
Case Study:
Build Your Own Recommendation

System for Movies

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CASE STUDY: BUILD YOUR OWN RECOMMENDATION

COURSE, DATA SCIENCE AND BIG DATA ANALYTICS:

WHAT WILL YOU GET
OUT OF THIS CASE STUDY?

This case study is extracted from MIT’s online
course for professionals, Data Science and Big Data
Analytics: Making Data Driven Decisions.

After going through this case study, you’ll be able to:

• Analyze data to develop your own version of a
recommendation engine, which forms the basis
of content systems used at companies like
Netflix, Pandora, Spotify, etcetera

• Experience a hands-on approach to advance
your data science skills

• Access to a series of resources and tools,
including sample data basis, that will enable you
to build your recommendation system

• Get a sneak peak at the content included in
MIT’s online professional course on data science

IMPORTANT:

Don’t get discouraged if some of the

steps described seem too complicated!

Remember, this is an extract of the online

course that will provide you with all the

background necessary to successfully

complete this case study.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CASE STUDY: BUILD YOUR OWN RECOMMENDATION

COURSE, DATA SCIENCE AND BIG DATA ANALYTICS:

MEET YOUR INSTRUCTOR, PROF. DEVAVRAT SHAH

WHY THIS CASE STUDY?

By following some simple steps, you can develop
your own version of a recommendation engine,
which forms the basis of several content
recommendation systems, e.g. Netflix, Pandora,
Spotify etc. You can now apply this acquired skill to
all sorts of domains of your choice, e.g. restaurant
recommendations.

Self-Help Documentation: In this document, we
walk through some helpful tips to get you started
with building your own Recommendation engine
based on the case studies discussed in the
Recommendation systems module. In this tutorial,
we provide examples and some pseudo-code for
the following programming environments: R, Python.

Time Required: The time required todo this activity
varies depending on your experience in the
required programming background. We suggest to
plan somewhere between 1 & 3 hours. Remember,
this is an optional activity for participants looking for
hands-on experience.

Before You Start: Watch this video! It’s taken also
from the course and it provides context and
knowledge you will need to complete this activity
 If link above doesn’t work, copy and paste this on
your browser:

As a professor in the department of electrical
engineering and computer science at MIT, Dr. Shah’s
current research is on the theory of large complex
networks. He is a member of the Laboratory for
Information and Decision Systems and the Director
the Statistics and Data Science Center in MIT
Institute for Data, Systems, and Society. Dr. Shah
received his Bachelor of Technology in Computer
Science and Engineering from the Indian Institute
of Technology, Bombay, in 1999. He received the
Presidents of India Gold Medal, awarded to the
best graduating student across all engineering
disciplines. He received his Ph.D. in CS from
Stanford University. His doctoral thesis won the
George B. Dantzig award from INFORMS for best
dissertation. In 2005, he started teaching at MIT.
In 2013, he co-founded Celect, Inc.

DISCLAIMER:

This case study will require some prior knowledge and experience with the programming language you choose to use for reproducing case

study results. Generally, participants with 6 months of experience using “R”or“Python” should be successful ingoing through these exercises.

MIT is not responsible for errors in these tutorials or in external, publicly available data sets, code, and implementation libraries. Please note

that any links to external, publicly available websites, data sets, code, and implementation libraries are provided as a courtesy for the student.

They should not be construed as an endorsement of the content or views of the linked materials.

