
© netguru.coedition 1.0

Ember
Run Loop
by Jakub Niechciał

https://twitter.com/netguru
https://twitter.com/netguru
https://www.facebook.com/netguru
https://netguru.co/newsletter
http://on.netguru.co/workshops
https://www.linkedin.com/company/netguru

1© netguru.co

1 / Intro
2 / How do JavaScript frameworks actually work?
3 / Why does the Ember Run Loop exist? 
4 / The Ember Run Loop from the inside
5 / Run, run loop, run - a few examples

a Schedulers

b Wrappers

c Examples based on Ember 1.7 - for more complex code tricks 
		 i Nested run loops 

		 ii Scheduling algorithm 

d Ember.run.sync() 

e Observers vs. computed properties 

6 / Handling external events with the Ember Run Loop 

7 / Autoruns and their implications 

8 / Summary

9 / About us

Thanks for downloading our guide! We’d love to stay in touch - you can find us here:

Table of Contents

http://netguru.co
https://twitter.com/netguru
https://twitter.com/netguru
https://www.facebook.com/netguru
https://netguru.co/newsletter
http://on.netguru.co/workshops
https://www.linkedin.com/company/netguru

2© netguru.co

Intro1 /

The Ember run loop is one of the most interesting mechanisms in the
Ember framework. Unfortunately, it is not well documented in official
guides. The run loop might seem like a well hidden abstraction, but,
when working on complex Ember projects, you’ll notice it when you:

•	 bump into strange cases where data is synchronized in a weird
order,

•	 find actions executing in unexpected ways and, most importantly,
•	 notice that your vanilla JS or jQuery plugins are not working

While working with Ember, I found myself frequently searching the web
for the Ember run loop content. You can surely find some interesting
posts out there, but here I’d like to share a summary of
an Ember Run Loop webinar that I held for the Netguru team.

In this guide, I will cover why the run loop exists and how it actually
works. Then, I will share a couple of interesting examples, all of which
are available in JSBin so you can work with them yourself. We will also
see how to use the run loop while wrapping external JS libraries and
explore the autorun mechanism.
At the end, I’ve also included some other interesting resources that
helped me understand the run loop.

http://netguru.co
https://twitter.com/netguru
https://www.facebook.com/netguru
https://netguru.co/newsletter
http://on.netguru.co/workshops
https://www.linkedin.com/company/netguru

3© netguru.co

How do JavaScript
frameworks actually
work?

2 /

To answer this question you must understand more deeply

how every JS framework works at the low level, without all the

abstractions. First of all, when you load the website with its JS

code, the whole code, every line, is executed only once - right

after the download finishes. For this reason, basically all the

code that works in our browsers is event-driven - it works by

responding to some events that happen in the environment.

These events are fired by the browser and handled by handlers

provided by your scripts. Crucially, browsers execute

at most one event per one millisecond. This limitation may be

considered as both an advantage and a disadvantage.

We’ll talk about this again later.

The Ember framework consists of a very short setup phase

in which it registers handlers for multiple events, including

keyUp, keyDown, mouseMove, and others. Feel free

to check out the full list of handlers, too.

http://netguru.co
https://github.com/emberjs/ember.js/blob/v2.0.1/packages/ember-views/lib/system/event_dispatcher.js#L42-L70
https://twitter.com/netguru
https://www.facebook.com/netguru
https://netguru.co/newsletter
http://on.netguru.co/workshops
https://www.linkedin.com/company/netguru

4© netguru.co

How do JavaScript frameworks actually work?2 /

This setup phase is executed as a handler for the

 DOMContentLoaded event to make sure that the full content

of a page is ready. After this setup phase, everything that hap-

pens in our single page application is a response to

user behaviour

http://netguru.co

5© netguru.co

Why does the Ember
Run Loop exist?

3 /

Before you find out how the run loop works, let’s stop for

a while and talk about why it’s necessary. If you understand

why it exists, the underlying mechanism should become

much clearer.

The main reason for creating the run loop is to improve the

performance of our applications. The run loop reduces the

number of expensive actions, such as rendering, by batching

them in queues. Moreover, it organizes the execution of our

code in logical blocks, so it’s easier to maintain and we can

have more control over the order of execution.

