during Test Execution

A Plug-In is initialized, executed one or more times, and then de-initialized.

Often the Initialization and De-Initialization of a Plug-In involves no special activities; that is,
these steps are often "empty”. On the other hand, during a Load Test a Plug-In could be
programmed to perform various functions; for example, accessing a database. In such cases,
the connection to the database would be opened during the one-time Plug-In Initialization,

used during the Load Test to read or write data, and then closed during the one-time Plug-In
De-Initialization.

The timing of the Plug-In Initialization, De-Initialization, and Execution can all be configured
separately and can occur at different times. This timing is tightly coupled with the data the
Plug-In has access to, and is referred to as the Plug-In Scope.

The following Plug-In Scopes are available:

¢ global: immediately before, or immediately after, the execution of a Load Test program
e user: when a virtual user is created, or when a virtual user has ended

e |oop: atthe beginning, or at the end, of a Loop

e URL: before, or after, a Call to a specific URL, as well as before/after all URL Calls.

The most commonly-used Scope during Plug-In Initialization and De-Initialization is global.
The most commonly-used Scope during the execution of a Plug-In is either loop or URL.

List of possible Plug-In Initialization Scopes:

Initialization Scope Plug-In Initialization Plug-In De-Initialization
global Immediately after the start of a | Immediately before the end of a
Load Test program Load Test program
user Before the creation of each After the end of each virtual
virtual user, and before the user, and after the execution of
execution of the user's first the user's last Loop
Loop
loop Before the execution of each After the execution of each
Loop Loop.
Note: De-Initialization also
occurs if the Loop fails.
URL This Scope cannot be used during the Initialization or De-
Initialization phases of the Plug-In lifecycle.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 5/ 33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

List of possible Plug-In Execution Scopes:

Execution Scope Before or After Plug-In Execution

global before Immediately at the start of a Load Test
program, but after Plug-In Initialization

global after Immediately before the end of a Load Test
program, but before Plug-In De-Initialization

user before Before the creation of each virtual user,
before the user's first Loop execution

user after After the end of each virtual user, after the
user's last Loop execution

loop before Before each Loop execution, once for each
virtual user

loop after After each Loop execution, once for each
virtual usert

URL before Before the execution of a specific URL Call,
or before each URL Call

URL after After the execution of a specific URL Call, or
after each URL Call?

1 the Plug-In will not be executed if the relevant Loop fails; however, Plug-In De-Initialization is
always performed.

2 the Plug-In will always be executed, even if a URL Call results in an error.

Note: the Import of GUI Variables occurs immediately before Plug-In execution, and the
Export of GUI Variables occurs immediately after Plug-In execution.

2.3 Plug-in Configuration using the GUI
All available Plug-Ins can be found under MyTests in the Plugins sub-directory.

During Plug-In configuration using the GUI (in the Variable Handler), ZebraTester looks in this
directory, and provides a selectable list of available Plug-Ins. If a new Plug-In is received - by
E-Mail for example - the Plug-In must first be copied into the Plugins sub-directory under
MyTests before it can be selected in the GUI.

Plug-In configuration (that is, adding a Plug-In to a Load Test program) is done via the GUl's
Variable Handler - similar to the definition of an Input File or "User Input Fields" - by using the
"Add Plug-in..." button.

After the Plug-In has been selected in the GUI, the GUI Variables to be imported and/or
exported by the Plug-In must be defined, and the Initialization and Execution Scope must be
specified. Most Plug-Ins will pre-define, or hard-code, the Scopes during development; in this
case, the Scopes will not be selectable in the GUI. An additional Plug-In property, which can
be defined during development, indicates whether or not the Plug-In can be used more than
once in the same Load Test program. If a Plug-In is defined to be usable only once per Load
Test program, the GUI will prevent it from being configured more than once for use with a
given Load Test program.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 6/ 33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

Picture: Adding a Plug-In to a Load Test Program:

: URL Details / Var Handler

[| http:4f127.0.0.1:7990{dfischer webadmininterf ace/htdocs/dataRecordDetais. htmidisplayindex=1 i

. -
Y a @ & @ %
Proje Search Generas Save

Help Navigater Overall Load Tem Session Fefresh Clese

* Waimte URL Details / Var Handler

on Page

‘Web Load and Stress Testing Tool - Proxy Sniffer = GET http:/iwww.proxy-sniffer.com/
next B B 4= 200 (OK) "TEXTHTML" (43'779 bytes)

HTTP Request Header @@+ _.roxy-sniffer.com:80 &

1 [GET@/1.1 | B [Inovars defined]

2 | Accept ** =

3 |Accept-Encoding: gzip, deflate u 5 '

4 |User-Agent: Mozilla/4.0 (compatible, MSIE 7.0, Wind oy E

5 | Accept-Language: en v [none]
< \ Bl

y

HTTP Response Header @ + [nonel

1 |HTTP/1.0 200 OK]

2 | Date: Sat, 01 Mov 2008 21:58:08 GMT

3 | Server. Apache =

4 | Content-Location: indexhtml.en [none]

5 | Vary. negotiate accept-language v

HTTP Response Content + 43779 Bytes HTML & & Download _ I I

<IDOCTYPE html FUBLIC "-/MAW3CHDTD HTHL 4.01 Transitional/EN"= b
<HTML=
=<HEAD>

<META HTTP-EQUIV="tontent-type” COMTENT="texthtml; charset=50-8859-1">

<METAHTTP-EQUI ontent-language” CONTENT="an"=

=T[TLE=WWeb Load and Stress Testing Tool - Proxy Sniffer=iTITLE= 3

SMETA MAME 1A - e imfinn® CARTERT D rafn e minnal wnk (nad Ane staee fneting $nnl Tacte and anakane e inmee

< |

o e ha
Extract Var

HTTP Response Content & Unique Hyperlinks Exiract B

HTTP Response Content & Verification Algorithim: [Test String]="Guppar for Mulfipls Slient IP Addresses’ |

Dane

Picture: Configuring the Imported GUI Variables of a Plug-In:

+ o g & & ¥

werh Sher URL Details / Var Handler

P Searh 5
Na%ﬁ'm Sommil GaSTEs s, Refresh Clas
on Page ‘Web Load and Stress Testing Tool - Proxy Sniffer = GET hitp:/www.proxy-sniffer.com/
nexdt B 4= 200 (OK) "TEXTHTML" (43779 bytes)
T Fames oo 9913 o sl o 9
~
1 [GET®/1.1 = 5 Add Load Test Plu, (Step 2) +
2 | Accept ™™ =
3 [Accept Encading: uzip, deflate q El || EiEmEta [Eoshienlerion
1 [User-Agent: Mozillai4.0 (compatible; MSIE 7.0; Windo B Class: Caokisnjsctor class
<
5 [AcceptLanguage: en 3 Constructed: global
&l] 3 Execution: hefore / at start of
URL
HTTP Response Header @ + Input Parameter:
T [H11PM.0200 OK A Cookie Hame: | vCookighame [global] | &3
7 [Date: Sat, 01 Mov 2008 21-53.05 GMT Cookie Value:]
3 [semwer Apache L
4 | Content-Location: index.html.en LA
5 | Vary negotiate accept-language
5 W= : PHELEIT) L Plug-in Desciption:
Adds & cookie to the cookis storage of the vitual users - at
client sice. Note: cookies are automatically handled by
. _%_I Prozy Sniffer if they are first received in & HTTP(S)
HTTP Response Content + 43'779 Bytes HTML @ X pownload | search response fromihe web server. In such & common case
= = a there is no need to use this plug-in. However in the unususl
1 [+IDOCTYPE html PUBLIC *~IWW3CHDTD HTML 4.01 TransitionalEN"> 2B N |cocs that a cankds is set by the wel browser fssif (oy
3 | <mil> bl | |using avaScripty you can use this plug-into emulate such
3 | <HEAD> B |l |5 ssvaseript functionaity
4 =METAHTTP-EQUT ontent-type” COMTENT="textfhirmn|; charset=I50-8858-1"> =
g <METAHTTP-EQUI ontent-language” COMNTENT="en"> [
6 <TITLE=Web Load and Stress Testing Tool - Proxy Sniffer<TITLE= @
T | MAETA MME e b P ARITE AT D il ik Innd and aboee fackinn fonl Tacte and anolean fhe o 0
< |

HTTP Response Content & Unique Hyperlinks Extract B

HTTP Response Content & Verification Algorithir: [Test Sring] = "Guppor or Mulfple Slient P Addresses” 11

Done

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 7 /33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

2.4 Plug-In Lifecycle after Configuration

When a Plug-In is configured using the GUI, the compiled Plug-In Java code will be saved in
the same file that the Web Session uses for Web Session storage (in the "*.prxdat" file of the
Web Session). If the Web Session "*.prxdat" file is stored on another computer, the Plug-In
Java code is transferred there as well, and is then available on the other computer.

