Laboratory Corrosion Testing: Realism and Reproducibility with Modern Methods

Click <u>here</u> to view the 8 AM presentation Click <u>here</u> to view the 12 PM presentation

Q-Lab Corporation

Sean Fowler, Technical Director

1

Topics

- Types of Accelerated tests
- Continuous Salt Spray (Neutral & Acidified)
- Wet/Dry Cyclic Tests
- First-Generation Cyclic Automotive Tests
- Modern Corrosion Test Methods

Types of Accelerated Tests

Accelerated Test Type	Result	Test Time	Results compared to	Research? Development? Certification?
Quality Control	Pass / fail	 Defined Short	Material specification	Certification & Research
Qualification / validation	Pass / fail	DefinedMedium-long	Reference material or specification	Certification & Development
Correlative	Rank-ordered data	 Open-ended Medium	Natural exposure (Benchmark site)	Development
Predictive	Service life Acceleration factor	 Open-ended Long	Natural exposure (Service environment)	Development & Warranty Contracts

Continuous Salt Spray Salt Fog Environment

Continuous Salt Spray ASTM B117

ASTM B117 is the most widely-used corrosion standard today, primarily for quality control and metallic/conversion coatings

Continuous Salt Spray ASTM B117

- 5% NaCl salt fog at 35°C
- Neutral pH
- Fine mist (atomized with compressed air) sprayed indirectly onto specimens
- ISO 9227 contains the same test
- When correctly followed, test has reasonable repeatability and reproducibility

Limitations of Salt Spray

- Not a good simulation of most service environments
- Typically produces different corrosion products than natural exposure
- Poor rank order correlation with outdoor corrosion

Q: What type of accelerated test is this?

Modern Corrosion Testing

Wet/Dry Cyclic Tests Prohesion (*Pro*tection is Ad*hesion*)

- Alternating spray and dry-off
- Development began in England, 1960's
- Dilute NaCl, (NH₄)₂SO₄
- American Architectural Manufacturers Association recently replaced ASTM B117 with this test in AAMA 2605, "Superior" coatings on aluminum

Combined Corrosion/Weathering

- As a coating degrades from UV exposure, its ability to protect against corrosion is reduced
- Sherwin Williams developed a UV + Corrosion combined cycle in the 1980's to test this

Combined Corrosion/Weathering vs Outdoors

ASTM D5894 - QUV & Q-FOG for 2000 hrs

27 months outdoor marine environment

Outdoor

Wet/Dry Cyclic Test Case Study SSPC (Society for Protective Coatings)

- 15 different systems
- Outdoor vs. accelerated
 - 31 months
- Accelerated tests
 - Salt spray 5%
 - Prohesion
 - 2 types of cyclic immersion
 - Combined corrosion/ weathering

SSPC Test Results

Laboratory Test Method	Correlation w/Severe Marine Environment
Conventional Salt Spray	-0.11
Prohesion	0.07
Cyclic Immersion Procedures	0.48
Cyclic Immersion with UV Procedure	0.61
Combined Corrosion/ Weathering Cycle	0.71

- Conventional salt spray and Cyclic results effectively random!
 - Good correlation from combined test

Wet/Dry Cyclic Tests Limitations

- Poor repeatability and reproducibility
- Poor correlation in some cases
 - Automotive
 - Industrial maintenance coatings on steel
- Attempts to improve correlation & repeatability include...
 - Wet bottom (water retained at chamber bottom)
 - Changing temperature of bubble tower
 - Both are crude "workarounds" for poor RH control technology

First-Generation Cyclic Automotive Tests

Salt Fog → Dry-Off → Wetting (Humid)

Wetting specimens after dry-off reinitializes corrosion

First-Generation Cyclic Automotive Tests

Salt Fog → Dry-Off → Wetting (Humid)

Example: GM 9540P

- NaCl and CaCl₂ to simulate road salts
- Solution applied by direct Spray, not Fog
- Salt spray applied intermittently in "ambient" conditions
- Use of **corrosion coupons** to minimize test variability
- SAE & American Iron & Steel Institute rated this method best predictor of outdoor performance in 1991

First-Gen Cyclic Corrosion test

Limitations of First Generation CCT Poor Repeatability and Reproducibility!