However, to achieve this you need to know how the run loop

works and how to use it properly. And this is the hard part.

http://netguru.co
https://twitter.com/netguru
https://www.facebook.com/netguru
https://netguru.co/newsletter
http://on.netguru.co/workshops
https://www.linkedin.com/company/netguru

6© netguru.co

Why does the Ember Run Loop exist?3 /

Lets look at the following example from the Ember Guides.

In this very academic example, you set the height of the DIV

elements and calculate their offset one after another.

It demands three very quick operations of setting, and three

more expensive operations of calculating layouts and offsets.

If you could batch them by similarity, you could get a huge per-

formance gain, due to caching the values of offsets and only

having one layout recalculation.

Example #1

<div id=”foo”></div>
<div id=”bar”></div>
<div id=”baz”></div>

foo.style.height = “500px” // write
foo.offsetHeight // read (recalculate style, layout, expensive!)

bar.style.height = “400px” // write
bar.offsetHeight // read (recalculate style, layout, expensive!)

baz.style.height = “200px” // write
baz.offsetHeight // read (recalculate style, layout, expensive!)

http://netguru.co

7© netguru.co

Why does the Ember Run Loop exist?3 /

This example is pretty rare in day-to-day work. Let’s take a look

at a more relevant Ember-style example that consists of one

computed property based on two attributes - firstName and

lastName . Somewhere in your code, potentially in some ac-

tion, you set these two one after another.

Example #2

Example #3

foo.style.height = “500px” // write
bar.style.height = “400px” // write
baz.style.height = “200px” // write

foo.offsetHeight // read (recalculate style, layout, expensive!)
bar.offsetHeight // read (fast since style and layout is already known)
baz.offsetHeight // read (fast since style and layout is already known)

{{user.firstName}}

{{user.fullName}}

user: Ember.Object.create({firstName:’Tom’, lastName:’Huda’});

fullName: Ember.computed ‘user.firstName’, ‘user.lastName’, function() {
 this.get(‘user.firstName’) + ‘ ‘ + this.get(‘user.lastName’);
});

user.set(‘firstName’, ‘Yehuda’);
// {{firstName}} and {{fullName}} are updated

user.set(‘lastName’, ‘Katz’);
// {{lastName}} and {{fullName}} are updated

http://netguru.co

8© netguru.co

Why does the Ember Run Loop exist?3 /

Without any batching mechanism you would end up

recalculating a computed property twice during one action.

This is obvious waste of time. Indeed, if you had a scenario

where the rendering mechanism had a higher priority than

computed properties, but lower than setting attributes, you

would end up re-rendering the layout four times!

The run loop lets you avoid such horrible messes.

I’ll now answer the most important question - what exact-

ly is Ember run loop? Well, it’s not a loop in the sense of the

common for-loop or while-loop. Rather, it’s a mechanism that

batches assorted actions (like setting, actions, or transitions)

and then decides to execute them in some

planned order.

So, when does the run loop start batching? As I said earli-

er, Ember is a fully event-driven framework. Everything that

happens is a reaction to user behaviour. The user has clicked

something, has moved the mouse over the page or pressed

some key. Each time the lowest level Ember handler starts

handling the event, a run loop is created and starts accepting

jobs. From the low-level handler, the stack of execution runs

up through all the abstraction layers of Ember, eventually

reaching the code we ourselves have written.

http://netguru.co

9© netguru.co

Why does the Ember Run Loop exist?3 /

You can, for example, set some attributes and perform a tran-

sition using the set and transitionToRoute methods.

The implementation of these methods uses the run loop by

scheduling synchronization of bindings used by these attri-

butes and the transition. Basically, nearly everything you do

using the Ember API is scheduled into the run loop and left

to execute in the future. After the stack of execution gets

back to the low level handler, the run loop is closed.

Ok, so when is the run loop executed? Right after it is closed,

in the same event handler. If you remember what I said earlier

about the event environment in browsers, you’ll recall that

the run loop can execute at most every one millisecond.

This is an important fact that I will return to later.