When a Load Test program is created, the Plug-In is automatically copied out of the Web
Session, and a copy of the Plug-In is made in the Project Navigator directory in which the
Load Test program was created. Before Test Execution, the compiled Load Test program
("*.class" file), including the Plug-In, is zipped. The resulting zip archive itself can be
executed, and the Plug-In will be automatically transferred to the Exec Agent along with the
Load Test program.

During Plug-In development, a new version of the Plug-In may be created in the Plugins sub-
directory under MyTests. The ZebraTester GUI monitors this process, and will detect when a
Web Session contains an older version of a Plug-In. When a new Plug-In is detected, the GUI
will display a user dialog requesting that the new Plug-In be imported into the Web Session.
Note that a new Plug-In version can only the imported when the number of GUI Input and
Output Variables remains unchanged and retain the same meaning. If this is not the case, the
Plug-In must first be manually removed using the Var Handler, and then re-imported to the
Web Session.

In addition to the Web Sessions, the GUI monitors the compiled Plug-Ins in the Load Test
program directories. After a "refresh" in the Project Navigator, older Plug-In versions will be
marked with a yellow exclamation point. The updated Plug-In version can be copied from the
Plugins sub-directory under MyTests to the Load Test program directory by clicking on the
corresponding Plug-In's icon in the Project Navigator. If the number of GUI Input and Output
Variables - including their meaning - in the new Plug-In version is the same as the previous
version, the Load Test program can be started with the new Plug-In version, without the need
for re-creating or re-compiling the Java code.

The internal comparison to see if a Plug-In is obsolete does not use the file date, but
computes a checksum over the compiled Plug-In code. If the checksums are different, the
"new" Plug-In is always considered to be that version currently in the Plugins sub-directory of
MyTests.

Example: Old Plug-In version in the Load Test program Directory — Icon contains a yellow
exclamation point

2 PRX: Project Navigator - Mozilla Firefox

| ;: http://127.0.0.1: 7990 dfischer fwebadmininterface/PopupDirectaryMavigatorweblet /
e A
: | . . < & N E m @ X
e F Sniff
: Wr:t:";\dnr:\ner PrDJECt Nav'gator Help Setup Metwork Jobs Analyse Refresh Close
C:\Dokumente und Einstellungen'mutong ProxySnifferMyTests |j D @
&5 myTests File 7 & [Size Modified <7 2
I Plugins —
DScriptExamples a ExternaltdeasuringDataBExample.class 3315 01 Mow 2008 23:13:49
ﬁ Trash a proxy_sniffer_corn_80_01Nov08_230803.prsch 329430 01 Moy 2008 23:08:34 | .
&) seterbat 265 02 Nov200800:30:35 [&
&) Testoiciass 35748 D2novzoosozinz: [BEER
&) Testitiava 93870 0INovzOOR0Z10M7 (] {HER
B Testol praat 457382 02MovzooBozioos [0 BEER v

Done

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 8/33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

3 Developing your own Plug-In

The first step in developing a new Plug-In is to bind to the ZebraTester Runtime Environment.
This is done using a Wizard which automatically creates a basic Plug-In program framework.
This initial generated Plug-In code is able to be compiled on its own, but does not contain any
inner logic to provide Plug-In functionality.

The second step is to develop the inner logic of the Plug-In. This must be done manually by
coding in Java.

The third, and final step, is to add the Plug-In to a recorded Web Session by using the GUI
Variable Handler.

3.1 Java API Documentation

The class libraries of the Java SDK 6.0 can be used for Plug-In coding. Additional,
ZebraTester specific classes are in package dfischer.utils available.

The APl documentation for the dfischer.utils package can be accessed on Windows systems
via Start ® All Programs » ZebraTester » Documentation ® ZebraTester APl Javadoc

On Mac OS X and Linux systems the API documentation is installed in the
ZebraTester installation directory » Documentation ® javadoc

3.2 Using Multiple Classes and External Class Libraries

If a Plug-In consists of a single class and itself uses no external libraries, there is
nothing further to be done, and this section can be skipped.

If a Plug-In requires the use of additional class libraries - in addition to those available in Java
JDK 6.0 and package dfischer.utils (such as a database driver) - or if a Plug-In consists of
more than one class, these must be available as "*.jar" files before beginning the development
of the Plug-In Main class. Note that the Plug-In Main class can never be part of the Java
package, and must not itself be contained in a JAR Archive.

If additional "*.jar" files are required, proceed as follows:

First load any recorded session.
2. Call the "Declare External Resources" Menu from the "Var Handler" menu:

ftes)

LS00 SR EL U Uy nyn ‘

.

AN

Var Handler [£] ey %
[no variables defined]

3. Declare (add) all required jar files as External Resources:

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 9/33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

) PRX: Declare External Resources - Mozilla Firefox

@ 127.0.0.1:7990/dfischer/webadmininterface{PopupCanfigExternalResourceswweblet

Apica
ProxySniffer Declare External Resources for Self-Developed F

Add an External File to Load Test

File Located On: (&) Local Systern () Remote Systemn (pre installed on Exec Agent)
Ahsolute File Path: | CLibs\logdj-1. 216 jar

Add File to Java CLASERPATH an the Exec Agentis)

Add External File "

"Recommended option: Local files are adtarmatically transferred ta the load generatars when executing a load test.
2 Mon recammended aption: Your load testwill notwoark on cloud-based load generatars,

4. Export the Declarations (they can later be imported in other recorded sessions):

COX

|UQ'||'|$ Hel Impart Export Refresh Cloze

Thiz menu allows yau to declare additional, external
resources needed when executing a load test. Typically
sUch external resources are Java library files (*.jar
files) which are used hy self-developed plug-ins.
Howeever, also any ather file types are supported.

Mote: Any declarations made in the “ar Handler menu
suUch as Inpur Files and Main Classes of Plug-Ins are
not external resources in this context and don't need to

5. You can now start developing your plug-in (see next chapter).

Note: Starting from ZebraTester version 5.0 it's no longer required to make any additions to
the CLASSPATH of the Web Admin GUI. The revised Java "class loader" of ZebraTester will
load all declared jar files instantly (on the fly).

All declarations for external local resources are always stored together with a recorded
session (*.prxdat file) - and also only visible for this recorded session. There is no system-wide
or product-wide declaration available. Therefore, if another recoded session uses the same
plug-in, you have to add the declarations for the external resources again to this other session.
Alternatively, you can also export the declarations and import them later by using the import
and export icons which are located at the top of the window.

