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ABSTRACT. Wa desctibe NTRU, s new public key cryptoayatem. NTRL featiires
short, easily created keve, high speed, and low memory raquiremesmts. NTRU encod-
ing and decoding uses a mixing system suggested by polyncmial algebra combined
with a clustering principle based on elementary probability theory. The security of
the NTRI cryptosystermn comes from the interaction of the polynomial mixing system
with the independence of reduction module two ralatively prims integers ¢ and g.
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0. INTRODUCTION

There has been considerable interest in the creation of efficient and computa-
tionally inexpensive public key cryptosystems since Diffie and Hellman {3] explained
how auch systesns could be created using one-way functions. Currently, the most
widely used public key system is R3A, which was created by Rivest, Shamir and
Adelman in 1978 {7].

In this paper we describe a new public key cryptosystem, which we call the
NTRU system. The encoding procedure uses a mixing system based on polynomial
algebra and reduction modulo two nurabers p and ¢, while the decoding procedure
uses an unmixing system whose validity depends on elementary probability theory.
The security of the NTRU public key cryptosystem comes from the interaction of
the polynoeruial mixing aystem with the independence of reduction modulo p and g.

Encoding snd decoding with NTRU are extremely fast, and key creation is fast
and easy. See section 1.5 for specifics, but we note here that NTRU takes O{N?)
operations to encode or decods a messape block of length ¥, making it considerably
faster than the O{V?) operations required by RSA.

Acknowledgements. We would like to thank Hendrik Lenstra Jr., Bjorn Poonen,
and Benne de Weger for their help with lattice reduction methods, Andrew Odlyzko
* for pointing out the meet-in-the-middle attack and other helpful suggestions, Mike
. Rosen for hig help with pnlynumml inverses, and Dan Lieman for his assistance in
all phases of this project.

I. DESCRIPTION OF THE NTRU ALGORITHM

In this section we give a description of the NTRU public key cryptosystem, a high
apeed, short key, low memory, public key cryptosystem based on polynomial mul-
tiplication and residues. NTRU admits many varianis which take into account the
relative computing power of the encoder and decoder and the relative importance
of speed versus the probability that an occasional message will be undecipherable.
This section gives one version of NTRU; for a discwssion of some possible vanatuam
and generalizations, see section 4.

We alzo mention that we will constantly refer to polynomial multiplications and
divisions with remainder, but most of these are of a very special sort which allow
for extremely fast computations. (Sea section T for a sample implementation.)

1.1. Notation and parameters., An NTRI cryptosystem depends on three
integer parameters (N,p,q) and a set of polynomials £ of degree IV with integer
coeflicients. For example, £ might equal

. Nils o . exactly d of the 5’ equal one
- k=" * and the remaining 'z equal zero [’

in which case we will speak of {N,p, q,d)-binary NTRU. As another example, the
coefficients of the polynomials in £ might be taken from a larger set, such as

N exactly d of the 's equal to each of =, —r +1,... ,=2,-1
£= 2:‘45 . axactly d of the £;’s equal to each of 2,3,... ,7 _
B powd S exactly d + 1 of the £;°s equal 1,

the remaining N — vd — 1 of the £x’s equal 0
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We will call this choice of £ an (N, p, g, d, r)-symmetric NTRU. (OF course, it's not
quite symmetric, due to the extra 1; we'll see in section 1.6 why the extra 1 is
needed.} See section 1.5 for some sample parameter choices and associated operat-
ing specifications, and section 5 for a general discussion of paraaneter selection.

A basic NTRU operation is multiplication of polynomials modulo z¥ - 1. We
will generally identify a polynomial with the vector of its coefficients,

N
F= ZFiIN-‘ = [Fl:aFE:'“ tFN]‘
i=1

We write @ to denote multiplication in the quotient ring Z[z]/{z™ —1). This star
mnultiplication i given explicitly by the simple formula

_ k=1 N
FeG=H with H; =EF36’E_1 +ZF}GN+I:—1.
=i i=h

‘We mention that a @-product in which one of the polynomials is & binary polyno-
mial {}.e., polynomials whose coefficients are all 0's and 1’8} can be done without
multiplications. (See the psendo-code implementation of NTRU in section 7.)

1.2 Public and private keys. The parameters (N, ¢,p) and the set £ are public
knowledge. An NTRU public key/private key pair consists of two polynomials of
the following form:

Private key: f = [fl,fg,... ,fﬂ] with fe€ L.

Public key:  h = [h1,h2,... ,hy] with 0 < h; < g

The private key may be chosen (almost) randomly from the #.£ possibilities. We

will explain below {section 1.6) how to use the private key f to create the public
key h. :
1.3 Encoding a2 message. Suppose that Cathy (the encoder) wants to send a
message to Dan (the decoder) wsing Dan’s public key i and parameters (N, gq,p)
and set £. Cathy first breaks her message into message blocks of the form

m = [my,ma,... ,mxl with 0 < my < p.

In order to encode a message block, Cathy chooses a random polynomial fraom £
(which we call the encoding fuzz)

¢ = b1, P2:... , PN € L.

Cathy then computes )
e=¢ddh+m (medgq). (1)

This is the encoded message which Cathy transmits to Dan.
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1.4 Decoding a message. Suppose that Dan has received the message e from
Cathy and wanta to decode it using his private key f. To do this efficiently, Dan
shonld have precomputed two numbers s and ¢ and a certain polynomial

ot = (s (7)), satisfying 0 < (£77), <p.

We will defer giving the precise definitions of a, ¢ and £, until section 1.6 below.
In order to decode e, Dan first computes

a=fwe {modg).
Next he creates a shifted polynomial according to the rule

0 ifag <3,

b= [by,bz,...,d ith = - .
[b1, bz v  with b =ap+1 {q oy > a.

Finally, Dan recovera the original message by computing
b@ f;! (mod p).

(N.B. The congruence modulus has “mysteriously” switched from q to p. This
interaction of p and ¢, combined with the special form of the private key f, is what
makes NTRU secure.)

Remark. For appropriate parameter values, there is an extremely high probability
that the decoding procedure will recover the original message. For example, it is not
diffienlt to create NTRU cryptosystems with a decoding failure rate of 1 message
in 10'? (or even better), see section 3. However, some parameter choices may cause
occagional decoding failure, s0 one should probably include a few check bits i each
measage block. The usual cause of decoding failure will be that the precomputed s
value is not correct, in which case the message can usually be recovered by using
successively 8—1, 341, s—2, s+2, ... In place of 5. If no value of # works, then we
say that we have gap failure and the message cannot be decoded. For well-chosen
parameter values, this will occur so rarely that it can be ignored in practice.

1.5 Encoding and decoding speed and memory requirements. Computa-
tion of an arbitrary product F & G requires N* multiplications and N? additions.
If we also want to reduce the coefficients modulo p or ¢, this requires an addi-
tional N divisions with remainder. Thus it takes (}(N?) operations to encode a
message block m of length N log, p bits, the encoded message has length N log, g
bits, and it takes O(N?) operations to decode the message block. In practice, en-
coding also requires the generation of some random bits (i.e., to citoose a random ¢
from L), but this i compensated for by the fact that encoding only requires one
&-multiplication, while decoding requires two. In any case, both encoding and
decoding take O{N?) operations for messages of length O(N)-bits. This may be
compared with RSA, which requires O{N®) operations to encode/decode (although
the use of small exponents can reduce RSA encoding to around Q(N?)). Finally we
note that the number of available keys is (approximately} #.L, which gives a secu-
rity level of (#£)/2 due to the existence of a standard meet-in-the-middle attack
{see section 6.2).
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Remark. In principle, the private key consists merely of the polynomial f, since
one can always use f to compute f 1 However, in practice Dan would not want
ko recompute f;l each time he receives a message, so for most applications the
storage required for the private key is the length of f and f;! together.