It also means that Ember’s reaction to user behaviour is fully

enclosed in the run loop and is executed before the next

event arises.

http://netguru.co

10© netguru.co

The Ember Run Loop
from the inside

4 /

Next question - how are these jobs executed? The internals

of the Ember run loop consist of six different queues that

are ready to accept jobs. Each is responsible for a different

kind of job:

•	 sync for synchronization of bindings (e.g. between 	

 controller and components in the template)

•	 action for handling actions and promises

•	 routerTransitions for transitions

•	 render for rendering templates

•	 afterRender for any job that must be performed after 	

 rendering

•	 destroy for handling garbage

http://netguru.co
https://twitter.com/netguru
https://www.facebook.com/netguru
https://netguru.co/newsletter
http://on.netguru.co/workshops
https://www.linkedin.com/company/netguru

11© netguru.co

The Ember Run Loop from the inside4 /

I’ve listed them in order of execution. However, this order

is not so straightforward. After you sync the bindings in the

first queue, it is very likely that our action code will generate

new bindings that will be batched to the run loop sync queue

and thus skip execution. If the algorithm simply executes the

queues in the order they are listed, until all of them are empty,

we won’t get the performance improvement that we want

- rendering will still happen multiple times.

Therefore, the algorithm for execution returns to the first

queue after flushing each of them and checks for any

new jobs. Of course, there still might be some jobs in the

 afterRender or destroy queues that will break the

concept and add some bindings, leading to re-rendering the

DOM again in the same run loop. But this is very uncommon

and is mostly the result of bad code or intended behaviour

- we will return to this later.

I hope that the foundations of the Ember run loop mechanism

are now much clearer. In the next section I will cover some

examples that will clarify the concepts I described.

http://netguru.co

12© netguru.co

Run, run loop, run
- a few examples

5 /

The Ember run loop provides a very interesting API which can

give you full control over your code execution.

Firstly, I will cover some of the most common methods used

from the Ember Run namespace. I’ve intentionally divided

them into two blocks - schedulers and wrappers.

The schedulers provide the ability to schedule passed

functions in the existing run loop, while the wrappers wrap the

passed function in a completely new instance of Ember run

loop. Yup, that’s not a typo - run loop is not a singleton and

Ember can have multiple run loop instances at once. However,

each opened instance blocks the execution of its parent until

all of its queues are flushed (examples coming up soon!).

http://netguru.co
https://twitter.com/netguru
https://www.facebook.com/netguru
https://netguru.co/newsletter
http://on.netguru.co/workshops
https://www.linkedin.com/company/netguru

13© netguru.co

Run, run loop, run - a few examples5 /

 A / Schedulers

•	 Ember.run.schedule allows you to schedule a passed func-

tion to the exact queue pointed out in the first argument.

•	 Ember.run.once allows you to schedule a passed function

(cannot be anonymous!) by default to the actions queue

and makes sure that this function won’t be executed more

than once in the current run loop instance.

•	 Ember.run.debounce works the same as jQuery debounce

but is run loop compliant. Executes a passed function after

a specified time and resets the timer every time it’s called

again. This means that the passed function won’t be

executed in the current run loop - the minimum time that can

pass is one millisecond. However, it will be executed in fu-

ture and all of its Ember API methods will be properly sched-

uled. Please note that the passed function cannot

be anonymous!

•	 Ember.run.throttle allows you to execute a passed func-

tion immediately and ensures that during a defined period

of time it won’t be executed again in any existing run loops.

Again, the passed function cannot be anonymous!

http://netguru.co
http://emberjs.com/api/classes/Ember.run.html#method_schedule
http://emberjs.com/api/classes/Ember.run.html#method_once
http://emberjs.com/api/classes/Ember.run.html#method_debounce
http://emberjs.com/api/classes/Ember.run.html#method_throttle

14© netguru.co

Run, run loop, run - a few examples5 /

B / Wrappers

•	 Ember.run just wraps the passed function in a new

instance of Ember run loop. It freezes execution of the

current run loop until all the jobs queued during execution

of the passed function are flushed.

•	 Ember.run.next wraps the passed function in a new

instance of Ember run loop that will be executed after one

millisecond (again, the smallest period of time between

handling events), i.e., the next possible run loop.