Once a load test program is generated, all external resources are automatically zipped
together with the load test program, and the whole ZIP-archive is automatically transferred to
the load generators (Exec Agents). There is no need to pre-install the external resources on
the load generators.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 10/ 33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

3.3 Creating the Program Skeleton using the Wizard

The Wizard is available in the Project Navigator Plugins sub-directory under MyTests, and
can be started by clicking on its icon in the Project Navigator:

€3 PRX: Project Navigator - Mozilla Firefox

| £ | httpi{127,0.0,1:7990/dfischerwebadmininterf ace/PopupDirectoryhavigatarweblst i
L d

:oo Froxy Sniffer {3} ﬁ E Di « R

1 web Admin Project Navigator Ml Sdup Netwerk Jobs enalyse Refresh Close

C:Program Files\ProxySniffer MyTests\Plugins a/ i =l
MyTasts File W [§5 size Modified <7 £ BhH
AMA_Test — []
Plugins £ BookingDate class 2566 D7 Feb2008 711745 (1 ERER
.) - — - ——
PRX: Plue emplate

;: http:ff127.0.0.1: 7990 dfischer fwebadmininterface PopupDirectoryMavigator CreatePlugineblet? select DirBE4=CzpcUHIvZ 3IhbSEGaW <lc L xQemdeyNuaW ZmZ X IcTRIUZXN0c L QbHYnaWsz -

e

§°’ Proxy Sniffer Project Navigator - Define Plug-In Template |x
Allow Multiple Usage: [] (O arbitrary/ assigned by GUI (3) arbitrary / assigned by GUI
Flug-in GUI Label: | | (% once pertest-run / at start of test) once per test-run, atoftest
Plug-in Description: (O peruser/ atstart of user () peruser, when userprocessmg
() perloop/ at start of loop () perloop, when loop processing

O boundto one URL, URL is called

() bound to every URL, URLs are called
Plug-in Input Parameter / Optional Parameter| [none - all mandatory] v|
#1 GUI Labe\:| | Iocal\far:| | con\fertto:|5tring v| User Input Field: [] defaultvalue:|:|
#2 GUILabel: | | local var: | convertto: [string | User Input Field: [] defaultvalue:|:|
#3 GUI Labe\:| | Iocal\far:| | con\fertto:|5tring v| User Input Field: [] defaultvalue:|:|
#4 GUI Labe\:| | Iocal\far:| | con\fertto:|5tring v| User Input Field: [] defaultvalue:|:|
#5 GUI Labe\:| | Iocal\far:| | con\fertto:|5tring v| User Input Field: [] defaultvalue:|:|
#5 GUI Labe\:| | Iocalvar:| | convertto:|5tring V| User Input Field: [] defaultvalue:|:|
Plug-in Output Parameter / Optional Parameter| [none - all mandatory] v|

#1 GU Labe\:| | Iocalvar:| | convertfrom: defaultvalue:|:|
#2 GU Labe\:| | Iocal\far:| | con\fertfrom: defaultvalue:|:|
#3 GUI Labe\:| | Iocal\far:| | con\fertfrom: defaultvalue:|:|
GUI Labe\:| | Iocalvar:| | convertfrom: defaultvalue:|:|

[Save Template and Continue]

Fertig & Internet H00% v

The following values must be entered in the box at upper left of the above form:

e Plug-In Class Name: name of the Plug-In Java class, without the "*.class" or "*.java" file
extension.

o Allow Multiple Usage: indicates if the Plug-In can be added just once, or many times, in
the same Load Test program or Web Session.

o Plug-In GUI Label: short text (one or two keywords) for the label of the Plug-In. This
label will appear in the GUI associated with this Plug-In.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 11/33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

o Plug-In Description: detailed description of the Plug-In, also displayed in the GUI. Can
consist of many sentences; however, HTML formatting is not supported. The only extra
formatting supported here is "\n" for a line feed in the displayed text.

In the box positioned at the upper middle of the form, labelled "Plug-In Initialization", the
Initialization Scope can be defined (see Section 2.2 of this document for a description of Plug-
In Scopes). If "arbitrary / assigned by GUI" is selected, the Initialization Scope will not be
pre-defined, and will be selectable in the GUI at the time the Plug-In is added. Note - itis
recommended that this option NOT be selected; that is, whenever possible the Plug-In
Initialization Scope should be pre-defined.

In the box positioned at the upper right of the form, labeled "Plug-In Execution”, the
Execution Scope can be defined (see Section 2.2 of this document for a description of Plug-In
Scopes). The "arbitrary / assigned by GUI" option is also available for this Scope; and as
with Initialization Scopes, a pre-defined Execution Scope is recommended.

Next, in the area further down in the middle of the form, the "Plug-In Input Parameter"
definitions can be entered. A maximum of 6 Input Parameters can be defined. Input
Parameters can be defined to be imported as "Mandatory GUI Variables" or "Optional GUI
Variables" using the "Optional Parameter" drop-down list. Note that all definitions of
"Mandatory GUI Variables" must precede any definitions of "Optional GUI Variables".

The form input fields for Plug-In Input Parameters are as follows

e GUI Label: short text (one or two keywords) for the description of the Parameter which
will appear in the GUI.

e local var: name of the local Plug-In Variable in the automatically-generated Plug-In Java
program code. At configuration time, the value of the GUI Variable is copied to this local
Plug-In Variable.

e convert to: defines the data type of the local Plug-In Variable. Note that all GUI Variables
in the Variable Handler are passed to the Plug-In as strings. "Convert To" = "int" indicates
that the imported GUI Variable will be converted to the data type of the (local) "int"
Variable.

e User Input Field: if selected, during Plug-In configuration in the GUI, a new "User Input
Field" will be automatically created, and the value of the new GUI Variable will be set to
the value of the local Plug-In Variable. If not selected, the Input Parameter GUI Variable
must be manually selected in the GUI at Plug-in configuration time.

e default value: sets the default value of the local Variable in the Plug-In Java program
code. If no default value is set, the local Variable will be initialized with the following
default values:

Data Type Initialized Value
String “ (empy string)
int -1 (minus one)
long -1 (minus one)
float -1 (minus one)
double -1 (minus one)
boolean false

Note: An imported boolean variable will have the value true if the string value of the
corresponding GUI variable contains "1“ or "true*.

In the lower part of the form, the Plug-In Output Parameter definitions can be entered. A
maximum of 4 Output Parameters can be defined. As for Input Parameters, Output
Parameters can be mandatory or optional.

The form input fields for Plug-In Output Parameters are as follows:

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 12 /33

ZebraTester V 5.5

Load Test Plug-In Developer Handbook

e GUI Label: short text (one or two keywords) for the description of the Parameter which
will appear in the GUI.

e local var: name of the local Plug-In Variable which will be later assigned the value of the
corresponding configured GUI Variable.

o convert from: defines the data type of the local Variable in the Plug-In Java program
code. Note that all local Variables are exported, after Plug-In execution, to the GUI
Variables as strings.

o default value: sets the default value of the local Variable in the Plug-In Java program
code. If no default value is set, the local Variable will be initialized in the same way as for
Input Parameters (see above table).

After all values have been defined, click the "Save Template and Continue" button at lower
left in the form. In the resulting updated content of the same window, click the "Generate
Plug-In Code" button.

The Plug-In program code is automatically generated in memory. To save the code to a file in
the Plugins Directory, click on the "Save Plug-In Code" button at lower left in the window.

At this time, the Plug-In can be compiled for the first time in the Project Navigator. To re-
compile the Plug-In at any time, click on the grey gear-wheel icon containing a "|" (at the right
of the "*.java" Plug-In file name) in the Project Navigator.

es Proxy Sniffer

Project Navigator - Generate Plu,

Code

Phug-In Template C:Dokumente und £

Plugin Class Name: | WyFirsiPigin

Plug In Templates

LT_PhuginTemplate xmi saved

[[Generate Plugn Code |

Mol lan LT_FleainTemgtate sl

”
® Load test add-on ngfile

(Swve Progincoge |

n sutonstically genersted - copyright for generic plu
O (YOUR BARS). (YOUI CORDSNYS. <JOUT COURLIYH

g-in procedure reserve

) PRX: Project Navigator - Mozilla Firefox

[F hitp:ff127.0.0.1:7990 dfisct

soe
30+ Proxy sniffer
: web Admin

eiPopupDirect g electDir=CzpcR Gardh

Project Navigator

Help

& i B

24UG11dGIUZ L Qem34eyhiuaZmzy JCTHUZAND: 17

I @

setup Nework Jobs fnalyse Refresh Close

®

(= und Ei gil Ij (| @
I> File MyFirstPligin java saved - next action: compile load test plug-in
Camymests fle v 3 {8 size Modified =2 &> BORE
Plugins —

[seriptEsamples &) cookiemjector.class 3756 ozhovaoosondess () ERER
0 Trash &) coumeniettoravs 704 02Ny 2008 00:30:35 e
&) DeferloadTeststart class 3236 02 Nov2008 00:30:35 =6

&) DeferLosdTeststartjava G106 02Nov200800:30:35 [e

5 L e =

&) muFirstPlion LT PlusinTemplate smi 2773 oznwvzooszzasme [[(FEQ

&) PosborFailedTestvt Delass 3825 02Novz00B00E035 [B R

&) PooboriFailedTestvi Djava #5027 02Nov200B0030:35 [< ER

@ PreGenericOutputFileV10.class 3'B48 02 Mov 2008 00:35:51 [] F.E Q

&) ProenecoumuFIEy10ava 4185 0zNovZO0BOOAS30 (] QR

Done

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG

All Rights Reserved

Picture: Creating a Program Skeleton
("*.java" Code)

Picture: Re-compiling the
Plug-In

Page 13/33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

3.4 Programming Plug-In Functionality
The Wizard is used (among other things) to create the following Plug-In methods:

e [nitialization public void construct(Object context)

public void construct(Object context)

{
// LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

}

e [Execution public void execute (Object context)

public void execute (Object context)
{

logVector = new LogVector() ;
LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

e De-lnitialization public void deconstruct (Object context)

public void deconstruct (Object context)

{
// LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

}

Note: Usually only the Execution execute method will need to be enhanced with program
code.