Tables 1 and 2 illustrate key size, securily, messapge expansion, and encod-
ing/decoding speed for various parameter choices. The first table deals with bi-
nary {N,p,q,d)-NTRU, which means that £ contains all polynomials whose coef-
ficients congist of d ones and &V — d zercs. The second teble describes symmetric
(N,p,q,d, r)}-NTRU, where the polynomials in £ have exactly d coefficients equal
to each value between —r and r other than 0 and 1, plus 4 + 1 coefficients equal
to 1 and the remaining N — 24 coeflicients equal to 0. In all ¢ases we have chosen
parameters so the the probability of deceding failure is very small. See section 3 for
a rigorous statisticel analysis of one choice of parameters. We also mention that the
“operations” for binary NTRU are mostly additions, while the symmetric NTRU
operations are multiplications of the form u« - v with u« =~ p and v == g; so although
symmetric NTRU will usually be faster than birary NTRU, the speed difference
may not be quite as much aa the tables seem to indicate. In any case, NTRU should
be between one and two orders of magnitude faster than RSA at similar security
levels.

1.8. Creation of encoding and decoding keys. In order to create his public
and private keys, Dan chooses two random polynomials

.f*—"[flsfh”-:f”] and E:[glggﬂf---:QN]

from the set £. For example, if he is using binary (N, p,q,d) NTRU, then f and g
would be randomly chosen polynomials of degree A — 1 whose coefficients consist of
d ones and N —d geros. The polynomial f is the private decoding key and should be
kept secret. The polynomial ¢ will be used to create the public key, but after that
it will not be needed again and may be discarded. The private key f is required to
have two further properties:

£ has an inverse modulo the ideal {g, o™ — 1).
F has an inverse modulo the ideal (p, =™ — 1.

(Aside. The parameters must be chosen to ensure that ged(f(1},pg)} = 1, since
otherwise f({x)} will be divisible by £ — 1 modulo some prime divisor of pg. This
is why there's the “extra” 1 coefficient in symmetric NTRU, since without it we
would have f{1) = 0.) For our suggested parameter values {Tables 1 and 2),
virtually every f will have these properties. (See section 5.} We will denote the
two inverses of f by f; and f;! respectively. In other words,

It =honws,... ,wn] with0<w;<gand F®f7'=1 (modg). (2)
f;1.=[ﬂ1,ﬂg,...,ﬂ;¢] with 0 < v < p and f@f;lzl(mndp). (3)

There are fast algorithms for computing f7! and £, see section 7. Further, it
and f,! need only be computed once for each code. The polynomial f? will be
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N 107 167 167
p 5 7 15
q 256 512 1024
d 31 71 71
— N
security ( d) 45 280 230
public key {bits) NTlog; q] 856 1503 1670
private key (bita) NTlog, 2p) 428 668 835
expansion logg/logp 3.45 3.21 2.56
message block {bits) Nlog,p 248 469 652
encoding {per 512 bits):
random bits 2 B12(d/N)log, N | =431 | =573 | ~4ll
operations ~t 1024N/logap | =4TK | =61K | ~ 44K
decoding {per 512 bits):
operations = 2048N/ logap | = 94K | a3 122K | =~ 38K
Table 1. Binary (N, p,q,d) NTRU
N 107 83 a3
o 7 5 13
q 512 512 1024
d 31 1% 11
T 1 2 2
security C(N, d,r)t?! 280 480 80
public key {bits) " NTlog, q] 963 747 830
private key (bita) N[log, 2rp] 428 415 498
expansion log q/logp . 3.21 3.88 2.70
message block (bits) ) Nlog,p 300 193 307
encoding (per 512 bita):
random bits s 1024{dr/N)log, N | =712 | ~ 745 | == 467
operations 3 1024N/ log, p 39K | 37K | &~ 23K
decoding (per 512 bits):
gperations = 2048N/ log, p S T8K | = T3K | = 46K

T QN d,r =N (N —2dr—100-dF2 =1 (d 4 1))

Table 2. Symmetric (NV,p,q,4,7r) NTRU
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used to create the encoding key, but after that it may be discarded. The polyno-
mial ;1 is used in the decoding process. It should be precomputed and saved.

In order to create his public key, Dan multiplies f @ g and uses the product to
compute a parity polynomial

= [r,72,..., 78]  with 7#+f®9g=0 (modp) and O0<m<p (4)

In other words, the 7x's are chosen so that every coefficient of w + f @® g is divisible
by p. Then Dan’s public encoding key h iz the polynomial

h:[hl:hﬂ:'-':hﬁlz’r@f;l‘t“g (mﬂd ‘:I')* (5}

Notice that 0 << ki < g, so the public key consizts of N numbers in the range 0 to
g—1.

- Finally, Dan needs to precompute the two shift values s and £. These depend
on the set £, or more precisely, on the average value of the coecfficients of the
polynomials in £. For binary (N, p,¢,d) NTRU, Dan’s s and ¢ are

sslg+d{p—l}+§] {med gq), with0<s<q.

tqud(pﬂl?q+d3fN.| (mod p), with) <f<p.

For symmetric (N, p, g, d,r} NTRU, his s and ¢ are simply

8= E+ -1 and t=10.
lz P ]

2 WHY NTRU works

In this section we explain why the decoding process refrieves the original mes-
sage. We suppose that the plaintext message m has been encoded using the encod-
ing key h, yielding the encoded message e. Thus

es¢®h+m {mod g).

To decode, we compute e ® f {mod q).
Recall that h was chosen to satisfy

ha@f;1+g (mod g).

Hence

e@f=(P®h+m)® f (mod ¢) from {1)
=@ (x®f;t+9) +tm)®f {mod g) from (5)
=¢@r@f'Df+9®f)+me [ (mod g}
=¢®{(r+9@f)+m®f (mod ¢) from {2).
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This computation has been done modulo g, which means that the coefficients are
reduced to lie in the range 0 to ¢ — 1. In other words, the message e and decoding
key f allow us to determine coefficients ay, satisfying

e® f=[o,0z2,...,6y1 (mod g} with 0 < ey < g.
Further, we know from (4) that all of the coefficients of

T+g®f

are divisible by p. Unfortunately, in the sbove caleulation we have reduced mod-
wlo g, which would seem to destroy all mod p information.
Suppose that we write

PO+ Dg)+m® f=[A1,A3,...,Ax]

N.B. We are not reducing the coefficients modulo g, and we do not yet know the
value of the Ap's. However, we do know the following two facts:

(i) Az =ax (mod g¢), where 0 < a; < ¢ and the ap’s are known.

(ii) With high probability, the interval from the smallest A, to the largest Ay is
considerably smaller than g, and the Ag's tend to cluster around the middle
of this interval,

(See section 3 for a justification of (ii).) We now explain how the decoding process
enables us to compute the value of the Ay’s modulo p. For concreteness, wa will
treab the case of binary (N, p, ¢, d} NTRU. We leave it to the reader to make the
necessary minor changes for symmetric (N, p, ¢, 4, r) NTRU or other varistions.

We begin by computing the expected magnitude of the 4z’s. The polynomials f
and g each have d ones as coefficients, so an average coefficient of f ® g has size
d*/N. (Intuitively, f ® g says to choose d “random™ coefficients of g and add them
up, and a random coefficient of g has a d/N chance of being a one.) Similarly, an
average cosfficient of ¢ @ f ® g has size d%/N, an average coefficient of ¢ ® 7 has
size d(p— 1)/2, and an average coeflicient of f @ m has size d(p — 1)/2. These Jast
two values follow from the fact that on average, the coefficients of o and m will
consist of an equal number of 0%, 1's, ..., (p— 1)'s. Adding these values topether,
we see that

Average coefficient of ¢ @ (v + f ® 9} + m & f has size d(p — 1)+%.

(For symmetric NTRU, this value isp — 1 4 1/N.)