•	 Ember.run.bind is a very powerful method that is used

to embrace external JS libraries. It takes the passed

function and context and returns a function that, when

executed, will execute the passed function with proper

context and wrapped by a new instance of Ember run loop.

http://netguru.co
http://emberjs.com/api/classes/Ember.run.html
http://emberjs.com/api/classes/Ember.run.html#method_next
http://emberjs.com/api/classes/Ember.run.html#method_bind

15© netguru.co

Run, run loop, run - a few examples5 /

Last, but not least, I would like to share with you one private

Ember API method that might be useful. Ember.run.sync

is a method that explicitly makes the current Ember run

loop completely flush the sync queue. This is synchronous

execution and in the next line of code, the sync queue

will be empty, so you can be sure that all the bindings

are in the proper places.

This method can be useful, but remember that private

is private and it could easily be changed in the future.

C / Examples based on Ember 1.7 - for more
advanced code tricks

The next few examples will be based on Ember 1.7 - quite

an old version. However, this Ember distribution is not

a regular one, but modified to log every interesting thing about

the run loop - when it starts, what it does and when it ends.

This implementation is prepared by @eoinkelly - check out

his full tutorial about the run loop. I prepared a JSBin with this

working noisy run loop, with mouse move events removed

from run loop triggers. Take a look if you want to try out some

more complex ideas.

http://netguru.co
http://emberjs.com/api/classes/Ember.run.html#method_sync
https://github.com/eoinkelly
https://github.com/eoinkelly/ember-runloop-handbook
http://jsbin.com/gekone/3/edit

16© netguru.co

Run, run loop, run - a few examples5 /

C / i / Nested run loops

To help you better understand how the run loop is just

a regular object, instantiated on demand, imagine how

nesting run loops might look like in the following situation:

When the user clicks anywhere on the controller template,

we open a new run loop instance and pass an anonymous

function which logs that it started executing. Then we open

the next run loop and do the same.

Example #4

this.$().click(function() {
 Ember.run(function () {
 Ember.debug(‘In my own runloop’);
 $(‘body’).css(‘background-color’, ‘pink’);
 Ember.run(function () {
 Ember.debug(‘In a nested runloop’);
 $(‘body’).css(‘background-color’, ‘red’);
 });
 });

 Ember.run(function () {
 Ember.debug(‘In another of my own runloops’);
 $(‘body’).css(‘background-color’, ‘yellow’);
 });
});

http://netguru.co

17© netguru.co

Run, run loop, run - a few examples5 /

To understand how this works, it’s helpful to use a noisy

run loop and let the run loop tell us what it does.

It turns out that opening a new run loop inside the other one

freezes the parent’s execution. As soon as all the queues

in the nested run loop are flushed, execution returns to

the upper run loop. Notice that when the stack enters

the nested run loop, almost nothing from its parent

was executed - all the code was just queued, waiting to be

executed. Don’t forget about this - it can cause headaches!

C / ii / Scheduling algorithm

I have analyzed the algorithm that underlies the Ember run

loop. This algorithm, though simple, is an extremely important

part of the mechanism. It tries to make sure that rendering

(the most expensive action) is executed only once. However,

there might be situations where you need to make sure that

something happens after rendering.

Open in JSbinFin out how it works

http://netguru.co
http://jsbin.com/magawa/1/edit

18© netguru.co

Run, run loop, run - a few examples5 /

Your actions after rendering may introduce new bindings

which should be synced. Let’s look at how this works out

in a simple example:

As you can see, in the action handler you schedule an

anonymous function into the afterRender queue, which, in turn,

schedules back to the sync queue. If you go to a live demo

below, you can see in the console what actually happens. The

run loop, after initially flushing all the queues from the sync to

afterRender, goes back to the sync queue. Don’t forget - the

Ember run loop is safe to schedule in any queue. You can be

sure your job will be done.

Open in JSbinScheduling example

Example #5

actions: {
 scheduleTasks: function() {
 Ember.run.schedule(‘afterRender’, this, function()
 console.log(“CUSTOM: I’m in afterRender”);
 Ember.run.schedule(‘sync’, this, function() {
 console.log(“CUSTOM: I’m back in sync”);
 });
 });
 }
}

http://netguru.co
http://jsbin.com/higepu/1/edit?html,js,output

19© netguru.co

Run, run loop, run - a few examples5 /

D / Example of using Ember.run.sync()

The following example is tricky. It does not adhere to the

data-down-action-up convention and it’s not good practice

for your project. But it’s a great illustration of how sync works.

Let’s imagine you have a component with an input field.