Depending on the Execution Scope, the Wizard will create sample code in the execute

method. This sample code is enclosed by // vvv --- sample code --- vvv and
/[~r~ ——— sample code --- ~~~. This code must be replaced by own program code, and
removed.

Access from the Plug-In to the Runtime Environment of a Load Test program occurs via the
class LoadtestPluginContext, and the current instance of this class is passed to each Plug-In
method.

A full description of the LoadtestPluginContext class can be found in the ZebraTester Java
API Documentation.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 14 /33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

Important: Methods within the LoadtestPluginContext class may not return a valid return
value, depending on how the Plug-In Initialization Scope and Execution Scope are chosen
(CONTEXT_SCOPE_GLOBAL, CONTEXT SCOPE_USER, CONTEXT SCOPE_LOOP OI CONTEXT SCOPE_URL).
The ZebraTester Java APl Documentation provides a description for each method, under
"See Also", which specifies the Scopes for which the method returns valid values during Plug-
In execution.

Example: the getcookieHandler () method only returns a valid Return Value when the Scope
IS CONTEXT_SCOPE_LOOP Of CONTEXT_SCOPE_URL.

1= LoadtestPluginContext (Proxy Sniffer ¥4.1 Java Doc) - Windows Internet Explorer

———
@.‘ A IéC:1,Programme1,ProxySniffer\doc\javadoc\index‘html ||| [X 2=
Datei Bearbeiten Ansicht Favoriten Extras ¢

= - _) »
w o |f_éLUadtastPluginCDntExt (Prosey Sniffer 4.1 Java Doc) | | F} M | oo ,'_':\}"53‘.'15 - L) Extras -

ExternalParamFile V. the ICFPTIF connechon pool or null ff no such data 1s avatlable V.
ExternalParamFileltem See Also:

GenericPlugininterface CONTEXT S5COPE LOOF, CONTEXT SCOPE URL

HtmiContentParser
HimlHeaderCookieExtracto
HimIParserForm
HtmlParserFormltem
HimlParserFormitemTable getCookieHandler
HtmIParserFormTable
HimIParserHyperlink public CookieHandler getCookieHandler()
HimlParserHyperlinkTable
HitpLoadTest Returns the user specific cookie pool which is used for all URL calls when a user executes a loop.
Hitpl oadTestRemoteAgen)
HitpLoadTestSingleString
HitpRequestHeader Returns:

HitpResponseContent the cookie pool, or mull if no such data is available
HitpResponseHeader See Also:

HitpSocketPool TRV : TRV —
HitbSockelPoolfem CONTEXT SCOPE_LOOF, CONTEXT SCOFE_URL
HitpTestURL B

< ¥ v
_e Eigener Computer Fo100% -

More information on Scopes can be found in section 2.2 of this document.

If the Initialization Scope or Execution Scope is not set using the Wizard
(arbitrary / assigned by GUI option selected), these must be specified during Plug-In
execution. The method getcontextscope () has been provided for this purpose.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 15/33

ZebraTester V 5.5

Load Test Plug-In Developer Handbook

3.4.1 The "LoadtestPluginContext" Class

This section contains a description of a few selected methods of the LoadtestPluginContext
class. Full documentation for this class can be found in the ZebraTester Java API

Documentation.

Method

Description

Allowed Scopes

getContextScope ()

Returns the current Scope at Runtime.
Only necessary when the Scope is
NOT set using the Wizard.

all Scopes

getPerformanceData ()

Provides access to the current
measurement data.

Example: The method
PerformanceData.getPassedLoops ()

can be used to determine how many
Loops, measured over all virtual users,
have been successfully executed up to
the current time.

all Scopes

getHttpLoadTest ()

Provides access to additional data from
the Runtime Environment. For details,
see the next section.

all Scopes

getHttpTestURL ()

Provides access to data from the
currently running URL Call.

Example: Using the method
HttpTestURL.
getRequestHeaderObject () . appendHead
er

Field() an additional HTTP Request
Header Field can be inserted into a

URL Call.

CONTEXT_ SCOPE_URL

getThreadStep ()

Returns the index of the currently
executing URL Call.

Example 1: the index can be used as

an Input Parameter to the method
PerformanceData.

getPerformanceDataRecord () in order
to access detailed statistical
measurement data from the URL.

Example 2: the index can be used as

an Input Parameter to the method
PerformanceData.

getPageInfoTextOfUrl () in order to
retrieve the text of a Page Break
belonging to a URL.

CONTEXT_SCOPE_URL

setContinueInnerLoopFlag ()

Forces a continue in a Inner Loop
(jump back at the start of the Inner
Loop)

CONTEXT_ SCOPE_URL

setBreakInnerLoopFlag ()

Forces a break in a Inner Loop (jump
out of the Inner Loop)

CONTEXT_ SCOPE_URL

markUrlAsFailed (<Text>)

Turns a successful passed URL Call
into a failed URL Call (trigger a red
colored error)

CONTEXT_ SCOPE_URL

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved

Page 16/ 33

ZebraTester V 5.5

Load Test Plug-In Developer Handbook

3.4.2 The "HttpLoadTest" Class

This section contains a description of a few selected methods of the HttpLoadTest class. Full
documentation for this class can be found in the ZebraTester Java APl Documentation.

Method

Description

contentToDiskFile (HttpTestURL
testURL, String filename)

Writes the content of an executed URL Call (HTTP
Response content) to a file on disk. This method supports
also load generators which are running in encrypted mode.

writeToDiskFile (byte[]
binaryData, String filename)

Write data to a file on disk. This method supports also load
generators which are running in encrypted mode.

contentFromDiskFileDecrypt (
String filename)

Read data from a disk file. This method supports also load
generators which are running in encrypted mode.

getClusterMemberLocalId()

For Cluster Jobs, this method returns the number of the
relevant Cluster Member (Exec Agent). Cluster Member
numbering is zero-based; therefore, the first Cluster
Member will have the number = 0, the second will have the
number = 1, and so forth.

With a Cluster Job, the same Plug-In is executing in
parallel on each Cluster Member; therefore, it may be
necessary (with the help of this method) to restrict certain
Plug-In actions to a specific Cluster Member.

triggerAbort ()

Causes an abort of a running Load Test program, without
losing the statistical measurement data collected to the
point of interruption; that is, the "*.prxdat" file will still be
created.

getSymmetricEncryptContext ()

Get the context for encrypting and decrypting files of the
load test job, or return null if the load generator is not
running in encrypted mode.

See also
dfischer.utils.SymmetricEncrypt.getCipherOutputStream(..)
and

dfischer.utils. SymmetricEncrypt.getCipherOutputStream(..)

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 17 /33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

3.4.3 Additional Details about the Runtime Environment

3.4.3.1 Debug Output during Plug-In Execution

The standard System.out.printin() method should never be used for debug output inside the
Plug-In execute method, as this would lead to log messages for different virtual user Loops
being jumbled together in the Load Test Job log file. The logVector.log() method should be
used instead.

Note: In the construct and deconstruct methods it is not possible to use the logVector.log()
method; therefore, only the System.out.printin() method can be used in these methods.

In order to have a complete debug output from a Load Test program, including debug output
from any Plug-Ins, the field "Debug Options" must be set to "debug loops (including var
handler)" in the GUI menu "Project Navigator - Execute Load Test" at the start of a Load Test.

Note: For a later execution of an actual Load Test, this option should be reset to
"none -recommended".