Consider now the interval from the smallest A; to the Iargest Ay. We know that
the center of this interval will be approximately d(p — 1) + &°/N, so if we let

Q= ld(p— 1}:?+ ﬁfﬁ] ’ ®)

then ¢¢) will be the multiple of g lying in (or closest to} the interval. {For symmetric
NTRU, ¢ == 0, since we would always take p < ¢.) We will suppose that ¢ actually
lies amongst the Ay'’s. {This is the hardest case o analyze; we will leave the other
cases to the reader.) Chocose R;, Rz > 0 5o that all of the Ag’s lie in the interval
from g€} — R to gQ@ + Ry, as illustrated in Figure 1.
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o0t S

0 B 7-R 9 - ek 0 92+Ry

Figure 2

We observe that the center of this interval will generally be very close to the
average magnitude of the Ap’s. In other words,

(QQ+RE)+(QQ“R)_R2—R1 o 42
5 S =2 Qe dp - )+ (7)

Notice that the ax's, which we know, are obtained by shifting the Ax’s modulo g
into the interval from 0 to ¢— 1. Referring to Figure 2, we see that some of the 4)’s
are shifted by —gQ into the interval from 0 to Rz, and the othera are shifted by
—gl} + ¢ into the interval from ¢ — R; to ¢ — 1. More precisely,

{400 Hhza
*T 1l A—aQ+g if A < 90

Thus knowing the ag’s does not directly allow us to determine the valve of the Ay's
mbdilo p.

However, this reduction process leaves a gap in the ap’s running from R, to
¢ — R:. The midpoint of this gap is (g — Ry + Rp}/2, so vsing (7), we find that the
midpoint of the gap Is approximately

q d?
3+~ D+ 5% -9

If we set

szl-—g-—!—d[p—l}—l——i,—a] (mod g} with0<s<g,
then there is a very high probability that s will lie in the gap. A nice feature of
NTRU decoding is that it works as long as s lies somewhere in the gap; it doesn’t
make any difference whether it lies in the middle or near the edge.
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be's Aps
W= — - - - - - - — b
t+s—q =R ! IRy, 1 +s a0-R, g@ @Q+R,
Figure 3

The number s lies between the lefthand clump of ax’s and the xighthand clump
of ay’s, 30 if we choose the bi's a3 described in section 1.4, we find that

5 _{ak+t=ﬂk—qﬂ+t if ag < 3,
£ ar+t—g=Ay,—qQ+¢t ifag>as

Thus the by’s are related to the Ax’s by the rule
by =Ap—qgQQ +1 foral 0 < k< N, (8)

where ¢ has heen chosen to satisfy £ = ¢@ (mod p). (For aymmetric NTRU, we
take £ = 0.} See Figure 3.

There are two fundamental observations to make here. First, the formula (8)
is an exact equality of integers, and second, the quantities ¢Q and ¢ are fixed,
independent of k. Now the by’s are known quantities, so we can take the formula
by = Ax — qQ + t and reduce it modulo p to compute

b=[bt,ba,... ,bn]

=[4y —-qQ@ 4+, A2 — gQ +1,... , Ay — gQ + 1t} (mod p)
= [Ay, Az,... , Ay]  sincet = g{) (mod p),
=¢@Dir+f@9)+mdf (mod p).

Note that the coefficients are now being reduced modulo p, not modulo . We know
from {4) that
*+g®Ff=0 {(medp),

s0 starting from the encoded message e and the private key f, we have recovered
the value of

b=m®f (modp).
Finally, we multiply by f,! and uwse the fact (3) that £, ® f = 1 (mod p) to
retrieve the message

b f =mefefyi=m (modp).

In summary, we have shown in this section that the NTRU decoding procedure
described in section 1.3 will recover the encoded message, subject to the probabilis-
tic assumption that s liea in a gap. If s does not lie in the gap, then we will still
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be able to recover the message using s+ 6 in place of a for some (small) value of §,
since one of these values will lie in the gap as long as the gap exists, So the only
gituation in which the message is unrecoverable is when the Az coefficients span
an interval whose length is greater than ¢ — 1. For appropriate parameter choices,
such decoding failure will be an extremely rare occurence. We will give a statistical
ahalysis in the next section.

3. STATISTICAL ANALYSIS

In this section we will analyze the probability that NTRU will fail to decode
an encoded message. To llustrate our theoretical discussion, we will compute the
probability of decoding failure for binary (N, p, ¢,d) NTRU with

N=167, p=15, g¢g=1024, d=T1L {9)

We begin with some notation. For any £ > 2, we write B; for the space of
polynomials of degree N — 1 whose coefficients are between 0 and £ -1,

N—1
Bgz{ZE;mk : ﬂﬂﬂ;{f.}.
k=D

For any I € By, we let
|F| = F(1} = (sum of the coefficients of I},

and we will let
Bod) = {F & By : |F|] =4}

Our first step is to analyze the distribution of the coefficents of a product fi ® f2 of
binary polynomials. Let fi € Ba(d) and fz € Bz(da). If we write f1 = [ay,--. ,a5]
and f3 = [b,... ,by), then the k* coefficient of /1 ® f2 is & sum of N terms of the
form a;b;. We know that d) of thie coefficients of f1 are ones, so we can view this sum
as picking d, coefficients of f2 and adding them up. Notice, however, that we are
choosing the d; coefficients of f2 without replacement, 30 we get a hypergeometric
distribution {see, e.g., [4, Il §6]). Hence if we define a random variable

X=Xaapt Bald)xBaldg) — Z,
{f1, f2) — kb poefficient of f1; @ fo

then the distribution function of X wilt be (approximately)

Prob(X =u) = (‘:1__‘:? (‘::)/ (g)

(Yes, this is symmetric in dy and dj.) We say approximately because the N coef-
ficients of fi ® f2 axe not independent, they satisfy ohe relation, namely their sum
is d;dy. We expect that this smail amount of correlation will cnly help us, and
experiment seems to bear this out, In any case, the effect is negligible.
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Mext we consider the distribution of the coefficients of

®+ 1@ fa,

where m = 7y, £, o € By is chosen s0 that all of the coefficienta of = + f1 @ J7 ¢
divisible by ». We define a new random variable

X=Xy ookt Bald) xBalds) — Z.
(fl:fi]' r— k" coefficient of Ty, fap T h®fa

-Clearly we have

0 if p§ u,

Prob(X’ = u) =
X' =u) {Pmb{u—p-::Xﬂu} if pla.

Thus our model for the coeflicients of w + f; ® f» says that if plu, then

Prob{X' = u) = GD B :g: (d:*:‘c_f: k) (ud-z k)'

The following tables give the expected values for two parameter choices, inch
ing (9), where the last column gives the likely number of coefficients having ¢
value .

u | P(X'=w) | NaPX == u) ] u [ P{X =) [ N+P{X =u) |
0 0.000% 0.00 15 0.000% 0.00
5 0.048% 5.10 30 0.540% 90.19
10 0.716% 76.66 45 0.460% '76.80
15 0.234% 95.00 60 6.000% 0.00
30 0.001% 0.15
25 0.000% 0.00 (¥, p,d) = (167,15, 71)

(M, p,d) = (107,5,31)

Notice how the coefficients of » + f & g tend to be quite tightly clustered. On ¢
other hand, there is encigh variation that there is virtually no chance of finding ¢
value of ® + f @ g by trial-and-error. For example, even if one kmows that N =1
and that n + f @ g has 90 coeflicients equal to 30 and 77 coefficients equal to :
there are still (37 ) =2 2'%* possibilities.

Qur goal is to analyze the likelihood that a random emcoded message will
decodahle, preferably using the precomputed value s and ¢. This means that -
should fix our keys f,g € Bafd), Iet  be the parity polymomial, and study ¢
distribution of the coefhicients of the multiple &-product

oB(r+i@g)+fEm

for varying ¢ € Bz(d} and m € B,.
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From now on we will assume that f, g, and d have been fixed. Consider the

random variable
Y=Ysoar: Bad) — Z,
¢ +—— k' coefficient of ¢ ® (7 + f® g)

We can view a coefficient of the product ¢ @ (7w + f @ g) a3 a sum of d randomly
chosen coefficients from x + f @ g. Aa nsual, the 4 coefficients are chosen without
replacement.