You use jQuery to handle a change event on that input.

In that handler, properly wrapped in a run loop, you set

an internal component value and send the action up

to the controller that it’s inside.

Example #6

App.SomeValueComponent = Ember.Component.extend({
 valueChanged: function(val) {
 this.set(‘value’, val);
 this.sendAction(‘valueChange’);
 },

 didInsertElement: function() {
 this.$(“input”).on(“keyup”, Ember.run.bind(this, function() {
 this.valueChanged(this.$(“input”).val());
 }));
 }
});

http://netguru.co

20© netguru.co

Run, run loop, run - a few examples5 /

The controller handles this action and logs the mentioned

component value through a binding called value .

What happens after each change and what is the log output

from the controller? If you take a at an excample below,

you’ll see that after each key click, the log output lags

by one character.

Why? To understand what’s going on you have to look

in the Ember codebase, in particular - its implementation

of sendAction . It turns out that sendAction is executed

synchronously, right after it shows up in the code.

Open in JSbinEmber.run.sync() example

Example #7

App.IndexController = Ember.Controller.extend({
 actions: {
 handleChange: function() {
 console.log(this.get(“value”));
 }
 },
});

http://netguru.co
http://jsbin.com/yinaju/2/edit?js,console,output

21© netguru.co

Run, run loop, run - a few examples5 /

This is a little bit confusing. Even though the code which

it is inside is wrapped in Ember queues, the console log is

immediate and is always late one run loop iteration because

of the still-unsynced binding between component

and controller.

How can you bypass this problem? Well, you could send that

value as an argument of that action and take it from the args

rather than from the bindings. But I promised to show you the

sync method. Let’s add sync execution in controller and see

what happens.

As you can see, after syncing the bindings there is no delay

between the log and the actual value. Again, please note that

this design is not a good solution for your projects.

Use sync only when the design itself cannot be changed.

Open in JSbinEmber.run.sync() example

http://netguru.co
http://jsbin.com/yuleso/edit?js,console,output

22© netguru.co

Run, run loop, run - a few examples5 /

E / Example of using Ember.run.debounce

Sometimes you would like to execute some actions after

a repeated event stops firing - like scrolling or typing input. The

Ember run loop provides us with a very simple and convenient

method called debounce that works the same

as jQuery debounce, but is compliant with the run loop.

It fires the passed function after the passed time period.

If the debounce is called before the time passes, the timer

is reset. Check fully working example below.

F / Observers vs. computed properties

I have a tricky question for you: what is executed first in

the Ember run loop - observers or computed properties?

Actually, observers are synchronous and are not queued

into the Ember run loop.

Open in JSbinEmber.run.debounce example

http://netguru.co
http://jsbin.com/rafifa/1/edit?js,console,output

23© netguru.co

Run, run loop, run - a few examples5 /

They are executed right after the variable change and will

always be executed earlier than any computed property.

Let’s take a look at a simple example with an almost identical

observer and computed property:

How many times will you see the observer and computed

property logged? Check your answer! What’s happening

is that the observer is fired twice, once when firstName

is changed and once when lastName is changed.

However, the computed property will be fired only once

as both of these changes happen in one instance of run

loop and will be queued and evaluated before calculating

the computed property.

Example #8

partOfNameChanged: Ember.observer(“firstName”, “lastName”, function() {
 console.log(“[Observer]: Executing...”);
})

fullName: Ember.computed(“firstName”, “lastName”, function() {
 console.log(“[Computed property]: Executing...”);
 return (this.get(“firstName”) + “ “ + this.get(“lastName”));
})

toggleName: function() {
 this.set(“firstName”, “Foo”);
 this.set(“lastName”, “Bar”);
}

http://netguru.co
http://emberjs.jsbin.com/gisode/2/edit?html,js,console,output

24© netguru.co

Run, run loop, run - a few examples5 /

Let’s make use of what you’ve learned so far. Suppose we

need the observer to execute some action on change, but only

once in each run loop. We could do it in a computed property,

but that would be inconsistent and against convention.

Computed properties are for computing, while observers are

for reacting to changes.