Debug output is written to the corresponding Load Test Job "*.out" file. If a program crash
occurs during a Load Test due to an error in a Plug-In, the output is written to the Load Test
Job "*.err" file.

3.4.3.2 Initializing a Plug-In using Imported GUI Variables

Imported GUI Variables of a Plug-In are transferred (each time) immediately before execution;
that is, immediately before the Plug-In execute method is called.

A situation can be imagined where a Plug-In would need access to a GUI Variable during
Plug-In Initialization; that is, when the construct method is called. This is not supported.

A work-around would be to perform a "lazy" Initialization, where the construct method does
not actually do any Initialization, and the execute method first checks to see if the Plug-In has
been Initialized. In the first call to the execute method this would not be true, and the Plug-In
could be Initialized using a GUI Variable. Each subsequent call to the execute method would
skip the Initialization. An example code fragment is given below:

[...]

/**

* Load test add-on module.

*/

public class TestPlugin implements LoadtestPluginInterface

{
private String vInitialParameter = ""; // input parameter #1
private int vNormalInputParameter = -1; // input parameter #2
private boolean pluginInitialized = false;
private String vOutputParam = ""; // output parameter #1
private LogVector logVector = null; // internal log vector

[...1]

public void construct(Object context)
{
}

[...1
public void execute (Object context)
{

logVector = new LogVector () ;
LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 18/33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

if ('pluginInitialized)

{
// initialize plug-in by using parameter #1
doInitialize(vInitialParameter) ;

pluginInitialized = true;

3.4.3.3 Extracting HTTP Response Data from URL Calls

If it is necessary to extract data from the HTTP Response Header or HTTP Response Content
of a URL Call, the Plug-In Execution Scope URL / after can be specified. In this case, care
must be taken when programming the execute method because the Plug-In will also be called
when a URL Call fails; that is, there may be no data for the Plug-In to process. Consider the
example when a timeout occurs and there is no Response Data, or if instead of a 200 HTTP
Response Code, a 500 "Internal Server Error" is received from the Web Server.

In order to avoid a Plug-In "crash", which would bring down the Load Test program as well, a
check should be made to ensure that a valid Server Response has been received before
trying to extract data from the HTTP Response.

To assist in this process, the LoadtestPluginContext class has a method urlPassed(). This
method returns true if and only if during a Load Test the current URL Call does not return an
error, as defined in the GUI Configuration Menu "HTTP Response Verification".

In this case, "does not return an error" means:
e The correct HTTP Response Code was received by the URL Call
¢ The Response contained the correct MIME type (e.g. TEXT/HTML)

e The verification of the received data content, in terms of data size or the presence of a
specified text fragment, was successful

The following code fragment illustrates the correct way to access the HTTP Response data
content of a URL Call:

public void execute (Object context)
{

LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;
if (pluginContext.urlPassed())
{

HttpTestURL httpTestURL = pluginContext.getHttpTestURL() ;

String content = httpTestURL.getContentString() ;

[...] // Processing of the Response Data

[...1]

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 19/33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

3.4.3.4 Plug-In Execution at the End of a Loop

Note that a Plug-In is not executed at the end of a Loop if an exception occurs during a URL
Call inside the Loop, as this would cause the entire Loop to fail. This means that if an error
occurs, and the Plug-In Execution Scope is loop / after, the Plug-In execute method will not
be executed.

If the Plug-In also has the Initialization Scope loop, the deconstruct method will always be
called. This will occur for this Initialization Scope at the end of each Loop, whether or not an
error occurred in the Loop.

In this case, the Plug-In deconstruct method will always receive a current instance of the
LoadtestPluginContext class. Using the loopPassed() method, it can be determined, from
inside the deconstruct method, if a Loop failed or not. In the case of a failed Loop, access is
be provided to the URL Call which caused the failure by calling method getHttpTestURL().

3.4.3.5 Using a Plug-In in Cluster Jobs
In the case of Cluster Jobs, a Plug-In will execute in parallel in all Exec Agents of the Cluster.

If a special action is required to execute only once for the entire Cluster Job, the Plug-In must
be bound to a single Exec Agent in the Cluster. To do so, the Plug-In can access the required
Exec Agent ID Number by calling the method HttpLoadTest. getClusterMemberLocalld().
This method returns zero-based Exec Agent IDs; that is, the first Cluster Member is Number
0, the second is Number 1, and so on.

As a Cluster can theoretically consist of a single Exec Agent, the Plug-In should be bound to
the first Cluster Member (ID = 0) to ensure it is always executed. In the case of normal Exec
Agent Jobs, which are not executed using a Cluster, the method getClusterMemberLocalld()
returns the value -1.

The following code fragment demonstrates how a single action per Job can be executed from
a single Exec Agent, irregardless of whether the Job is an Exec Agent Job or a Cluster Job:

public void execute (Object context)

{
LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;
HttpLoadTest httplLoadTest = pluginContext.getHttpLoadTest() ;

int clusterMemberLocalId = httpLoadTest.getClusterMemberLocalId() ;
if ((clusterMemberlLocalld == -1) || (clusterMemberLocalld == 0))
{

// action is executed by only one Exec Agent

[...]

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 20/ 33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

3.4.3.6 Integrating Additional (External) Measurement Data

Using a Plug-In, it is possible to collect additional measurement data during a Load Test, and
display these data later in the GUI (Menu "Load Test Result Detail - Statistics and Diagrams").

In this case, it does not matter if the measurement data stems from internal data sources
(such as data extracted from a URL Response in the Load Test program) or from external
data sources. The only condition is that these additional measurement data be available
during the execution of the Load Test program. Measurement data from external systems can
also be included in the Load Test Results ("*.prxres" file), provided the appropriate Plug-In
programming is performed.

The last point in time that additional measurement data can be integrated is just before the
end of the Load Test program; that is, when each virtual user has completed its last Loop.
The relevant Plug-In Initialization Scope is therefore global, and the insertion of the additional
measurement data occurs in the Plug-In deconstruct method.

The collection of additional measurement data can be done at any time during the Load Test,
provided that for each measurement an instance of the class
dfischer.utils.DataCollectionSequence is first created. The caption in the GUI for the
related Measurement Diagram is provided to the constructor of this class. The parameters to
this constructor are as follows:

- sequenceld: an arbitrary, unique number in the data sequence
- diagramTitle: title of the Diagram in the GUI

- diagramSubTitle: subtitle of the Diagram in the GUI

- yAxisLabel: caption of the Y-Axis in the Diagram

- sequenceContext: not used in this case, always set to null

After an instance of DataCollectionSequence has been created, the individual measurement
values of the Measurement can be inserted using repeated calls to the method
addltem(DataCollectionFloatltem floatitem). An instance of the class
DataCollectionFloatltem must be created before each call to additem, and the constructor
for DataCollectionFloatltem has the following two parameters:

- timeStamp: time of the measurement, expressed in milliseconds since 1970. If the
current time is desired, System.currentTimeMillis() can be used.

- floatValue: Measurement value.

Note: Ensure that measurements occurring before the start of the Load Test program are not
included in the GUI Diagram. If data, including timestamps, from external systems are
imported, the Plug-In should first determine the time difference between the local system and
the external system, and use this difference to adjust the external system timestamp.

After all data has been collected, these data must be inserted into the Load Test Result. This
is done by repeatedly calling the method
PerformanceData.addDataCollectionSequence(DataCollectionSequence), once per
Measurement; that is, once per instance of DataCollectionSequence. Access to the current
instance of PerformanceData is provided by the Plug-In Context, which is an instance of the
class LoadtestPluginContext provided as a parameter to the Plug-In construct, execute,
and deconstruct methods.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 21 /33

../../../ProxySniffer/doc/javadoc/dfischer/utils/DataCollectionFloatItem.html
../../../ProxySniffer/doc/javadoc/dfischer/utils/DataCollectionFloatItem.html
../../../ProxySniffer/doc/javadoc/dfischer/utils/DataCollectionFloatItem.html

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

Example 1: The following simple example shows how to collect additional measurement data
from an URL Call and how to add these data to the load test result:

[...1]
import dfischer.utils.DataCollectionSequence;
import dfischer.utils.DataCollectionFloatItem;

/**

* Load test add-on module.