Since f and g are fixed, v + f ® ¢ has a fixed distribution of coefficients. Tet

N = Number of coefficients of # + f @ g equal to &.

These aatisfy
Ni=0ifpfk and D> Ne=N
k

We will let rp be the largest subscript with N, > 0.

The random. variable ¥ chooses d coefficients of m + f & g without replacement
and adds them up. Suppose that Y chooses ny of the &k coefficients. We need
Y. np = d, since Y is supposed to choose d coeflicients, and for this choice, the
value of Y is 3 kny. Purther, there are [ (X*) ways for Y to make its choices. So
we have {the classical) formula for a hypergeometric distribution [4, I §2] (note ¥
only takes on values divisible by p)

morea=()' ()

{no,ng

DL npp < Nyp
ng+Rpdrtipep=d
prptapngg - drpng,=u
(10)

Although this formatla looks somewhat forbidding, it can be caleulated exactly for
reasonably tight distributions for Ng,... , Npp-
For example, consider the parameter values (9). A typical coefficient distribution
for ¥ + f @ g is [MNag, Nas] = [90, 77], 50 the sum (10) reduces to a single term,
0 if 154 u,

Prob(Y = u) = { 90 77 167\ |
(213 - uﬁﬁ) (uﬁs - 142) / ( 7 ) if 15u.
We would like all of the coefficients of ¢ ® (v + f ® g) to lie within an interval

whose width is considerably shorter than g; more precisely, we want {o find out
how large to take ¢ s0 as to ensure that this happens. Since there are N = 167
coefficients, it is reasonable to expect that all of the coefficients will lie between cr
and § with probability Prob{a <Y < 8)1%7. The following kst gives some typical
values centered around the mean value of B(Y) = d(p — 1)/2 + d* /N = 2640.18:
Prob{2490 < ¥ <2789)17 = 70.2705633719050%  (width 300)
Prob(2440 < ¥ <2830)1%7 = 50.1161035564493% (width 400}
Prob(2390 < ¥ <2889)157 = 99.9901998757667% (width 500)
Prob(2340 < Y <2939 187 — 99,9999951350643% (width 600}
Prob(2200 < Y <2089)'%7 = 90.9999995963417% (width 700)
Prob(2240 < ¥ <3039)'%7 = 99.9900999090993%  (width 800)
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This table shows that for ¢ == 512 we are likely to see some decoding failere, but
Jooks like g = 1024 will work well.

Next we need to consider the distribution of the coefficients of f @ m, so 3
define & new random variable

Y'=Y{,: B — Z,
f o kP coefficient of f@m

Although ¥” can be viewed as choosing and summing d coefficients of m witho
replacement, the fact that m ranges over all polynomials in B, means that
coefficients are completely independent. Hence the replacement issue is moot. Ea
coefficient of m has a 1/p chance of assuming each of the values 0,1,... ,p—1,:
we can explicitly compute the generating function for ¥ as follows:

, 1.1 1 1, 4\?
D Prob(Y =)= { = “T+ -T2 4. 4 —TP~
P P P P

i(l—-Tﬂ 4
HA1-T
min{d,u/p}

-2 X ()6

Using this formula, it’s easy to find the probability that the coefficients of f@m |
within a given interval, For example, taking our suggested parameter values {9
we find (remember we raise to the 167" power to get the probability that all of t]
coefficients of f ® m lie within the specified interval):

Prob(397 < Y” <506)%7 = 37.500083646810%  (width 200)
Prob(347 < ¥* <646)1%7 = 00.476631477151%  (width 300)
Prob(297 < Y’ <696)'%" == 99,999660006207%  (width 400)
Prob(247 < Y’ <746)'97 = 90.999090981242%  (width 500)
Prob(197 < Y* <796)'%7 = 99.999999999999%  (width 600)

We are finally ready to consider the polynomial ¢ @ (x + f @ g) + f @ m who

gap determines the decipherability of the NTRU encoded message m. We let Z |
the randorn variable describing the coefficients of ¢ @ (v + f @ g) + fF B m,

Z = Zf‘g,d:_,, H Bg(d} X Bp — Z,
(¢ym) +— & oefficent of p@(mn+f@)+f@m

There should be Little (if any) correlation between the coefficients of f @ m and il
coefficients of ¢ @ (7 + f & g), so we can write

i

!

Z=Y+Y
and treat ¥ and V' ag independent variables. Then
Prob{Z =u}= »_ Prob(Y = u;) Prob{Y’ = us).

ity Fug=e
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Combining this with the formulas for Prob(Y = u) and Prob(Y’ = u) given ¢
this gives a method for coruputing the distribution function of Z.

Now we want to delermine if the precornputed gap value s correctly decod
measage. This will be true if and only if all of the coefficients of $®(7-+ f@q)+
Yie between 3 + (Q — 1)g and s + Qg, where @ is defined by (6). Assuming
the coefficients are independent (if anything, they will be slightly correlated, -
will help), the probability that all N coefficients lie in the desired range is

Prob(s decodes €) = Prob(s + (Q — 1)g < Z < s + Qg)".

Combining this with the formulas given above allows one to compute the probs
of decoding failure for any particular choice of f and g and choice of coefl
distribution for m.

For our suggested parameters (9}, we have s =577 and Q = 3, so

Prob{s decodes €) = Prob(2625 < Z « 3649)17,
Rather than computing this quantity exactly, we will merely observe that

Prob(2625 < Z < 3649) >
1- f: Prob([Y — 2640] > 50n) - Prob{|¥* — 407} > 1000 — 10(
The sum is easﬂyn;:nput}ed using the values in the earlier tables, and one
thet Prob(2625 < Z < 3549)‘“_ >1--1071,

This showsa that for the sample parameter values (9}, the decoding process w
successful in virtually all cases.

Remark. The expected range of the coefficients of ¢ B (7 + f @ g) + f ®m de
only on the three parameters (N, d, p), and the message will be snccessfuily de
provided that this range is smaller than the parameter 4. This means that on
choose (N, d, p) as desired for puwrposes of security, and then choose g large er
to ensure that virtually all messages will be decodable. Of course, as ¢ inern
there is some increase in computation (since we need to perform some div
by ¢ with remainder), and the message expansion will increase; but the expans
proportional to log(g), so it is not greatly affected by small increases in g. How
we should mention that if one chooses g ridiculousty large, there exists a possi
that a lattice reduction attack might be successful, see section 6.4.

Remark. M the precomputed value of s should fail to decode the message,
virtually certain that a nearby value will work. The most likely cause of dec
failure is that either the message check sum fm| or the parity polynomial checl
|#] is far from the expected values of N(p—1)}/2, in which case the precompu
may fail to lie in the gap. In theory, for binary (N, p,q, d) NTRU, the best -
to use for » and ¢ are
5= |.%+d(|1r|+|Nm|+d"’)'l {mod g), with ) < 5 < q.
o | Al bl + )
=q N

-| (mod p), with 0 < ¢ < p.
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Thus Dan should probably check that his |nf is close to N(p — 1)/2, and if it isn’t,
then that (f,g) pair should be discarded. Simitarly, it might be worthwhile for
Cathy to transmit the value of [m| together with the encoded message e. Then
Dan can use |m| as a check sum to validate the message, and also use it to adjust s
if [m| happens to significantly differ from the expected value.

Finally, we should mention the unhappy possibility that, in principle, there might
be no value of 3 which will decode the message. This gap foifure will oceur if the
coefficients of ¢ @ (= + f ® 9) + f ®m span an iterval whose width is larger than g
Notice that Cathy cannot check for this condition, since she doesn’t know f or g.
It iz possible to analyze this situation theoretically, but we will be content here to
note that for our suggested pararneter values (9), the probability of this occurring
is many orders of magnitude smaller than the probability that a message packet
will become garbled in transmission; so from a practical standpoint, any standard
error detecting/correcting method used to deal with transmission errors should be
more than sufficient.

