
UX PERFORMANCE
UX Performance Integrated into the Continuous Testing Pipeline

INTRODUCTION

A PERFORMANCE SHIFT

Contents

03

CONTINUOUS UX PERFORMANCE TESTING
08

Speed Index
12

Speed and Beyond
05

Transaction - Subset of Functional Test
11

Requirements for Continuous UX Performance
09

CPU
14

06

KEY UX PERFORMANCE METRICS
12

Performance Testing as Part of Functional Testing
10

Memory
14

Battery
14

MEANINGFUL METRICS
14

15

ANALYSIS AND DEBUG
16

SUMMARY
18

Transaction & Pipeline

UX Performance Integrated into the Continuous Testing Pipeline

Digital experiences are front and center in
a modern organization’s business strategy.
Application and website performance
has a huge impact on digital customer
experience, which directly affects business
results. Poor user experience performance
drives customers away and negatively
affects the bottom line, while good
performance can help attract and retain
customers. And the difference between
the two can make a significant impact on a
company’s bottom line.

Introduction

Following are some examples

UX Performance Integrated into the Continuous Testing Pipeline

3

20%

A one-second delAy in mobile loAd
times cAn impAct conversion rAtes by up

to 20% (Feb, 2019)

5 stars

App Store: While functional testing
can earn 3 stars, UX performance

testing is required to get to those 5
stars

Telefónica improved load times for its
mobile site by 70% — from 6 seconds to

only 2 seconds on 3G connections. These
improvements helped the company increase

the click-through rate by 31%

Pinterest increased search engine
traffic and sign-ups by 15% when they

reduced perceived wait times by 40%.

10%

The BBC found they lost an additional
10% of users for every additional

second their site took to load

site speed

In 2018, Google implemented site
speed as a ranking signal in its mobile

search algorithm.

31% 15%

UX Performance Integrated into the Continuous Testing Pipeline

4

https://www.thinkwithgoogle.com/marketing-resources/experience-design/mobile-site-speed-importance/
https://medium.com/@Pinterest_Engineering/driving-user-growth-with-performance-improvements-cfc50dafadd7
https://www.creativebloq.com/features/how-the-bbc-builds-websites-that-scale
https://webmasters.googleblog.com/2018/01/using-page-speed-in-mobile-search.html
https://webmasters.googleblog.com/2018/01/using-page-speed-in-mobile-search.html
https://www.thinkwithgoogle.com/intl/es-es/canales-de-publicidad/movil/como-telefonica-incremento-sus-leads-comerciales-en-movil-en-un-33-con-la-tecnologia-amp/

While speed and load time is critical to
user experience, battery life, data traffic,
memory and CPU consumption are also
important factors. Applications that are
not optimized for consumption of these
resources are often called “resources-
hogging apps” and even “ RAM, storage
or battery vampires”. An application that
hogs resources is ten times more likely to
be removed by customers.

Some examples:

	» An application feature or process that
monopolizes the CPU means that other
processes are ‘starving’ for a chance to
execute.

	» Battery life is often considered the single
most important aspect of the mobile user
experience. A device without power offers
no functionality at all. For this reason, it is
critically important that apps be as respectful
of battery life as possible.

	» Apps that hog resources or have recently
introduced (intentionally or not) a feature
that consumes too much battery immediately
risk being on “not the most” wanted
lists such as “Top Battery Draining
Apps to Avoid”. Or being featured in
an article such “Deleting This 1 App
Can Literally Double Your Phone's
Battery Life.”

Speed and Beyond

UX Performance Integrated into the Continuous Testing Pipeline

5

https://mobileinternist.com/cpu-usage-android
https://www.inc.com/john-koetsier/deleting-this-one-app-can-literally-double-your-phones-battery-life.html
esther.levine
Underline

https://techengage.com/top-battery-draining-apps-to-avoid/
https://mobileinternist.com/cpu-usage-android

It is important to distinguish between Load and UX Performance. In the past, the main
bottleneck to service performance was the backend systems, limited by physical or even
virtual servers. Loading backend servers with tools such as JMeter or LoadRunner was
the main focus of performance testing, highlighting issues related to load (scale), server
CPU usage, and similar.