*/
public class AdditionalDataExample implements LoadtestPluginInterface
{

private LogVector logVector = null;

private DataCollectionSequence simpleSequence = new DataCollectionSequence(1,
"Wait Time for Receiving the first Byte of Response", "", "Milliseconds", null);

/**
* Execute plug-in after URL call.
*

* Intrinsic plug-in implementation.
*/
public void execute (Object context)

{
logVector = new LogVector() ;
LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

HttpTestURL httpTestURL = pluginContext.getHttpTestURL() ;
if (pluginContext.urlPassed())
{
DataCollectionFloatItem waitTimeForFirstByteItem = new
DataCollectionFloatItem(System.currentTimeMillis (),
httpTestURL.getResponseHeaderWaitTime ()) ;

simpleSequence.addItem(waitTimeForFirstByteItem) ;

/**
* Finalize plug-in at end of load test.
*/

public void deconstruct (Object context)

{
LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

simpleSequence.addClusterOption (DataCollectionSequence.
CLUSTER _OPTION MERGE_FLOAT ITEMS TO_SUM, "Merged Cluster Data");

pluginContext.getPerformanceData () .addDataCollectionSequence (simpleSequence) ;

} // end of class

The following screenshot shows how the additional measurement data would be displayed in
the GUI. If more than one Measurement is inserted in the Load Test Result, a drop-down list is
provided above the diagram to allow the selection of the desired Measurement. All additional
measurement diagrams are also included in the PDF report.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 22 /33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

¥) PRX: Result Detail - Mozilla Firefox (=13
i: http:ff127.0.0,1:7990/dfischer fwebadmininterface/PopupAnalyseLoadtestDet ails\Weblet Phey=aZb44debS6ce91 4 1F 365 15790de90e0f &action=dat aCollectionSequence
e
$ _ . - . < *
ff
3 Lo Shifter Load Test Result Detail - Statistics and Diagrams o PDF%M ot Cloce

Load Test: Testl1 Start Date: 29 Dec 201016:44:32 User: 5 Test Duration: 4:15 min Annotation; --- |

Advanced Test Parameter Measured Results: per Single User - per Loop Overall Test Results Test Result
Startup Delay per User: 5'000 ms AV Session Time per Loop: 1212 sec/loop Web Transaction Rate: 10.0 URL callsisec 4 prev
Reqguest Timeout per URL: | 60 sec A Response Time per Page: | 0.04 secipage Session Failure Rate: 0.00 %
Statistic Sampling Interval: | 14 sec Metwaork Throughput per User: | 49,1 kBytasisec Total Network Throughput: | 1.77 MBit'sec Total Transmitted: 54 MB
[Test Scenario [Diagram: Response Time per Page [Results per URL Call (Overview) [Results par URL Call (Details)
[+ Diagram: Response Time Percentiles [Diagram: Top Time-Consuming URLs [Diagram: Concurrent Users [Diagram: Session Time
[> Diagram: ¥Weh Transaction Rate [> Diagram: Users Waiting for Response [Diagram: Completed Loops [> Diagram: TCP Socket Connect Time
[Diagram: Metwark Throughput [> Diagram: HTTP Keep-Alive Efficiency [» Diagrarm: 851 Cache Efficiency [> Diagram: Session Failures
[Diagram: Error Types B> Diagram: Mumber of Errars per Page [Diagram: Mumber of Errors per URL ([Diagram: External Measured Data
Wait Time for Receiving the first Byte of Response: -

Mait Time for Receiving the first Bute of Response Save image to disk

milliseconds uzer

50 10

45 N N N N N N N N N 3
=420 ma

40 E]

35 7

30 £

25 5

s |y | Fite ! y Al LY. S S 5 4
— 2.0 aw
@ i< time

0:00:00 0:00:30 0:01:00 0:01:30 0:02:00 0:02:30 0:03:00 0:03:30 0:04:00 0:04:30 0:05:00

Load Test: TestB1 29 Dec 2810 16:44:32 User: &

Dane Fi LS

Hint: in this example, instances of DataCollectionFloatltem are used to store the values. This
means that the X-axis of the diagram is already determined and reflects the point in time when
the values have been measured. It is also recommended that you predetermine how the data
are merged at cluster level. This can be done by using the method DataCollectionSequence.
addClusterOption(<int option>).

As an alternative you can use instances of DataCollectionYZFloatltem which allows you to
control the unit of the Y-axis as well as the unit of an additional Z-axis. Each instance of
DataCollectionYZFloatltem contains three dimensions which are:

X-Dimension: time stamp (determined)

Y-Dimension: value no. 1 (discretionary useable)

Z-Dimension: value no. 2 (discretionary useable)

As a consequence of adding instances of DataCollectionYZFloatltem to a
DataCollectionSequence, the GUI can show for each of such a data collection three different
diagrams in the load test result: XY-diagram, XZ-diagram, and YZ-diagram. However, only the
YZ-diagram shows the correlation between "value no. 1" and "value no. 2".

The DataCollectionSequence contains a special constructor to support
DataCollectionYZFloatltem which allows you to label both axis and also allows you to
predefine if the GUI should show all three diagrams or should show the YZ-diagram only.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 23 /33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

Example 2: The following more complex example demonstrates how, using a local Plug-In
thread, external measurement data can be integrated into a Load Test result. This example
Plug-In has the global Initialization Scope. The local thread will be started in the Plug-In
construct method when the Load Test program is started, and will be stopped in the Plug-In
deconstruct method at the end of the Load Test program. The collection of the measurement
data occurs inside the thread's run() method. Immediately after the local thread is (probably)
stopped, the measurement data is inserted into the Load Test Results. The deconstruct
method will only wait for a maximum of 10 seconds at the end of the thread in order that the
end of the Load Test program not be delayed too long. If the local thread continues to run after
this point, it does not matter as the Load Test program itself will end, outside the Plug-In code,
via a System.exit() call - and this will cause the Java Virtual Machine running the Load Test
Job to exit.

[...]
import dfischer.utils.DataCollectionSequence;
import dfischer.utils.DataCollectionFloatItem;

/**
* Load test add-on module.
*/
public class ExternalMeasuringData extends Thread implements LoadtestPluginInterface

{

private LogVector logVector = null;

private PerformanceData performanceData = null; // load test result
private Thread dataCollectThread = null; // data collecting thread
private DataCollectionSequence dataCollectionSequence = null; // external data

/**
* Initialize plug-in at start of load test.
*/
public void construct(Object context)
{
LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;
performanceData = pluginContext.getPerformanceData() ;

// start data collecting thread
dataCollectThread = new Thread(this);
dataCollectThread.start () ;

/**
* Thread - used to collect external measuring data
*/
public void run()
{
// create data structure for external data and define GUI diagram settings
dataCollectionSequence = new DataCollectionSequence(l, "Database Calls", "",
"Calls per Second", null);

// collect external measuring data in a loop
while (!isInterrupted())
{
// get external data snapshot
float externalValue = 10.0f; // <<< actual value of external data
// [add your own code here to
// accumulate external data]

// add external data snapshot to data collection
DataCollectionFloatItem datalItem =

new DataCollectionFloatItem(System.currentTimeMillis (), externalValue);
dataCollectionSequence.addItem(dataItem) ;

// sleep for one sampling interval. The sampling interval is

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 24 /33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

// arbitrary configurable on the GUI when starting the load test
try

{
sleep (performanceData.getSamplingInterval() * 1000) ;

}

catch (InterruptedException e)

{

interrupt() ;

}

/**

* Execute plug-in at start of load test.
*

* Intrinsic plug-in implementation.

*/
public void execute (Object context) // no action in this method
{
}

/**
* Finalize plug-in at end of load test.
*/
public void deconstruct (Object context)
{
// stop data collecting thread
dataCollectThread.interrupt() ;
try
{
dataCollectThread. join (10000) ;
}
catch (InterruptedException e) {}

// add external measuring data to load test result
performanceData.addDataCollectionSequence (dataCollectionSequence) ;

} // end of class

Note: If the additional measurement data is retrieved solely from a URL Response, or
computed from already existing ZebraTester measurement data, a local thread is not required.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 25/33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

3.4.3.7 Sending E-Mails via SMTP

E-Mails can be sent from within a Plug-In by using the dfischer.utils.SmtpMessage class.
This requires the availability of an SMTP E-Mail Relay Server which accepts the forwarding of
such E-Mails. As most E-Mail systems will not allow the sending of E-Mails from anonymous
or unauthenticated users (or programs), it is possible to provide an E-Mail username and
password.