4. NTRU VARIANTS AND GENERALIZATIONS

4.1 Multiple transmissions of a single message. The NTRV cryptosystem
as described in section 1 is highly susceptable to attack if a single message m is
transmitted several times using the same public key k. As we will deseribe below,
if Cathy transmists a message m several times using different fuzz values, then it
is highty probable that a code breaker Betty will be able to recover the message m
without knowing the private key f. More precisely, if Cathy uses (N, p, g, d) NTRU
bo transmit the message ¢ times using different fuzz values ¢y,. .. , ¢y, then Betty
will be able to determine approximately d(1 — (d/N)*~!) of the d coefficients of ¢,
which equal one. For example, if N = 167, 4 = 71, and Cathy sends the message
3 times, Betty can probably recover the location of 68 of the one coafficients of ¢1.

[t would then be possible for her to try all 939 = 156849 possibilities for the

sther 3 ome coefficients, theveby determining 4, and with it the message
m=e—¢1 ®h (mod g).

Note, however, that although Betty will have decoded the message m, this in no
¥ay threatens the security of any other messages semt with the same key, since
‘ecovery of m does not help her to determine the decoding key f.

Before explaining how to securely retrangmit messages, we mention that there
we many situations, such as key exchange and identity verification, where a given
nessage is never transmitted more than once. In guch situations, the basic NTRU
rystem described in section 1 will suffice. Further, if it is necessary to occasionally
etransrnit a message, say when noise in the line causes a detectable ervor, then one
thould use multi-NTRU only when retransmission is necessary. However, there are
rertainly situations, such as submission of eredit card oumbers over the Internet,
vhere an identical message might be repeated at various times using a single public
sy and different fuzz values.

The following encryption method, which we wili call the multi-NTRU system,
lows safe multiple transmission of a single message using a single encoding key. In
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order to encode a message m using the public key b, Cathy chooses three random
binary polynomials ¢, ¢, ¢, subject to the further requirement that £ be @-invertible
modulo p. (Notice that this is the same as one of the requirements on the decoding
key f.) Then she encodes the two messages ¢ and ¢ + m and transmits them. In
other words, the message m is encoded by the two polynomials

e=¢®h+¢ (modg) and e=¢@h+{E&m (modg)

When Dan recievies ¢ and e’, he uses his private key f to decode them as nsual,
recovering the mod p polynomials ¢ and { ® m. He next computes the inverse {1
mod {p, ¥ — 1}, and then the original message is recovered by multiplying

(Com)®¢i=m (modp).

The multi-NTRU aystem has drawbacks for both encoder and decoder. In order
to encode one message packet, Cathy must generate one random polynomial and
perform two NTRU encodings, therehy doubling message expansion. To decode,
Dan must do twa NTRU decodings, plus invert a mod p polynomial. The advantage
of multi-NTRU is that a single message may be transmitted any number of times
with no loss of security.

We make two final commments. First, if Cathy owns the more powerful compu-
tational engine, she can make Daxn’s job easier by computing {~! mod (p,z™ - 1)
and then sending the two messages (™! and { ® m. To recover m, Dan will then
merely have to multiply the two decoded messages. In other words, the multi-
NTRU systern requires the computation of an inverse modulo p, but this inverse
may be computed by either the encodex or the decoder.

Second, we think it is likely that knowledge of the binary polynomial { will not
enable a codebreaker to decode the message. In other words, if Cathy sends the
encoded message e = g ® h + { ® m mod ¢ and also sends the unencoded value
of {, the message will still be secure. Further, multiple transmissions uging different
pairs {¢;, {;) will remain secure even if the {;’s are made public.

As an application of this last remark, consider a situation such as credit card
submissions over the Internet. Dan could precompute a list of random polynomials
(1,825 ... 3 { and their mod p inverses. When Cathy wants to submit her credit
card nimber, Dan sends her a randomly chosen {; to use for multi- NTRU encoding,
If r is taken to be of a reasonable size (e.g. 100 to 1000), and if & new list of {’s is
generated each day, it is exiremely unlikely that Cathy would ever send the same
messape twice. In this way one gets the security of the multi-NTRII cryptosystem
with little extra overhead. Co

For completeness, we briefly describe how Betty can recover a message m which
has been encoded (but not multi-encoded) using the public key & and several dif-
ferent fuzz values ¢,..., ¢ Let ey, ..., e be the encoded messages, so

ei=dh®h+m (modg).

Note that A, the public key, iz assumed to be known, so Betly can compute its
inverse modulo {g,z” - 1). The idea is to look at the differences

d—di={ey -e)®h™! (medg), 2<i<t
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For example, consider ¢2 — ¢1. The ¢;’s are binary polynomials, so this difference
will look like

N-1
pr—¢p= > £t (mod gz —1)  withey € {~1,0,1}.
k=0

Further, we have &5 = 1 if and only if the k** coefficient of ¢ equals 1 and the k*b
coefficient of ¢ equals 0. Since ¢; has d one coefficients, and ¢4 has N — d zero
coefficients, Betty will probably learn the location of approximately d4(1 -~ d/N) of
the one coeflicients of ¢;.

Now suppose that Cathy transmits the message ¢ times. Using the differences
&1 — &, each e; will let Betty identify some of the remaining one coefficients of ¢;.
Using £ messages, she will on average recover d{1—{d/N)*~1) of the one coefficients.
Thus even a small number of transmissions will allow her to recover ¢y by a brute-
force check of the remaining coefficients; and with ¢ in hand, it is 2 simple matter
to recover the message

m=e;—~$ @A (modaz?¥ —1)

without knowing the decoding key £.

On the other hand, suppose that Cathy has multi-encoded her messages, say
e =i ®h+{®m mod g. Even if the {;"s are public knowledge, a codebreaker
would only be able to determine the differences ¢14; — #i{y (mod ¢). These values
do not seem {0 be of much help in recovering the message.

4.2 Non-probablistic NTRU. The basic NTRU system described in section 1
is a probablistic public key cryptosystem in the sense of Goldwasser and Micali [5),
since the message m is “concealed” by the application of the random fuzz ¢ in the
encoded message ¢ = ¢ ® A + m. Clearly ¢ must be chosen in such a way that a
potential eavesdropper cannot predict ita value. On the other hand, it should be
noted that Dan, the owner of the private key f, is able to recover both the message m
and the value of the fuzz ¢, since once he know m, then ¢ = (e~ m)® h~! mod ¢.
In principle, this means that Cathy could encode part of her message in ¢ i.e., to
encodle her message, she conld use N bits of her message to form ¢, and the next
N logs(p) bits of her message to form m. This would improve the bandwidth, at
the cost of some extra computation on Dan's part. Another way to make NTRU
deterministic is to create ¢ by taking the message m = [y, ma, ... ,my}, reversing
its coefficients, and reducing them modulo 2. Tn other words,

¢ = [my mod 2,my_) mod 2,... ,mz mod 2, mod 2]

Of course, cne would need to be caveful that the bits of Cathy’s message are suffi-
ciently random to use in ¢. Further, the number of } bits in ¢ would now vary from
message block to message block, so Cathy would need to transmit this number.

4.3 NTRU with 0% deceding failure. It is possible to eliminaie éap failure
entirely by checsing the psrameter ¢ sufficiently large. This also has the effect
of making s = £ = 0, so the “shifting step” in decoding is also eliminated. The
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simplest way to elinmate gap failure is to choose g so that the maxinmmn range
between the smallest coefficient and the largest coefficient of

P@(r+fRg)+fam

is smaller than ¢. The exact value of this maximum (as a function of (N,p,q,d)
or (N,d,p,q,7)) looks like an extremely difficnlt combinatorial problem, but it's
easy to give an upper bound, which suffices for our (theoretical) purposes. For
example, & trivial analysis shows that the coefficient range ia less than d2 + 2dp for
binary NTRU and less than r®4* + r2dp for symmetric NTRU. So if we choose g
larger than this bound, gap failure disappears. A more careful analysis allows one
to take considerably smaller values of 4.