Recently the focus of performance testing has shifted from backend systems to the front-
end, with the focal point being UX performance. There are two technological trends that
are driving this shift:

A Performance Shift

6

UX Performance Integrated into the Continuous Testing Pipeline

UX performance testing is designed to evaluate how
responsive and effective an application is to the
end-user under various network conditions and on
difference devices, OS and browsers.

The first is the growing adoption of elastic container technology, powered by the likes
of Docker and Kubernetes, which enable backend systems to automatically scale to any
required load. The applications using these solutions must be tested to ensure quality,
but scaling issues are less of a bottleneck than they were in the past.

The second trend is the growing complexity and size of digital applications coupled
with the growing variety in user conditions. Applications are heavier, richer and require
more resources (network and processing power). At the same time, they are used in
networks ranging from 2G to 5G, in varying degrees of coverage, and on devices differing
in their capabilities and resources.

Defining UX Performance Testing
This shift in performance testing has resulted in a focus on UX performance testing,
which measures the combined impact of the network, device, OS, and browser on the
performance of an application.

7

UX Performance Integrated into the Continuous Testing Pipeline

More organizations than ever are moving to a continuous testing model, where testing
is performed early as part of the CI/CD pipeline, also called “shift-left performance
testing”. In fact, there is a clear understanding that continuous delivery is impossible
without continuous testing.

Yet performance testing is not yet integrated throughout the testing continuum and, in
most cases, is still performed at a late stage, just before deploying to production. The
result is that issues are identified very late in the Software Development Lifecycle (SDLC)
when the cost and time of fixing them is much higher. Even worse, if organizations do
not pay attention to UX performance testing, issues may remain undetected, until they
are detected by users.

Continuous UX Performance Testing

UX Performance Integrated into the Continuous Testing Pipeline

8

Requirements for Continuous
UX Performance Testing

In continuous testing environments, tests
are performed automatically, and as the
name implies, continuously. The result is a
large amount of data that requires analysis.
Applications and tools that are capable of
analyzing this data include open source
tools such as Elasticsearch, Logstash, Kibana
and Splunk.

Effective UX Performance tests need to be
consistent in what they measure, and the
results need to be correlated with other test
data in order to enable meaningful analysis.
This methodology allows comparison of
different performance indicators as they
change across versions, builds, platforms or
networks.

In the following sections, we cover some
of the key factors that enable effective
Continuous UX Performance testing.

In addition, when carrying out functional testing, it’s clear when a single functional test
passes or fails. However, with performance testing it’s much more important to detect
small deviations or anomalies from the baseline. Building this baseline and then
identifying even slight deviations can only be undertaken when it’s done continuously
and as part of the CI/CD pipeline. Test performance data should be stored together
with other versions and test data in an analytics database.This enables comparison
of the performance of the app on a specific build to the baseline created from many
builds, and then analysis of the results.
To ensure a consistent user experience, organizations need to make UX performance
testing part of their CI/CD pipeline and part of their continuous testing practice.

UX Performance Integrated into the Continuous Testing Pipeline

9

Functional Testing
Today, functional testing is the number one priority on QA teams’ agenda for automation.
Since it has the highest impact on application quality and user experience, significant
effort and resources are going into incorporating functional testing into the CI/CD pipeline.
Organizations are developing and maintaining test suites, and investing in the test labs that
are required for high scale parallel execution and for device and browser coverage.

Performance Testing as Part of Functional Testing
The most effective and efficient way to
implement UX performance testing is to
leverage the efforts and investments in
functional testing. Adding performance
tests to an existing test suite saves test
development and maintenance, and ensures
the wide coverage required.
In this manner, users who create and run
‘regular’ functional tests can create and run
UX performance tests on a continuous basis,
without requiring the skills of a performance
engineer. Combining functional tests and
UX Performance tests also helps encourage
team collaboration and helps ensure that
performance testing is incorporated early in
the SDLC.

Adding UX performance
testing to existing

Appium, Selenium or
any other functional

tests helps ensure that
digital applications

not only work, but are
performing a way that

will delight users.