- Different corrosion chambers give different results
- Huge variations in corrosion rates between different metals from test to test

Case Study SAE J2334

- Transition times are not specified
- Coupon use is encouraged but no mass loss limits are included
- Some companies have implemented J2334 with their own mass loss limits

SAE J2334

Cosmetic Corrosion LabTest Cycles SAE J2334 - 5 Day/Week - Manual Operation

Cosmetic Corrosion LabTest Cycles SAE J2334 - 7 Day/Week - Automatic Operation

SAE J2334 Coupon Mass Loss

Green and blue bars represent two different J2334 tests

Corrosion rates Galvanic corrosion Deliquescence of salts Influence of relative humidity

Automotive Tests & Road Salt

- Salts *deliquesce* they absorb moisture from the atmosphere until they dissolve and form a solution.
- All soluble salts will liquefy for RH values <100%
- This leads to increased **time of wetness** and increased **corrosion**

Deliquescence Relative Humidity (DRH) Examples

Salt	DRH
Potassium Chloride (KCl)	85%
Sodium Chloride (NaCl)	76%
Calcium Chloride (CaCl ₂)	31%

if the environment is above this RH, a liquid salt solution will form

Relative Humidity & Corrosion

- Corrosion accelerates once it starts
 - Formation of complex oxides
 - Wet time increases as new oxides form
- Salts deliquesce at different RH values
- Formation of liquid solutions affects corrosion by creating a galvanic couple

Galvanic Corrosion

- Affects products made from metals
 - Steel
 - Aluminum
 - Magnesium alloys
- Organic & Inorganic Protective Coatings

Galvanic Corrosion

Modern Corrosion Testing

Relative Humidity and Corrosion Stainless steel and Al example

Condition	RH Range	Result	
Dry	≤ 50%	Very little corrosion from NaCl	
Electrolytic cells around salt crystals; film formation as RH increases	50-76%	 Corrosion of steel (maximum corroded area ~70% RH) and aluminum AL-Steel galvanic couple broken 	
Uniform Electrolytic Film formation	≥76%	 Maximum cathode area for steel; deeper non-uniform corrosion Al corrosion in galvanic couple with steel 	

Relative Humidity and Corrosion Controlling Step Transition Times

"Linear" transition

- Specify Time in test cycle to change test conditions
- Tester adjusts temperature & RH for linear transition from beginning to end of ramp time

"Less Than" transition

- Specify Time in test cycle to change test conditions
- Tester attempts to achieve conditions within specified time effectively as fast as possible
- Fast "less than" transition times (e.g. JASO M609) designed to minimize test variability...

SAE J2334 Results

Green bars represent test under slow dry-off conditions

Blue bars represent test under quick dry-off conditions

Red lines represent tolerance of OEM standard

Under the quick dry test, the coated panels once again passed the test

Modern Corrosion Testing

SAE J2334 Quick Dry-Off

Zoomed in view of the transition

During the transition the time above the Deliquescence RH of NaCl is about 10 minutes

JASO M609 (Rapid Transitions)

Fast transition times designed to improve Reproducibility but...

Very limited time in critical RH zone of 50-90%!

First generation cyclic automotive methods: what was missing?

- Lack of comprehensive RH control
 - Conditions limited to full wetting, dry, uncontrolled room/ambient
 - No control of RH transition times used
 "workarounds" like fast transition times
 - Variable specimen dry-off rates
 - No RH values in critical transition zones (DRH)
- Slow application of salt solution (fog)
 - Little time for dry-off and re-wetting of specimens

Modern Corrosion Tests Salt Fog/Shower; Dry-Off; Controlled RH

- High-volume spray for faster, controllable specimen wetting
- Precise control of transition times
- Precise control of Relative Humidity

Modern Automotive Corrosion Tests

Fog

- Toyota TSH1555G
- VDA 233-102
- Renault D17 2028 (ECC1)

Shower

- GMW 14872
- Volvo ACT 1
- ISO 16701
- Volvo ACT 2/ Ford L-467

Corrosion Test Control Pluviometry

Maximum Collection Rate Per Hour

Environmental Transitions in Today's Standards: Two Approaches

- Rapid (e.g. <30 minutes wet to dry)
- Japanese Car
 Companies
- CCT I, II, IV, JASO M609
- Renault ECC1

Controlled/Linear

- Volvo ACT1
- Volvo ACT2/Ford L-467
- GMW 14872
- Renault ECC1
- VDA 233-102

Volvo VCS 1027, 1449 (ACT-II)/Ford L-467

Modern Corrosion Testing

Corrosion Test Control Air Pre-Conditioner

- Accurate control of "ambient" conditions
- Accurate Ramping of Temperature & Humidity

Performance Improvement with Air Preconditioner

42

Modern Corrosion Testing

Corrosion Test Operational Range

Modern Corrosion Testing

Conclusions

- Salt spray tests are good pass/fail screening tests
- Wet/Dry tests are good comparative tests for some systems but not repeatable
- Combined weathering / corrosion cycles can provide good outdoor correlation for some materials
- First-generation cyclic automotive tests are comparative tests but not repeatable
- Modern automotive corrosion tests are more realistic and offer better repeatability and reproducibility

Thank you for your attention!

Questions?

info@q-lab.com

Modern Corrosion Testing