Let’s use the Ember.run.once method:

Example #9

partOfNameChanged: Ember.observer(“firstName”, “lastName”, function() {
 Ember.run.once(this, “doSomeProcessing”);
})

doSomeProcessing: function() {
 console.log(“[Observer]: Executing...”);
}

fullName: Ember.computed(“firstName”, “lastName”, function() {
 console.log(“[Computed property]: Executing...”);
 return (this.get(“firstName”) + “ “ + this.get(“lastName”));
})

toggleName: function() {
 this.set(“firstName”, “Foo”);
 this.set(“lastName”, “Bar”);
}

http://netguru.co

25© netguru.co

Run, run loop, run - a few examples5 /

Check out live demo below to see the results. It’s a perfect

solution for using observers in a way compliant with the run

loop. Their synchronous nature is both a blessing and a curse.

However, with our toolset of run loop methods we can use this

to our advantage.

Open in JSbinObservers example

http://netguru.co
http://emberjs.jsbin.com/tufuyi/1/edit?html,js,console,output

26© netguru.co

Event handling outside
the Ember Run Loop

6 /

Until now, it seems that you don’t need to worry too much

about the run loop. It’s always opened on handling a user event

and all our actions are executed within it.

However, there are situations when Ember is not handling

events, but you. These can be custom event handling

(like in the former example with sync) or registration of

callbacks for AJAX calls or any other asynchronous callback.

In such cases, you simply wrap all the code to be executed

in an Ember.run instance. Which isn’t very difficult. On the

other hand, there may be situations where you want to pass

your controller or component methods to be passed

as callbacks to some external jQuery plugins.

http://netguru.co
https://twitter.com/netguru
https://www.facebook.com/netguru
https://netguru.co/newsletter
http://on.netguru.co/workshops
https://www.linkedin.com/company/netguru

27© netguru.co

Event handling outside the Ember Run Loop6 /

If you pass them as they are, first of all they won’t be executed

in a run loop and second of all, they won’t have

a proper this scope (and you want your controller or compo-

nent to be this scope, of course).

To do so, we can pass a binded method using Ember.run.bind

- it both executes the method inside a run loop and binds 	

 this scope to the controller. Take a look at this snippet

from @iStefo - select2 ember wrapper:

Ok, but what happens if you don’t wrap your code

in a run loop?

Example #10

this._select = this.$().select2(options);

// run ember bindings on after select2 `change` event
this._select.on(“change”, run.bind(this, function() {
 var data = this._select.select2(“data”);
 this.selectionChanged(data);
}));

http://netguru.co
https://github.com/iStefo
https://github.com/iStefo/ember-select-2

28© netguru.co

Autoruns and their
implications

7 /

To rephrase the question - can we schedule jobs to the run

loop while it is not running? Take a look at following snippet:

The answer is yes, you can. Ember has a mechanism called

autorun that initiates the run loop if you try to schedule

anything while it’s not running. This simple, but powerful

mechanism has its disadvantages too. If you totally skip

explicitly starting run loops, all of them will be opened by

autorun.

Example #11

$(“a”).click(function() {
 console.log(“Doing things...”);

 Ember.run.schedule(“actions”, this, function() {
 // Do more things
 });
});

http://netguru.co
https://twitter.com/netguru
https://www.facebook.com/netguru
https://netguru.co/newsletter
http://on.netguru.co/workshops
https://www.linkedin.com/company/netguru

29© netguru.co

Autoruns and their implications7 /

However, in a testing environment, all asynchronous helpers

(like click, fillIn, visit, etc.) will wait for all run loops to flush

before going further (e.g. to asserts). If autoruns, in some

edge cases, don’t cover all the code being executed,

you end up with hard-to-debug-problems that only appear

in a testing environment.

To prevent this, run loops are switched off in testing mode,

which forces you to explicitly start run loops everywhere you

have tests written (hopefully throughout the entire app!).

This improves your experience while working in the develop-

ment mode.

Take a look at a live demo below which shows what happens

in testing mode while handling custom events. Remove the

first line Ember.testing = true; and you will return to the devel-

opment mode, where everything works fine.

Open in JSbinAutorun example

http://netguru.co
http://jsbin.com/zururisana/edit?html,js,console,output

30© netguru.co

Autoruns and their implications7 /

The next example is the same, but with the handler wrapped in

a run loop. It works in all situations, regardless of what mode

is active.