Co-director of the MIT online course Data Science and Big Data Analytics:

Making Data Driven Decsions

https://www.youtube.com/watch?v=8SsY0Pmrzjg&feature=youtu.be
https://www.python.org/downloads/
https://www.youtube.com/watch?v=8SsY0Pmrzjg&feature=youtu.be

CASE STUDY: BUILD YOUR OWN RECOMMENDATION

COURSE, DATA SCIENCE AND BIG DATA ANALYTICS:

INTRODUCTION

 1 GETTING THE DATA

In this document, we walk through some helpful
tips to get you started with building your own
Recommendation engine based on the case
studies discussed in the Recommendation systems
module. In this tutorial, we provide examples and
some pseudo-code for the following programming
environments: R, Python. We cover the following:

For this tutorial, we use the dataset(s) provided by
MovieLens. MovieLens has several datasets. You
can choose any. For this tutorial, we will use the
100K dataset dataset. This dataset set consists of:

Download the "u.data" file. To view this file you can
use Microsoft Excel, for example. It has the following
tab-separated format: user id | item id | rating |
timestamp. The timestamps are in Unix seconds
since 1/1/1970 UTC, EPOCH format.

Remember to watch this video first:

• 100,000 ratings (1-5) from 943 users
on 682 movies.

• Each user has rated at least 20 movies.
• Simple demographic info for the users

(age, gender, occupation, zip)

 2 WORKING WITH THE DATA SET

The first task is to explore the dataset. You can do
so using a programming environment of your choice,
e.g. Python or R.

In R, you can read the data by simply calling the
read.table() function:
 data = read.table('u.data')
You can rename the column names as desired:

 olnames(data) = c("user_id", "item_id", "rating", "timestamp")
Since we don't need the timestamps,
we can drop them:

 data = data[, -which(names(data) %in% c("timestamp"))]
You can look at the data properties by using:

 str(data)
 summary(data)

Plot a histogram of the data:
 hist(data$rating)

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Getting the data
Working with the dataset
Recommender libraries in R, Python
Data partitions (Train, Test)
Integrating a Popularity Recommender
Integrating a Collaborative Filtering Recommender
Integrating an Item-Similarity Recommender
Getting Top-K recommendations
Evaluation: RMSE
Evaluation: Confusion Matrix/Precision-Recall

https://www.youtube.com/watch?v=8SsY0Pmrzjg&feature=youtu.be
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/100k/
http://files.grouplens.org/datasets/movielens/ml-100k/
https://www.unixtimestamp.com/index.php

CASE STUDY: BUILD YOUR OWN RECOMMENDATION

COURSE, DATA SCIENCE AND BIG DATA ANALYTICS:

DATA SPARSITY

The dataset sparsity can be calculated as:

If you want the data to be less sparse, for example,
a good way to achieve that is to subset the data
where you only select Users/Movies that have at
least a certain number of observations in the dataset.

Number of Ratings in the Dataset

 (Number of movies/Columns) * (Number of Users/Rows)
Sparsity = * 100%

In Python, you can convert the data to a Pandas
dataframe to organize the dataset. For plotting in
Python, you can use MatplotLib. You can do all the
operations above (described for R), in Python using
Pandas in the following way:
 import matplotlib as mpl
 mpl.use('TkAgg')
 from matplotlib import pyplot as plt
 import pandas as pd
 import numpy as np

 col_names = ["user_id", "item_id", "rating", "timestamp"]
 data = pd.read_table(“u.data”, names=col_names)
 data = data.drop(“timestamp”, 1)
 data.info()

 plt.hist(data[“rating”])
 plt.show()

In R, you can calculate these quantities as follows:
 Number_Ratings = nrows(data)
 Number_Movies = length(unique(data$item_id))
 Number_Users = length(unique(data$user_id))

In Python, while using Pandas, can you do the same:
 Number_Ratings = len(data)
 Number_Movies = len(np.unique(data[“item_id”]))
 Number_Users = len(np.unique(data[“user_id”]))

http://pandas.pydata.org/
https://matplotlib.org/

CASE STUDY: BUILD YOUR OWN RECOMMENDATION

COURSE, DATA SCIENCE AND BIG DATA ANALYTICS:

In R, for example, if you wanted to subset the data
such that only users with 50 or more ratings
remained, you would do the following:

 data = data[data$user_id %in% names(table(data$user_id))
 [table(data$user_id) > 50] ,]