However, we note that from a practical viewpoint, there are two drawbacks
to using such large ¢'s. First, the public key and message expansion factors will
become quite large. Second, if g is too large, then there is at least the possibility
that some souped-up lattice reduction attack might be feasible (see section 6.4).
For this reason, we would not normally recommend taking such large values of g.

4.4 A theoretical description of NTRU-type eryptosystems. If we ignore
the possibility of decoding failure (or choose ¢ sufficiently large so as to eliminate gap
failure, see section 4.3}, then NTRU is a "probabilistic publicckey cryptosystem,”
a concept invented by Goldwasser and Micali {[5], see also [8, section 12.4]). If
we slightly generalize the Goldwasser-Micali concept so as to allow for (occasional)
decoding failure, we come up with the following definition.

Definition. A probabilistic public-key cryptoaystem is a 6-tupls (P,C, K, B, D, R},
where 7 is the set of plaintexts,  is the set of ciphertexts, X is the keyspace,
and F and D are encryption and decryption maps

E: K — Map(P xR,C) and D;E—rMap(C,P)

(i.e., foreachKEﬁC,wegetmencryptionnﬂeEx : P xR — C and a decryption
rule Dy : C — P), and R is a set of random fuzzes.
The success rate of a probabilisitic public-key cryptosystem is the mumber

: b =
& = o(P,C, K, 6,4, R) = min 2T E R+ DrclFi(b,r)) = 8}

Kek #R

bep
This i3 essentially the probability that the decryption rule Dy will decode a given
encoded message. The system is called complete if o =1 {i.c., if Dp{(Ex (b)) =b
for every (b,r}) € P x R). We define the success rate and completeness of a partic-
ular key K in a similar manner.

There are (complete) probabilistic public-key eryptosystems due to Goldwasser-
Micali [5] and to Blum-Goldwasser [1] which are based on the problem of finding
square {respectively two-power) roots modulo pg for large primes p and ¢. See [8,
section 12.4]. These systems are quite interesting from & theoretical viewpoint, but
their speed seems {ai best) comparable to RSA. NTRU, on the other hand, is a
probabilisitic public-key cryptosystem which is considerably faster than RSA.

Abstractly, an NTRU-type cryptosystem can he defined as follows:
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¥ Definition. A set of NTRU parameters is a 6-tuple (A,p,9,P, 2, R), where A is
2 1ing, p and q are ideals in 4, and P, Q, R are subsets of A such that

PAfp and Q- A

(In other words, P is a set of coset representatives for A/p, and sirilarly for Q.)

An NTRU eryptosystem for the parameters (A,p,49,P, Q, R) is created as follows,
Chamef,gepsathatfhasinversasmodulopmmmq, say f; ' € P and
S € Q. That is,

f®f7=S1 (modp)  and  fef7'=1 (modg),
where we write ® for multiplication in A. Next choose 1 € P so that
*+f®g=0 (modp),
and choose h € Q s0 that
h=r@ f7'+g (mod g).

{Note that once we pick f and g, there is exactly one choice for each of £, Sl
and 4.} The pair (f,A) is the desired private/public key pair.
The enceding rule B}, is given by

Ep:PxR-—Q, Exibry=r@®h+b (mod q).

The decoding rule Dy is given by

Dr:Q-P,  Dy)=(c®fmoda)® £ (mod p),
wherenmwﬁte“c@fmdq”tumaanthereprmtaﬁveingforthemngmeme
Xlass of ¢ @ f modulo q. More generally, thedeoodmgrulemayrequireashift
imcﬁms:QﬁA,mwhichcasethedecodjngnﬂeis

Dy() =s(c® fmod q)® £;* (mod p).

Thekey(f,h}wﬂlbemplete{i.e.,wiﬂdecudeeverymeasage}iftheset

{re{(r+f®9)+/@b:b¢P, rcR} iscontainedin O,
[f there is a shift function, (f, k) will be complete if
(r@(ar+f®g)+f@bmodq)=r®{w+f@y}+f®b forallbe P, reR)
1 general, the success rate of the key (f,h) is

#reR:ro(v+f@a)+fobe Q)
#R ‘

o(f, k) = in

1d similarly when there is a shift function.
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Example. The “standard” (binary) NTRU system has:
A=ZIXY(XN ~1), p=pA, - q=24,

P={z~:ﬂix"" : ﬂiﬂa{p}

i=l

Q= {ib;x*"—" - 0< b c:q}
=1

N
‘R={§c¢}f”‘i : ﬂﬂcg-ﬂzﬁwithexactlydonea}

A similar system can be constructed by replacing Z with some other convenient
ring. For example, take A = F{T][X]/(X" — 1) and p and ¢ polynomials in F,[T].
One could also comsider variants of standard NTRU by using rings such as

A=ZEX){XN-X-1).

This would slow computations somewhat, while providing greater mixing of the
coefficients.

An NTRU-type cryptosystem is based on the algebraic operations in a ring A;

that is, it uses both the addition and the multiplication in A. This stands in marked
contrast to most other public key cryptosystems, such as the RSA and ElGarmel
{Discrete Log) systems which use a single group operation (generally modular muiti-
plication or the group law on an elliptic curve) and knapsack (subset sum} systems
which uses the monocid of positive integers under addition. We thus might call
NTRU a ring-based cryplosystem to distingunish it from earlier group-based eryp-
tosystems such as RSA and BlGamel.
Remark. The @ multiplication used in NTRU can also be described using multipli-
cation of circulant matrices, in which case NTRU bears a superficial resemblence
to the McEliece public key cryptogystem [6]. The McEliece system using a matrix
multiplication HM + R, where H is a rectangular matrix derived from an error
correcting cods {e.g., a Goppa code), the vector M is the message, and R iz a
random vector which is small enough to be dealt with by the error correction fa-
cility. A matrix formulation of NTRU looks like HR 4+ M, where H is a square
circulant matrix (i.e., a matrix whose rows are obtained by rotating the top row
cyclically), R is a random vector, and M is the message. Although the encoding
processes for McEliece’s system and NTRU look gimilar, the decoding processes are
entirely different. Further, the McEliece public key I is huge, since all of its entries
must be apecified; while an NTRU public key H is much smaller, since only its top
row is needed.

5. IMPLEMENTATION CONSIDERATIONS

In this section we analyze the choice of NTRU parameters, where we will con-
centrate on binary (N,p,q,4) NTRU and symmetric (N,p,q,d,7) NTRU. These
parameters should be chosen with the following guidelines in mind:
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(1} The number of available public keya f is approximately

(2)=a=a o=
Nt

(N — 2dr — 1)I - diZ—T{d + 1)!

(symmetric),

so ¥, d and r should be chosen to prevent a code breaker from trying all
possible keys, keeping in mind the meet-in-the-middle attack. So to achieve
a security level of 2%, the number of keys should be on the order of 2190,

(2} 1t is important that ged(q,p) = 1. Although in principle NTRU will work
without: this requirement, in practice having ged(g,p) > 1 will decrease
security. At the extreme range, if plg, then (exercise) the encoded message ¢
satisfies € = m mod p, so it is completely insecure.

(3) We want most f’s to have inverses f;"! and /-3, since otherwise it will be
hard to create keys. A first necessary requirement is that ged{ f(1},pg} = 1.
This iz antomatic for symmetric NTRU, and similarly for binary NTRU if
we choose d to satisfy ged{d, pg) = 1. Assuming this, virtually all fs will
have the raquired inverses if we take N to be a prime and require that for
each prime P dividing p and g, the order of P in (Z/NZ)* is large, say either
N —1 or (N —1)/2. For example, this will certainly be true if (W —1}/2 is
itself prime (i.e., N is a Sophie Germain prime). So especially good values
for N include 83, 107, and 167.