10

UX Performance Integrated into the Continuous Testing Pipeline

Starting to measure performance metrics requires breaking down users’ interactions
within an application to the level of each transaction. A transaction is a specific
operation performed at the UI level, which leads to communication with the server and
back. For example, clicking the Login button and waiting for the next screen to load can
be considered as the ‘Login’ transaction. Other examples of transactions are actions
like Search, generating a report, deleting an element and so on. Each of these types of
transactions typically involves an interaction with the database.

Usually, in functional testing, tests contain also actions that are not part of a transaction.
For example, if we have forms we need to fill in the application, filling a form is not part
of the transaction; and the speed in which a user fills the form is mainly up to their
typing speed and level of distraction. Many tests also load the application, or navigate to
a specific area in a page.
 When analyzing application performance, especially as part of Continuous Testing
pipeline, we need to isolate transactions from other actions as well as from each other,
in order to pinpoint specific issues and correct them.

Transaction - Subset of Functional Test

11

UX Performance Integrated into the Continuous Testing Pipeline

UX performance can impact the user experience in different ways. How long a page
takes to load in full, how long before the user starts engaging with a page, whether
an app slows down, guzzles down battery, hogs CPU or device memory and more. An
issue with one metric doesn’t necessarily affects another metric. In addition, if the login
transaction performance is flawless without any deterioration, it doesn’t mean that the
search transaction doesn’t have a bug that led to a performance issue.

This is why it’s important to continuously monitor all transactions and all key performance
metrics and compare them to the established baseline.
Following are the key performance metrics:

Transaction Time
Transaction time is the full duration of the performed operation, starting with the click
of the ‘Submit’ button until all the information was rendered back to the user.

Speed Index
The Speed Index is the average time at which visible parts of the page are displayed. It
is expressed in milliseconds and dependent on the size of the viewport.
The following example shows two different web pages that load second by second,
taking five seconds for the page to load in full:

Key UX Performance Metrics

UX Performance Integrated into the Continuous Testing Pipeline

12

UX performance can impact the user experience in different ways. How long a page takes
to load in full, how long before the user starts engaging with a page, whether an app slows
down, guzzles down battery, hogs CPU or device memory and more. An issue with one metric
doesn’t necessarily affects another metric. In addition, if the login transaction performance
is flawless without any deterioration, it doesn’t mean that the search transaction doesn’t
have a bug that led to a performance issue.

This is why it’s important to continuously monitor all transactions and all key performance
metrics and compare them to the established baseline.

Following are the key performance metrics:

Hitatiis aceate mil illoreptassi blaborem fu estiorehendi blab ipsum quia nosanitate vel

dem sitatis dunti acerumquatem .Gendi od qui vitisimin

1 S

10%

2 S

10%

3 S

10%

4 S

10%

5 S

100%

10% 50% 100%90% 97%

In the first example the user sees nothing during the load time, and only in the 5th
second does the material appear as the entire page is being loaded all at once.

In the second example, after 2 seconds, the user is able to see the full frames, by the
3rd second most of the content is available and the user can start to analyze the page
and find the main content on the page.

The user experience in these two cases is very different and it emphasis why a
meaningful alternative for ‘page load time’ is needed.

UX Performance Integrated into the Continuous Testing Pipeline

13

Meaningful Metrics

CPU
The CPU (Average, Maximum) of
the device/application during the
transaction time.

Memory
The Memory (Average, Maximum)
of the device application during the
transaction time.

Battery
The Battery (Average, Maximum) of
the device/application during the
transaction time.

Network
The uploaded and downloaded
data during a transaction.

On their own, performance metrics are meaningless. Is a transaction duration of
5 ms good or bad? To generate value from performance metrics, one approach is
to require meeting the target values for these metrics, or “thresholds”. If the target
duration of the Login action defined by the business owners is 10 ms, 5 ms is great. If
the defined duration is 4ms, this does not meet the mark.

A better approach would be to achieve these “target values” or “thresholds” is by
building a baseline from many builds for that same transaction, with different
conditions. Then the system can automatically identify anomalies and deviations from
the baseline.

Transaction data needs to be stored in a central repository, so it can be analyzed
to identify trends and issues, which brings understanding of the root causes of the
issues. This way we can also understand whether a deviation happened only for a
specific device or network conditions, in a specific build, following a certain update,
and so on.