 3 RECOMMENDERS

If you want to build your own Recommenders from
scratch, you can consult the vast amounts of
academic literature available freely. There are also
several self-help guides which can be useful, such
as these:

• Collaborative Filtering with R;
• How to build a Recommender System;

On the other hand, why build a recommender from
scratch when there is a vast array of publicly
available Recommenders (in all sorts of
programming environments) ready for use? Some
examples are:

• RecommenderLab for R;
• Graphlab-Create for Python (has a free license

for personal and academic use);
• Apache Spark's Recommendation module;
• Apache Mahout;

For this tutorial, we will reference RecommenderLab
and Graphlab-Create.

 4

A random split can be created in R and Pandas
(Python).

In R, you can do the following to create a 70/30 split
for Train/Test:

 library(caTools)
 spl = sample.split(data$rating, 0.7)
 train = subset (data, spl == TRUE)
 test = subset (data, spl == FALSE)

In Pandas (Python), using the SciKit-Learn library,
we can do the same via:

 import pandas as pd
 import numpy as np
 from sklearn.cross_validation import train_test_split
 # assuming pdf is the pandas dataframe with the data
 train, test = train_test_split(pdf, test_size = 0.3)

Alternatively, one can use the Recommender libraries
(discussed earlier) to create the data splits.

For RecommenderLab in R, the documentation in
Section 5.6 provides examples that will allow random
data splits.

Graphlab's Sframe objects also have a random_split()
function which works similarly.

 5 POPULARITY RECOMMENDER

RecommenderLab, provides a popularity recom-
mender out of the box. Section 5.5 of the Recom-
menderLab guide provides examples and sample
code to help do this.

GraphLab-Create also provides a Popularity Recom-
mender. If the dataset is in Pandas, it can easily
integrate with GraphLab's Sframe datatype as noted
here. Some more information on the Popularity
Recommender and its usage is provided on the
popularity recommender’s online documentation.

http://www.salemmarafi.com/code/collaborative-filtering-r/
https://blogs.gartner.com/martin-kihn/how-to-build-a-recommender-system-in-python/
https://cran.r-project.org/web/packages/recommenderlab/vignettes/recommenderlab.pdf
https://pypi.org/project/GraphLab-Create/
https://spark.apache.org/docs/1.4.0/api/python/pyspark.mllib.html#module-pyspark.mllib.recommendation
https://mahout.apache.org/users/recommender/userbased-5-minutes.html
https://cran.r-project.org/web/packages/recommenderlab/vignettes/recommenderlab.pdf
https://turi.com/products/create/docs/generated/graphlab.SFrame.html
https://cran.r-project.org/web/packages/recommenderlab/vignettes/recommenderlab.pdf
https://turi.com/products/create/docs/generated/graphlab.recommender.item_similarity_recommender.ItemSimilarityRecommender.html
https://turi.com/products/create/docs/generated/graphlab.recommender.popularity_recommender.PopularityRecommender.html

CASE STUDY: BUILD YOUR OWN RECOMMENDATION

COURSE, DATA SCIENCE AND BIG DATA ANALYTICS:

 6 COLLABORATIVE FILTERING

Most recommender libraries will provide an imple-
mentation for Collaborative Filtering methods. The
RecommenderLab in R and GraphLab in Python both
provide implementations of Collaborative Filtering
methods, as noted next:

For RecommenderLab, use the "UBCF" (user-based
collaborative filtering) to train the model, as noted in
the documentation.

For GraphLab, use the "Factorization Recommender".

Often, a regularization parameter is used with these
models. The best value for this regularization para-
meter is chosen using a Validations set. Here is how
this can be done:

1. If the Train/Test split has already been performed
(as detailed earlier), split the Train set further
(75%/25%) in to Train/Validation sets. Now we have
three sets: Train, Validation, Test.

of the regularization parameter (usually in the range:
(1e-5, 1e-1).