(4) In order to ensure that # + f @& g i3 not (approximately} a multiple of
(x? —1}/(x — 1), we should choose N, d, and p so that &2 /V is fairly close
to a multiple of p. (For small p's, such as p = 2 or 3, this requirement may
be ignored.)

Let us briefly discuss item (3), the existence of the inverses f7! and f7'. We
note that if these inverses exist, they can be rapidly compnted using the Euclidean
algorithm (see [2, §1.3.2] or section 7). Whether they exist depends, as one might
expect, on f, ¢, and p. In general, a monic polynomial f will have a &-inverse
moditlo M if (and only if) for every prime P dividing M, we have

ged(f,x¥ ~1) =1 in (Z/PE)]. (11)

In particular, since & — 1 divides 2 — 1, a necessary condition for f to have a
@-inverse modulo M is that ged(f(1}, M) = 1. Assuming this, the probability
that a randomly chosen f will satisfy (11} depends on the factorization of Ay =
a1 z¥-2 4 ... 4 £+ 1 modulo P; the more {small) factors it has, the more
likely it is that f will have & factor in commmon. Now if N is prime and if P*© iz the
smallest powexr of P which is congruent to 1 modulo N, then it's not hard to see
that Ax has (N —1)/e izreducible factors each of degree e modulo P. A particularly
good situation oceurs if (¥ — 1)/2 alao happens to be prime, since then the only
choices for e are §, 2, (N —1)/2 and N — 1. So if P% # 1 (mod N), as will be the
case in practice, then virtuslly every f will have an inverse modulo P.
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We must also ask if & containa any hints to help in determining ¢ and/or m.
One way to think of the produet ¢ & A iz to consider the coefficients of h as lying
in a cyclical list:

. ,hﬁ—hhﬂ,hl,hﬂ,ha,«-- ﬁhN:hhhil:-'\' .
As noted above, these coefficients will be randomly distributed befween 1 and
g — 1. We now randomly choose d (different) starting points £, 5, %, ... , £ and take N

consecutive entzies starting at each ane. After that, we list the coefficients of the
measage, add the colnmns, and reduce modulo g to get the encoded message:

i Ry hya o R
by Ay hjer e Bgane
he  Arpr hrg2 o BN
he hepy hewa - han—
+ my My.1 WN-2 - my
€1 €2 £g e N {med g)

The randomnesa of the coefficients of k will drown cut the effect of m in these sums
modulo ¢, 80 the encoded message & will not obviously reflect either the message m

or the starting points i, 3, k,... , &

8.2 Meet-in-the-middle attacks. As pointed ont by Andrew Odlyzko, there is
a meet-in-the-middle attack which can be used against the fuzz ¢. We observe that
a similar attack applies also to the private key f. Priefly, one splits f in half, say
F = fi + f2, and then one matches f; @ ¢ against —fp @ e, looking for (f}, fa) so
that the correaponding coefficients have approximately the same value. Hence in
order to obtain a security level of (say) 2%, one should choose f, g, and ¢ from a
set containing arcund 20 elements.

6.3 Multiple transmission attaclks. As already noted in section 4.1, mmltiple
transmissions of a single message m using different fuzzes will likely compromise
the security of m, although it will not affect the security of the private key f.

6.4 Lattice reduction attacks. Finally, we should ask if there might be an attack
on NTRU using lattice reduction techniques. The natural way to formulate such
an attack is to consider the lattice L generated by the columns of the following
2N x 2N matzix;

{1 0 - o]0 0 - 0 )
0 1 - 0 0 a - 0
1 3] 1 0 a [}
M=% vl g 0 - 0
hj hﬂ h] ﬂ q ﬂ

\ kv ha Av1] 0 0 g J
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We must alse ask if e contains any hints to help in determining ¢ and/or m.
One way to think of the product ¢ & A is to consider the coefficients of k as lying
in @ cyclical List:

e !hN“lihﬂihlihihal"‘ :thhlth:--- .

As noted above, these coefficients will be randomly distributed between 1 and
¢ — 1. We now randomly choose d (different) starting points i, 7, %, ... , £ and take N
consecutive entries starting at each one. After that, we list the coefficients of the
message, add the columna, and reduce modulo g to get the encoded message:

hi  hipr A e BipNe
B B Rz 0 BN
Ry  Reyi Rper o0 BN
e Reyr R o0 By
+  my My My-z - m
e1 ez £3 e €N (mod g)

The randomness of the coeflicients of A will drown out the effect of m in these sums
modulo g, so the encoded message £ will not obviously reflect either the message m

or the starting pointa 4,5, %, ... | L

6.2 Meet-in-the-middle attacks. As pointed out by Andrew Odlyzko, there is
& meet-in-the-middle attack which can be nsed against the fuzz $. We observe that
a similar attack applies also to the private key f. Briefly, one splits f in half, zay
f = A+ fa, and then cne matches f; ® e against — fz @ ¢, looking for (fy, f2) so
that the corresponding coefficients have approximately the sama value. Hence in
order to obtain a security level of (say) 250, one should choose f, g, and ¢ from a
set containing around 219 elements.

6.3 Multiple transmission attacks. As already noted in section 4.1, multiple
transmissions of a single message m using different fuzzes will likely compromise
the security of m, although it will not affect the security of the private key f.

8.4 Lattice reduction attacks. Finally, we should ask if there might be an attack
on NTRU using Iattice reduction techniques. The natural way to formulate such
an attack is to consider the lattice I generated by the columns of the following
2N x 2N matrix

/10 0ol o o 0\
o 1 ol o o 0
| o o 1] o o 0
M=l = iv | ¢ O 0
flg ha h] 0 q 0

\ An M Aw-1] O 0 g }
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Notice that det(M)} == ¢%, s0 L has (co)volume ¢”¥ and rank 2N. This means
that L will contain many vectors of length O(q'/2).

We know that the product f @® A, when reduced modulo ¢, has comparatively
small coefficients. So suppose that we write

Sohe + Fy-1hers + -+ Bhwge—a + fibnvar-1 = ale + Ty

for each 1 < k < N. The construction of k says that we can do this 5o that the Jy’s
are the coefficients of » + f ® g. So if we multiply the matrix M by the {column)
vector

UN:IN—I:”' JJafu-h, I, ... :_INL
we find that the lattice I containg the “small” vector

V= [.mefH—-h” . rfﬂ:fl:Jlth- .- tJN]-

If this vector is really a amall vector of I, then we might be able to use lattice
reduction {e.g., the L®-algorithm) to find v.
We can estimate the length of v as follows. For binary (N,p,¢,d) NTRU we
find:
(1) Average value of the f;'s is d/N.
(2) Average value of the Ji’s is {p — 1)/2 + d2/N.
Thus

vl = /NN + N(p— ]2+ BIN)E.

For any reasonable implementation, this will be considerably larger than ¢1/2, so
in fact one cannot find v (and with it, f} using lattice reduction techniques. To
iflustrate, here are the values for the three implementations described in Table 1.

(N,p,q,d) V@ 1 VN(/NY+ N({p-1)/2+ &2/Np
{107,5,256,31) | 16.00 113.63
(167,7,512,71) | 22.63 428.89
(167,15,1024,71) | 32.00 480,53

Of course, v has the additional property that the Ji's are divisible by p, but this
congruence property does not seem o help in performing a lattice reduction search.
Finally, rather than looking for small vectors in L, we might try to look for
vectors in I which are close to the vector
W=[l£ 1p—2 & p-1 df.]
‘2?21“"“12;L 2 NI"‘"i 2 NJ .
N coples N copies

Notice w is the average or expected value of the true vector v that we are looking
for. There are two important observations to be made concerning this line of attack.