The below program fragment illustrates how to send an E-Mail in HTML format via an SMTP
E-Mail Relay:

String htmlMessage = "<body><html><1li>first</1li>second</1i>
blue sea</body></html>";

SmtpMessage smtpMessage = new SmtpMessage (smtpHost) ;
smtpMessage.setSmtpAuthentication (authUsername, authPassword) ;
smtpMessage .markHtmlMessage () ;

smtpMessage.setDebug() ;
smtpMessage.send (from, to, subject, htmlMessage) ;

System.out.println("--- waiting for completion ---");
smtpMessage.waitForSendCompletion () ;

// debug message transfer

String[] debugOutput = smtpMessage.getDebugOutput() ;

for (int x = 0; x < debugOutput.length; x++)
System.out.println (debugOutput[x]) ;

3.4.3.8 Handling Time Zones and Date Computations

Date computations in Plug-Ins can be performed, as customarily done in Java, by using the
java.util.GregorianCalendar class. This must be initialized with the Time Zone currently
configured in ZebraTester in order that the computations are correct. Use the class
dfischer.utils.ZoneTime.getGregorianCalendar() to get the current date in the ZebaTester
Time Zone.

Example:

[...1

import java.util.Calendar;

import java.util.GregorianCalendar;
import dfischer.utils.ZoneTime;

[...1
// get current date and time in configured ZebraTester time zone
GregorianCalendar cal = ZoneTime.getGregorianCalendar () ;

// add 3 days to current date
cal.add(Calendar.DAY OF YEAR, 3);

// get future date

int futureDay = cal.get(Calendar.DAY OF MONTH) ; // value range 1..31

int futureMonth = cal.get(Calendar.MONTH) ; // value range 0..11, 0 = January
int futureYear = cal.get(Calendar.YEAR) ;

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 26 / 33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

3.4.3.9 Defining and Releasing Own Types of Errors

Plug-ins, which are bound to one or to all URLs can turn a successful URL call into a "red"
error. In such a case the current loop of the simulated user is aborted and the user continues
to execute the next loop.

Example:

/**

* Execute plug-in after URL call.
*

* Intrinsic plug-in implementation.
*/
public void execute (Object context)

{

logVector = new LogVector() ;
LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

if (firstCall)
{

// definition of plug-in specific error types

pluginContext.getPerformanceData () . setErrorStatusTypeTranslation (HttpTestURL
.STATUS_TYPE PLUGIN_ERROR CODE_1, "No Connection to External Service");

pluginContext.getPerformanceData () . setErrorStatusTypeTranslation (HttpTestURL
.STATUS_TYPE PLUGIN_ERROR CODE_7, "Internal Plug-In Error");

firstCall = false;

// report plug-in specific "red" error and abort current loop of
// simulated user -> continue with next loop of simulated user

pluginContext.markUrlAsFailed (HttpTestURL.STATUS TYPE PLUGIN_ ERROR CODE_ 1,
"Plug-In Error Message Text A");
}

if (...)
{

// report plug-in specific "red" error and abort current loop of
// simulated user -> continue with next loop of simulated user

pluginContext.markUrlAsFailed (HttpTestURL.STATUS TYPE PLUGIN ERROR CODE 7,
"Plug-In Error Message Text B");

}
}

Up to 10 different error types can be defined by a plug-in
(STATUS_TYPE_PLUGIN_ERROR_CODE_0 - STATUS_TYPE_PLUGIN_ERROR_CODE_9)
and each released error can contain an own text description about the error.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 27 /33

ZebraTester V 5.5

Load Test Plug-In Developer Handbook

The plug-in specific errors are shown in the "normal” charts and tables of the load test result

details (together with all other measured errors):

number of errors per error type

10

Time Profile of Error Tupes - All failed URL Calls

]

8

OK - 288 - Wrong HTTP Status Received (48 Errors)
Mo Conmection to External Service (22 Errors)

2 1 [=} o]
: 5 : Content Test Failure - String Mot Found (18 Errars)
t : : 2 = a Bl TR O T Internal Plug-In Errar (8 Errars)
o + time
0:00:00 0:00:10 0:00:20 0:00:30 0:00:40 0:00: 50 0:01:00 0:01:10 0:01:20 0:01:30 0:01:40
Load Test: Test@ 28 May 2811 85:15:58 User: 18

&) PRX: Error Snapshots - Mozilla Firefox

http:f/127.0.0.1:7990jdfischer webadmininterface/FopupAnalysel oadtestErroriweblet they=5264d5a61 6501 0cca7 501 95b40dcatdfselect All=18sortByDate=1&backContext=pP2tle TO 1 MY OZD

=)

-

X URL[39], Error 8 Page #4: Proxy Sniffer, License and Price Information, O... 15 sec 28 hMay 2011 05:16:05 OK- 200 [Wrong HTTP Status Recejved GET hitp:/f192.16.4.5:80 4
& LURL[29], Error 10 Page #4: Prowy Sniffer, License and Price Information, ©.. 15 sec 28 May 2011 05:16:05 OK- 200 /'Wrong HTTP Status Received GET hitp:/f192.16.4.5:80
% URL[46], Error 2 Page #5: Proxy Sniffer - Stress vour Yeb Application wit 158 sec 28 May 2011 05:16:06 Mo Conneclion to External Semice GET hitp:f192 16.4 5:80
@, URL[46], Error 3 Page #5: Proxy Sniffer - Stress your Web Application wit.. 17 sec 28 May 2011 05:16:08 Mo Gonnection to Exernal Servce GET http:/192.16.4.5:80
%, URL[46], Error 4 Page #5: Prowy Sniffer - Stress vour Web Application wit.. 17 sec 28 May 2011 09:16:08 | Internal Plug-In Errar GET hitp:M192.16.4.5:80
@, URL[46], Error 5 Page #5: Proxy Sniffer - Stress your Wb Application wit.. 17 sec 28 May 2011 05:16:08 | No Connection to Exernal Servce GET http:/192.16.4.5:80
% URL[46], Error6 Page #5: Proxy Sniffer - Stress your Web Applicationwit.. 17 sec 20 May 2011 05:16:08 Mo Connection to External Service GET hitpM192.16.4.5:80
@ URL[46], Error 7 Page #5: Proxy Sniffer - Stress your Wb Application wit.. 18 sec 28 May 2011 05:16:08 | Internal Plug-In Errar GET http:1182.16.4.5:80
% URL[46], Error 8 Page #5: Proxy Sniffer - Stress your Web Applicationwit.. 18 sec 28 May 2011 05:16:08 ' Internal Plug-In Errar GET hitpM192.16.4.5:80
% URLI[AT], Error 1 Page #7: Proxy Sniffer, On-Site Training 21 sec 28 May 2011 05:16:12 Content Test Failure - String Mot Found ~ GET hitp: /1192 16.4 5:80
& LURL[G7], Error 2 Page #7: Prowy Sniffer, On-Site Training 23 sec 28 May 2011 05:16:12 Content Test Failure - String Mot Found GET hitp:/M92.16.4.5 SDV
(r\ T o = oo o e = o e o fme oo e = T meon eernccamaeles cem oo v o o o= m mmee oz 0 moc
-~
|Tes‘l: TestO1 Start Date: 28 May 2011 05:15:50 User: 10 Test Duration: 1:23 min File: Test01_28May11_051550_10u.prres g
URL [46], Error 2: No Connection to External Service =+ Help: Exror Explanation + previous next -
Page: Page #5: Proxy Sniffer - Stress your Web Application wit...
Errar Date 28 May 2011 05:16:06 (15 sec after start date)y
Current Thread: | TOOOD0B
LIRL [45] GET hitp://1192.16.4.5:80/ec2.html 4 200 (OK)
URL Exec Step: | all done [&]
Error Log Plug-In Error Message Text A
Display Fesponse in ¥eh Browser
HTTP Request Header -
1 | GET fec2.html HTTP/1.1
2| Accept T
3 | Accept-Encoding: gzip, deflate
4 User-Agent: Mozilla/d .0 (compatible; MSIE 7.0; Windows NT 5.1; NET CLR 1.1.4322; NET CLR 2.0.50727)
5 Accept-Language: en
6| Host: 192.16.4.5
7 Connection: Keep-Alive
HTTP Response Header +
1 |HTTP/1.1 200 OK
2 | Date: Sat, 28 May 2011 02:54:47 GMT
3| Server. Apache -
4 ¥
B A
© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 28 /33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

3.4.3.10 Support of Load Generators which are Running in Encrypted Mode

If a load generator runs in encrypted mode (ExecAgent startup option -encryptJobs or
-encryptJobsOrigin) then all disk-files of the load test jobs are always encrypted. This means
that the data must be decrypted when reading them form a file, and must be encrypted when
writing them to a file. This rule applies also to load test plug-ins.