3. Use the Validation set to determine which model
results in the lowest RMSE (see Evaluation section
below).

4. Use the regularization value that corresponds to
the lowest Validation-set RMSE (see Evaluation
section below).

5. Finally, with that parameter value fixed, use the
trained model to get a final RMSE value on the
Test set.

6. It can also help plotting the Validation set RMSE
values vs the Regularization parameter values to
determine the best one.

IMPORTANT:

Don’t get discouraged if some of the steps described seem too

complicated! Remember, this is an extract of the online course that

will provide you with all the background necessary to successfully

complete this case study.

 7 ITEM SIMILARITY FILTERING

Several recommender libraries will also provide
Item-Item similarity based methods.

For RecommenderLab, use the "IBCF" (item-based
collaborative filtering) to train the model.

For GraphLab, use the "Item-Item Similarity Recom-
mender".

Item Similarity recommenders can use the "0/1"
ratings model to train the algorithms (where 0 means
the item was not rated by the user and 1 means it
was). No other information is used. For these types
of recommenders, a ranked list of items recom-
mended for each user is made available as the
output, based on "similar" items. Instead of RMSE, a
Precision/Recall metric can be used to evaluate the
accuracy of the model (see details in the Evaluation
Section below).

Based on scores assigned to User-Item pairs, each
recommender algorithm makes available functions
that will provide a sorted list of top-K items most
highly recommended for each user (from among
those items not already rated by the user).

https://cran.r-project.org/web/packages/recommenderlab/vignettes/recommenderlab.pdf
https://turi.com/products/create/docs/generated/graphlab.recommender.factorization_recommender.FactorizationRecommender.html
https://turi.com/products/create/docs/generated/graphlab.recommender.item_similarity_recommender.ItemSimilarityRecommender.html

CASE STUDY: BUILD YOUR OWN RECOMMENDATION

COURSE, DATA SCIENCE AND BIG DATA ANALYTICS:

In RecommenderLab, the parameter type='topNlist'
to the evaluate() function will produce such a list.

In GraphLab, the recommend(K) function for each
type of recommender object will do the same.

For RecommenderLab, the getConfusionMatrix
(results), where results is the output of the evaluate()
function discussed earlier, will provide the True
Positives, False Negatives, False Positives and True
Negatives matrix from which Precision and Recall
can be calculated.

In Graphlab, the following function will also produce
the Confusion Matrix: evaluation.confusion_matrix().
Also, if comparing models, e.g. Popularity Recom-
mender and Item-Item Similarity Recommender, a
precision/recall plot can be generated by using the
following function:
recommender.util.compare_models(metric='precion
_recall'). This will produce a Precision/Recall plot
(and list of values) for various values of K (the
number of recommendations for each user).

Once the model is trained on the Training data, and
any parameters determined using a Validation set,
if required, the model can be used to compute the
error (RMSE) on predictions made on the Test data.

RecommenderLab in R, uses the predict() and
calcPredictionAccuracy() functions to compute the
predictions (based on the trained model) and
evaluate RMSE (and MSE and MAE).

GraphLab in Python, also has a predict() function to
get predictions. It provides a suite of functions to
evaluate metrics such as rmse (evaluation.rmse(),
for example).

 10 EVALUATION: PRECISION/RECALL, CONFUSION

For the top-K recommendations based evaluation,
such as in Item Similarity recommenders, we can
evaluate using a Confusion Matrix or Precision/
Recall values. Specifically,

 MATRIX

• Precision: out of K top recommendations, how
many of the true best K songs were recommended.

• Recall: out of the K best recommendations, how
many were recommended.

WANT TO KEEP LEARNING?

Enroll by September 30th

https://xpro.mit.edu/courses/course-v1:xPRO+DSx/
https://en.wikipedia.org/wiki/Root-mean-square_deviation
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Precision_and_recall