How is autorun activated? Nearly every Ember API method

is compliant with the run loop and internally schedules its re-

spective job set schedules setting and bindings,

 transitionTo schedules a transition, etc. The scheduling meth-

ods that are used in the private API are the same as the public

Ember.run.schedule method. Reading the implementation you

see that schedule checks if any autorun is running by making

use of the internal run loop references counter.

If not, it starts a new one. Fairly easy. This example

and another one will show you the topic more thoroughly.

Open in JSbinHandler wrapped in
a run loop example

http://netguru.co
https://github.com/emberjs/ember.js/blob/v1.13.3/packages/ember-metal/lib/run_loop.js#L400-403
https://github.com/emberjs/ember.js/blob/v1.13.3/packages/ember-metal/lib/run_loop.js#L639-L644
http://jsbin.com/zururisana/edit?html,js,console,output

31© netguru.co

Summary8 /

It was quite a long journey through the Ember run loop. The

main points that I hope everyone takes away from this are:

•	 The Ember run loop is a mechanism to batch and defer

actions, then execute them optimally

•	 The Ember run loop is a regular object, not a singleton

and we can have multiple run loops simultaneously

•	 Be aware of asynchronous executions of Ember API

methods

•	 Everything you do in custom handlers should be

wrapped in a run loop.

Of course, there is a lot more to know about the run loop. Most

importantly, I did not mention the implementation details.

If you would like to know more about the Ember Run Loop,

you can check out the following links:

•	 Ember Run Loop in the Ember Guides

•	 Ember Run Loop API Reference

http://netguru.co
http://guides.emberjs.com/v1.10.0/understanding-ember/run-loop/
http://emberjs.com/api/classes/Ember.run.html
https://twitter.com/netguru
https://www.facebook.com/netguru
https://netguru.co/newsletter
http://on.netguru.co/workshops
https://www.linkedin.com/company/netguru

32© netguru.co

Summary8 /

•	 Ember Run Loop Handbook

•	 Backburner.js and the Ember Run Loop

•	 What is the Ember Run Loop and how does it work?

Finally, you can check out the presentation that I prepared

for the internal webinar at netguru, on which this guide was

based. It took me a lot of time to understand the run loop

and I want to share this knowledge.

http://netguru.co
https://github.com/eoinkelly/ember-runloop-handbook
http://talks.erikbryn.com/backburner.js-and-the-ember-run-loop/#/
http://stackoverflow.com/questions/13597869/what-is-ember-runloop-and-how-does-it-work
http://slides.com/jniechcial/ember-run-loop/

33© netguru.co

About9 /

		 Jakub Niechciał

Jakub has obtained a Master’s degree at Poznań
University of Technology in Control Engineering
and Robotics. During the studies, he dealt with
computer vision and machine learning. He also
spent almost two years working as a front-end
developer using CSS and jQuery, but eventually
skipped to Ruby on Rails and stayed in back-end
for real. In 2014, while working at Netguru, he
discovered Ember.js and React.js and has found
a lot of fun diving deep into these two frameworks.
He loves biking, watching HBO’s TV-series
and drum’n’bass music.

We are an Agile web and mobile development team.
Netguru web developers build lean and beautiful
websites and applications for early-stage startups to
major corporations around the world. For any ordered
project, we also provide design services with the best
UX practices in mind. Our goal is to create experience
that delivers outstanding results on each medium.
As an employer of more than 130 awesome folks, we
believe in transparency and flexibility. Our teams work
remotely from more than 10 international locations.
We are in the constant search for the best specialists
to join us in developing new exciting projects.
Hope you enjoyed your read! Now join us:

http://netguru.co
https://twitter.com/netguru
https://twitter.com/netguru
https://www.facebook.com/netguru
https://netguru.co/newsletter
http://on.netguru.co/workshops
https://www.linkedin.com/company/netguru

34© netguru.co

Sign up for our monthly
Newsletter

Once a month we send out a free newsletter with a roundup

of startup, design and web dev tips, tricks and resources

curated from across the web.

Subscribe Me

Join more than 5000 subscribers!

http://netguru.co
https://twitter.com/netguru
https://twitter.com/netguru
https://www.facebook.com/netguru
https://netguru.co/newsletter
http://on.netguru.co/workshops
https://www.linkedin.com/company/netguru
http://on.netguru.co/newsletter