This sounds complicated, but it's quite easy to support load generators running in encrypted
mode. And you can program your plug-in in such a way that both, normal load generators and
load generators running in encrypted mode are both supported by the same plug-in.

Before reading or writing any data from/to disk you have first to call:

SymmetricEncryptContext encryptContext = HttploadTest.getSymmetricEncryptContext() ;

If this method return null, then the load generator is running in normal mode and you can read
and write the data as usual.

If this method don't return null then the load generator runs in encrypted mode and you have
to construct the output and input streams by using the methods:

InputStream in = dfischer.utils.SymmetricEncrypt.getCipherInputStream(InputStream is,
SymmetricEncryptContext encryptContext) ;

OutputStream out = dfischer.utils.SymmetricEncrypt.getCipherOutputStream (OutputStream
os, SymmetricEncryptContext encryptContext) ;

Programming Example - Writing Data to a File:

import dfischer.utils.SymmetricEncrypt;

BufferedOutputStream bout = null;
try
{
if (getSymmetricEncryptContext() !'= null)
bout = new BufferedOutputStream(SymmetricEncrypt.getCipherOutputStream (
new FileOutputStream(filename), getSymmetricEncryptContext()))
else
bout = new BufferedOutputStream(new FileOutputStream(filename)) ;

bout.write(fileData) ;

}
finally

{
if (bout !'= null)
bout.close() ;

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 29 /33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

3.4.4 Plug-In Programming for High Performance

The execution time of the Plug-In itself does not influence the measured response times;
however, the Plug-In will use CPU resources on the local machine, and this can reduce the
number of virtual users which can be simulated by the Exec Agent (because the CPU wiill
become overloaded earlier). Refer to the document "Guide to the Successful Execution of
Load Tests", Chapter 4, point 4 for more information.

3.4.4.1 Pre-computing Results

In order to reduce the CPU overhead of a Plug-In as much as possible, all repetitive code
(code which returns the same value for repeated calls to the execute method) should be
designed to compute the return value only in the first run, and store the result locally in the
Plug-In for subsequent runs. Later calls to this code can simply return the locally-stored value
and avoid re-computing the result.

In order to do this kind of optimization without a large effort, the java.util.HashMap class is
ideal. The missing internal synchronization in this class is not a hindrance, as the execution of
the Plug-In will be synchronized by ZebraTester itself..

Example:
For each URL Call, the Web Page (text of the Page Break) must also be determined.

The non-optimized code looks like this:

public void execute (Object context)

{
LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;

PerformanceData performanceData = pluginContext.getPerformanceData() ;
int threadStep = pluginContext.getThreadStep() ;

String pageName = performanceData.getPageInfoTextOfUrl (threadStep) ;

[...1

In the above code, the text of the Page Break is computed each time using the current URL
index (threadStep). This indicates that in ZebraTester only the writing and collection of
measurement data is already CPU-optimized, not the reading of measurement results.

To optimize the code, the Page Break is retrieved only once, and stored in a HashMap. The
optimized code looks like this:

import java.util.HashMap;

public class TestPlugin implements LoadtestPluginInterface

{
HashMap pageInfoMap = new HashMap() ;

[...]

public void execute (Object context)

{
LoadtestPluginContext pluginContext = (LoadtestPluginContext) context;
PerformanceData performanceData = pluginContext.getPerformanceData() ;
int threadStep = pluginContext.getThreadStep() ;

String pageName;
Object o = pageInfoMap.get(new Integer (threadStep))
If (o '= null)
pageName = (String) o; // Use the stored value
else
{
// Compute the result the first time and store it for later use
pageName = performanceData.getPageInfoTextOfUrl (threadStep) ;
© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 30/ 33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

pageInfoMap.put (new Integer (threadStep), pageName) ;

This is only an example. This type of optimization is possible in many programming cases
which involve repetitively-executed code, and where the result can be pre-determined. Itis
worth it to consider which values can be computed beforehand, and which cannot.

3.4.4.2 Disk and Network 1/0O Operations

I/O operations do not usually require much CPU; however, internal operating system
processes involve asynchronous Events which - depending on the volume of I/O operations -
can make the entire operating system slower, and cause almost all operations to require a
longer time to complete individual system routines.

In order to optimize 1/O operations in Plug-Ins, the execute method should avoid the frequent
opening and closing of 1/O connections. The connection should be opened only in the first call
to execute - or alternatively in the construct method. After the connection is opened, all I/O
operations should use this open connection. Finally, the connection should be closed in the
deconstruct method.

For disk 1/0 operations which create a file during a Load Test, it can be useful to store all file
data during the Load Test in memory (e.g. using java.util.ArrayList or
java.io.PrintWriter(java.io.ByteArrayOutputStream)), and then write the file out to disk in
the deconstruct method. Note that this would only be advisable if the data is not too large. A
rule of thumb is that a Plug-In should not store more than approximately 50 MB in its local
memory.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 31/33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

3.5 Example Plug-Ins

Examples (*.java source code) of ready-to-use Plug-Ins can be found in the Project
Navigator Directory "MyTests \ Plugins®.

Note: When ZebraTester is re-installed, these ready-to-use Plug-Ins are overwritten. If the
Plug-In code has been modified, save the modified "*.java" files under different names in the
"MyTests / Plugins“directory - and do not forget to make appropriate adjustments to the
Plug-In class names in the source code.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 32/33

ZebraTester V 5.5 Load Test Plug-In Developer Handbook

4 Manufacturer

Ingenieurbiro David Fischer AG, Switzerland | A company of the Apica Group

Product Web Site: http://www.zebratester.com

Apica AB: http://www.apicasystem.com

All Rights Reserved.

© 2009, 2010, 2011, 2012, 2015, 2016 Ingenieurbiiro David Fischer AG All Rights Reserved Page 33/33

http://www.zebratester.com/
http://www.apicasystem.com/

	1 Overview
	1.1 Document Contents
	1.2 Introduction

	2 Properties, Runtime Behavior and Configuration
	2.1 Runtime Environment
	2.2 Plug-In Lifecycle during Test Execution
	2.3 Plug-in Configuration using the GUI
	2.4 Plug-In Lifecycle after Configuration

	3 Developing your own Plug-In
	3.1 Java API Documentation
	3.2 Using Multiple Classes and External Class Libraries
	3.3 Creating the Program Skeleton using the Wizard
	3.4 Programming Plug-In Functionality
	3.4.1 The "LoadtestPluginContext" Class
	3.4.2 The "HttpLoadTest" Class
	3.4.3 Additional Details about the Runtime Environment
	3.4.3.1 Debug Output during Plug-In Execution
	3.4.3.2 Initializing a Plug-In using Imported GUI Variables
	3.4.3.3 Extracting HTTP Response Data from URL Calls
	3.4.3.4 Plug-In Execution at the End of a Loop
	3.4.3.5 Using a Plug-In in Cluster Jobs
	3.4.3.6 Integrating Additional (External) Measurement Data
	3.4.3.7 Sending E-Mails via SMTP
	3.4.3.8 Handling Time Zones and Date Computations
	3.4.3.9 Defining and Releasing Own Types of Errors
	3.4.3.10 Support of Load Generators which are Running in Encrypted Mode

	3.4.4 Plug-In Programming for High Performance
	3.4.4.1 Pre-computing Results
	3.4.4.2 Disk and Network I/O Operations

	3.5 Example Plug-Ins

	4 Manufacturer