14

UX Performance Integrated into the Continuous Testing Pipeline

Transaction and Pipeline

To add application performance to the CI/CD pipeline:

1.	 Start collecting transaction information. The information can be collected
both from manual flows as well as automation (functional) flow. In order to add
it to automation flows, map the transactions into the relevant functional tests
by adding ‘start transaction’ and ‘end transaction’ commands to these functional
tests. Make sure to call same transaction by the same name, for example if the
transaction is user login, call it “user login” (and not once “user login” and once
“login”).

2.	 Store the information in a centralized repository specific to each application. The
stored information should include device information, application information
and obviously the performance measurements like Transaction Time, Network
Download and Upload, Speed Index, CPU, Memory and Battery usage.

3.	 Perform analysis that will enable determination of the baseline, and thresholds.
This analysis enables views of trends and provides a view of transactions over
builds and versions. For example, analysis could show that for a specific build, iOS
13 login duration time was consistently longer by 5% whereas other transactions
and/or this login transaction for other versions of the operating systems were not
affected in this way. In this case the build can be defined as failed under these
circumstances.

Manual Tests

Automated
Functional Tests

Transaction info
(Start/Stop)

Transactions
Information

Database

Transactions
Analytics

Analytics &
Debug

15

UX Performance Integrated into the Continuous Testing Pipeline

Once the analytics of the transactions identify a trend and raise suspicion for regression,
the next step is to analyze the change in the behavior and debug it. This involves trying
to identify the reason for the performance issue, and to identify its root cause. There are
many reasons why a build could have an issue with transaction performance, including:

	» A loop in the server that goes on and on, or a large image that takes too long to
download

	» A DNS issue
	» An issue with an SSL handshake
	» HTTP requests not being sent in parallel

Poor app performance can be detrimental for any company, especially when performance
issues take too long to identify. To quickly identify the cause of a performance issue of
a transaction, a new set of tools is required.

Analysis and Debug

16

UX Performance Integrated into the Continuous Testing Pipeline

The transaction report, in conjunction with a video of the transaction, are critical in pin-
pointing issues. The transaction report displays the range of parameters accumulated
(Battery max, average, CPU, max, average, Speed Index, Network download, upload,
Memory, etc.)
In addition, a key tool to be used is the waterfall view of a HAR file. HAR, short for HTTP
Archive, is a format used for tracking information between a web browser and a website
and can show all the network requests from the application to different services.

The ability to compare two views from two transactions can be very beneficial.
Also, automatic analysis of the network requests against common guidelines and best
practices can be very helpful for new performance engineers.

17

UX Performance Integrated into the Continuous Testing Pipeline

Summary

To ensure excellent great digital customer experiences, organizations
should embrace UX performance testing that incorporates not only
speed and load time, but also considers battery life, network data traffic,
memory, and CPU consumption.

To incorporate performance tests within test suites:

1.	 Identify the transactions to be monitored (these can be a dozen or even hundreds
of such transactions).

2.	 Product owners then map these transactions.

3.	 Add the definition of the start and end of transactions to existing functional tests.

4.	 Integrate performance data into reports and analytics and take the required
actions to correct the issues.

18

UX Performance Integrated into the Continuous Testing Pipeline

Make UX performance testing part
of existing UI functional testing. Add
UX performance tests to standard
Appium and Selenium tests,
triggered by the CI pipeline.

Continuous

For UX performance testing to succeed it must be integrated
into the CI/CD pipeline in the following manner:

Focus on transaction performance, not test
performance. Add transaction definitions
to the test code. Important transactions
and their target performance should be
defined by business owners and shared
with DevOps teams.

Consistent

Test performance data should be
stored together with other versions
and test data in an analytics
database, and compared to the
established baseline.

Meaningful & Comparable
Leverage comprehensive reports and
analytics for rapid root-cause analysis;
leverage deep network and test data for
in-depth investigation.

Actionable

19

UX Performance Integrated into the Continuous Testing Pipeline

Address:
4023 Kennett Pike 50128, Wilmington, DE, 19807

E-mail:
support@experitest.com

Phone:
+1-646-491-6262

For more information:

www.experitest.com

Copyright protected. All rights reserved. Experitest Ltd.

UX Performance Integrated into the Continuous Testing Pipeline

https://experitest.com/