First, we are now trying to find a vector in the lattice I which iz close to the
non-lattice vector w. At the moment, there does not exist a good algorithm (e.g.,
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as powerful as 13} for solving this problem. The best current method is to use LA
to find a small basis for I, write w as an R-linear combination of the basis, round
the resl coefficients off to integers, and then try modifying the coefficients up and
down. This ia unlikely to work unless w is extremely close to a point of L.

Second, suppose that we grant some future breakthrough enables someone to
solve this lattice proximity problem efficiently. Then NTRU will still be secure
provided that the distance |[v — w] is {at least) as large as ¢'/?, since then there
will be exponentially {in N} many points of L which are just as close to w as v
is, and there will be no way to pick out v from this cloud of points. So how closs
ig v to w? This depends on the distribution of the coefficients of 7 -+ f @ g. For
example, if we take (N, p,q,d) = (167,15,1024,71), then a typical distribution for
%+ f ® g is [Nao, Nys) = [90, 77] (see section 3), in which case we have

[v—~w|=9691 end g¢/%=32

This will certainly be safe. Similarly, if we use (¥,p,q.d) = (107, 5, 256, 31), then
7 + f @ g will have a coefficient distribution like [Ns, N1g, Ms] = [5, 77,25}, and
then

jv—w{=2563 and ¢/2=16,

which again should be safe.

In conclusion, for appropriate choice of parameters, NTRU appears to be secure
against lattice reduction methods, including any future progress in solving the
lattice proximity problem.

6.5 Existence of multiple keys. One might ask if f is the only private key which
can, be used to decoded messages which have been encoded using the public key A.
Any decoding key f* for h will need to have both of the following properties:

(1) When the coefficients of f' @ k aze first reduced modulo ¢ and then shifted,
they all become divisible by p.
(2) The coefficients of f* ® m must lie in a short interval, for any message m.

While either of conditions {1) or {2} may be easily satisfied, it is hard to safisfy
both simultanecusly. To see this, we note that it appears that for f' to satisfy
condition (2), its coefficients must all be “small”, ie., considerably smaller than
g/2. But one would expect the coefficients of an f’ satisfying (1} to be uniformly
distributed between 0 and g. Thus the probability that an f* satisfying (1} will alsc
satisfy (2) is (much) less than (1/2)¥. On the other hand, the probability that an
/ which satisfies {2} also satisfies (1) is approximately {1/p}".
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7. PSEUDO-CODE IMPLEMENTATION

In this section we will briefly give pseudo-code implementing the main routines
for binary (N, p, ¢,d) NTRU. For the purposes of computer implementation, it is
moat convenient {0 represent polynomials ag vectors

N
a= [a1,83,... ,6n} comresponding to afz) =  mz™
i=1
We will give pseudo-code for the following routinsa:

CREATEKEY(N, p, ¢, ) Create » private/public key peir (f, k)

ENCODE(m, &, N, g, d) Use A to encode & message m

DECODE(e, f, N,p, q,4d} Use f to decode o mesasage e

STARMULTIPLY(a,b, N, M) Multiply o & b (modulo M if M > 0)

RANDOMBINARYPOLY(N,d) Create a random binary polynomial with d onea

IRVERSEPOLY{a, N, M) Compute the inverse of ¢ modulo (M, z? — 1)
We will Jeave the reader to supply their owa routines for generating random num-
bera and for performing division with remainder in the polynomial ring {Z/PZ){z]
when P is prime. We also mention that the RANDOMBINARYPOLY routine we give is
not the most efficient, bui it is easy to implement and works well in practice. Of
course, a slightly more complicated routine could be written to choose d coordinates
without replacement.
CH.E.ﬂTEKEY{N 1P g, d}
(Create a public/private key pair (f, k). Also return f;' = f~! (mod p) for use
by the decoding routine.) '

g = RANDOMBINARYPOLY( N, d)

f = RANDOMBINARYPOLY(N, d)

f,! = INVERSEPOLY(f, N, ¢)

f;! = INVERSEPOLY(f, N, p)

IF 71 OR £;! DOES KOT EXIST, THEN CHOOSE A NEW f

F = STARMULTIPLY(f, g, N, p)

7= —F (mod p)

h = STARMULTIPLY(r, f;', N,q) + & (mod g)

RETURN (f,h,f;%)

INCODE(m, h, N, q, d}
(Encode the message m using the public key k.)
The following should be precomputed and stored:
h’ = [hl,hz, ‘e ,hﬁ, hl, hz, e ,hﬁ-ll
The ENCODE routine beging here:
Choose d distinctlrandom numbers [%1,%2,... k4] between 1 and N
4

e=m- E[hfi\f-fl-k,p hi.l’-l-z-k;t oo g y,) (mod g}
i=1

RETUGHN e

tFor greater speed, ans can drop the requirement that the k;'s be distinet. This will tead
0 a greater probability of decoding failure, but for reasonable parameters (N, p, q, d), decoding
ailura will gtill be extremely raza.
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DEGODE(e, f, N, p, g, d)

{Decode the message e using the private key f.)

The foliowing should be precomputed and stored:
u=[u,...,ug] list of indices for which f,, =1

g = |-§+d{p—1)+§ {mod g)

t=qld[:p—1)q+d3;‘N'| fnod p)

[s, 0, .. ,vn] = £;1 = INVERSEPOLY(f, N,p)

v =.[ﬂ'11ﬂﬂs“ oy UN U, ... :.t-'N—I_I
The DECODE routine begina here:

[
e = {E:[,ﬁg,... 1N €1, 600 -0 1EN-—1]
d

a= E[E'Nﬂ-u,: EN 12y 1€av—y,] (Mod g)

i=1

iz 41 if ap < s,
b = [b1,bs,... ,bn] with b =
[br.da,. .. ,bn] % {ak+t—q if ap > s,
N
D= by % ks sk s Vo] (m0d p)
kel
RETURN n

STARMULTIPLY{a, b, N, M)
{Compute o{z)®b(x} modulo ¥ —1, and modulo M if M > 0. This implementation
requires N? multiplications, If either a or b is a binary polynomial, there are faster
implementations, )
PO k=1T0N
op =10
j=k-1
DD i=1TO N
IF j=0 THEN j=N
cx=cr+0a;*b;
j=j-1
END i LOOP
IFM>0THEN o= {m-::rdM]
END % LOOP
RETURN ¢ = [e3,¢q,... ,cn]

RANDOMBINARYPOLY(V, d)
{Create a random polynomial (vector) with o ones and ¥ — d zeros)
a=0
k=d
WHILE k>0
j = Random number betiwreen I and N (inclusive)
IF ay =0 THEN ny;=1; k=k—-1
EKD WHILE
RETURN a = [a1,03,... L 8N]
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INVERSEPOLY(a, N, P, v)
(Compute the inverse of a{z} modulo the ideal (P7,z? — 1), where we assume
that P is prime. The first part of this routine is adapted from 2, §1.3.2]. More
generally, to compute the inverse of a(z) modulo (M, z¥ — 1), one first factors Af
as M = [T P/, next computes the inverse a;(2)~? modulo (&%, —1), and finally
combines the a;{z}''s using the Chinese remainder theorem to obtain afz)=1.)
(Compute the inverse of a modulo P)
b=z¥~1; d=a; u=1; v, =0; va=b;
WHILE ¥a 5‘5 ()]
WRITE d = v3+ q+t3 (mod P) WITH deg(ta) < deg(vs)
{This is long division of polynomials in (Z/PZ)[x].)
Bi=u-g*vy; u=wvy; d=v3; vi=1%; v3=1ts
END WHILE
IF deg(d) > O THEN RETURN ‘Inversion Fails®
e=dy; u (mod P)
(If r > 1, refine to get an inverse modulo PT)
Q=r
WHILE Q < PT
¢’ = (STARMULTIPLY(a, c, N, Q%) — 1)/Q
¢ = ¢—  * STARMULTIPLY(c, ', N, Q)
Q=@
END WHILE
RETURN ¢ {mod P7)
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